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Introduction: Osteosarcoma is the most common primary bone tumor. Patients

require chemotherapy drugs with high-targeting ability and low off-target toxicity

to improve their survival. Exosomes are biological vesicles that mediate long-

distance communication between cells and naturally target their source sites.

Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) naturally

target bone tumor sites, suggesting their potential as effective anti-tumor therapy

vectors. In this study, we evaluated the potential of BMSC-derived exosomes in

targeting osteosarcoma and serving as a carrier for doxorubicin (DOX).

Methods: We isolated exosomes from human BMSCs and synthesized hybrid

exosomes (HEs) by fusing these exosomes with liposomes. These HEs were

loaded with DOX to produce a novel drug, HE/DOX.

Results: We confirmed the successful synthesis of HE/DOX using fluorescence

spectroscopy and estimated its size to be 151.1 ± 10.2 nm. HEs expressed the

known exosomal proteins ALIX, CD63, and TSG101. Under acidic conditions

similar to those observed in the tumor microenvironment, the drug release from

HE/DOXwas enhanced. In osteosarcoma cell lines and in amouse osteosarcoma

model, HE/DOX exhibited stronger tumor-inhibitory effects than free DOX.

Conclusions: Our study demonstrates that BMSC-derived exosomes could

effectively target osteosarcoma. Furthermore, HEs can serve as effective

carriers of DOX, enabling the treatment of osteosarcoma. These findings

highlight a promising direction for tumor-targeted therapy.
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1 Introduction

Osteosarcoma is the most common bone tumor in children and

adolescents and seriously endangers human health. Chemotherapy

is an important treatment option that significantly improves the

survival of patients with osteosarcoma; however, no progress has

been made in osteosarcoma treatment in recent decades. Depending

on tumor location and characteristics, reaching the site of its

occurrence may be difficult for chemotherapy drugs, and this

reduces their efficacy (1–4). Therefore, developing new drugs or

carriers is necessary to improve treatment strategies and survival of

patients with osteosarcoma.

Extracellular vesicles are nanoparticles secreted by most cells

and can be divided into three types based on their biogenesis:

microvesicles, exosomes, and apoptotic bodies (5). Exosomes are

the most common extracellular vesicles, with a size of

approximately 30–150 nm, and can load cellular contents, such as

proteins, lipids, and nucleic acids, during their biogenesis (6).

Exosomes, which have a phospholipid bilayer similar to typical

drug-delivery liposomes, have been widely studied as drug delivery

carriers. Drug delivery by exosomes can increase blood circulation

time, improve drug stability, and allow accumulation in target

tissues (7, 8). The advantages of using exosomes as drug delivery

carriers are reflected in their ability to evade immune rejection.

Although artificial lipid-based nanocarriers have shown significant

progress in targeting, immune rejection still occurs (9). Natural

exosomes exist in organisms and can be secreted by various cells,

such as red blood cells, white blood cells, macrophages, and stem

cells. Exosomes derived from their own sources can have good

biocompatibility and low immunogenicity in organisms and can

escape capture by the immune system (10–12).

Exosomes are secreted by various cells. Stem cells are ideal drug

carriers for cell production as they secrete more exosomes, are easy

to obtain from the human body, can be expanded in vitro, and have

natural tumor targeting and low immunogenicity (13–15).

Exosomes also possess natural homing abilities to target their

source sites (16). For example, bone marrow mesenchymal stem

cell (BMSC)-derived exosomes can actively home into the site of

osteosarcoma to achieve targeted tumor delivery and are, therefore,

suitable as carriers for drug loading (17, 18).

Although exosome production by stem cells is high, it still

cannot meet the treatment needs. Moreover, owing to the influence

of separation technology, exosomes as drug carriers require

considerable time, financial resources, and professional

technicians (19). To address the demand for exosomes as drug

carriers, studies have explored membrane fusion technologies,

including freeze-thaw and incubation methods (20–22).

Membrane fusion technology synthesizes nanoparticles less than

200 nm in size by hybridizing exosomes with liposomes to generate

hybrid exosomes (HEs). These HEs have the advantages of both

exosomes and liposomes. Exosomes have many advantages as

natural drug delivery systems, but their production limits their

application; HEs make up for this shortcoming as they can be

produced on a large scale. In addition, HEs can overcome the

immune rejection and toxicity associated with liposomes. Recently,

macrophage-derived exosomes hybridized with liposomes were
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used to successfully deliver chemotherapeutic drugs for tumor

treatment (23).

We hypothesized that owing to their homing properties BMSC-

derived exosomes could target osteosarcoma. To test this

hypothesis, in this study, we examined the distribution of BMSC-

derived exosomes in vivo. In addition, we hybridized exosomes with

synthetic liposomes to prepare HEs and transfer doxorubicin

(DOX) to osteosarcoma cells. This drug delivery system offers an

effective method for treating osteosarcoma (24). It is important to

note that in this study, we used small extracellular vesicles derived

from BMSCs, with a diameter <200 nm, and the term “exosome” in

this article refers to such small extracellular vesicles.
2 Results

2.1 Isolation and characterization of HEs
loaded with DOX

First, we extracted exosomes secreted by BMSCs to prepare HEs

by fusing them with liposome membranes and then prepared HEs

loaded with DOX (HE/DOX) and liposomes loaded with DOX (LP/

DOX) using the ammonium sulfate gradient method (Figure 1).

Transmission electron microscopy revealed the morphology of the

exosomes, HE/DOX, and LP/DOX, all of which showed a double-

layer membrane structure (Figure 2A). Nanoparticle tracking

analysis demonstrated that the peak diameter of HE/DOX was

151.1 ± 10.2 nm (Figure 2B), similar in size to exosomes and LP/

DOX. Western blot analysis showed that HEs expressed the

exosomal markers ALG-2-interacting protein X (ALIX), CD63,

and tumor susceptibility 101 (TSG101) but did not express the

negative marker calnexin (Figure 2C), indicating the successful

fusion of liposomes and exosomes. In addition, we measured the

surface charge of the exosomes, LP/DOX, and HE/DOX, which had

zeta potentials of −11.7 ± 0.8, −30.2 ± 2.0, and −19.7 ± 0.9 mV,

respectively. The difference between LP/DOX and HE/DOX was

statistically significant when compared to the exosome group

(exosome vs. LP/DOX, P = 0.0003; exosome vs. HE/DOX, P =

0.0008) (Figure 2D). We used PKH26 to label HEs (red), and

fluorescence overlap was observed using the intrinsic fluorescence

of DOX (green) under confocal microscopy, which demonstrated

that DOX was encapsulated within HEs (Figure 2E). To test the

stability of the exosomes, LP/DOX, and HE/DOX, they were stored

at 4°C and their stability in terms of particle size and zeta potential

was measured. Compared with the zeta potential on the first day,

the average changes in zeta potential in the exosome, LP/DOX, and

HE/DOX groups on the last day were 4.5 ± 0.6, 3.8 ± 0.3, and 1.2 ±

0.5 mV, respectively. The differences between the groups were

statistically significant (P = 0.0004). The results showed that HE/

DOX was more stable than the exosomes (Figures 2F, G).
2.2 DOX loading and release study

We studied the drug loading and release profiles of HE/DOX.

The results showed that even at a DOX concentration of 0.8 mg/mL,
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the drug encapsulation efficiency was high (approximately 90%),

whereas the loading efficiency continued to increase and could

reach approximately 70% (Figure 3B). LP/DOX had a drug-loading

profile similar to that of HE/DOX (Figure 3A), indicating that the

extracellular vesicle membrane did not change the drug-loading

properties of the liposomes. Leakage rates of HE/DOX and LP/DOX

were also measured. Supplementary Figure S1 shows that at 4°C, no

significant leakage of HE/DOX and LP/DOX was observed within

7 d, indicating that the HE/DOX membrane was highly stable.

In addition, we studied the drug release profiles of HE/DOX and

LP/DOX under simulated physiological conditions (pH 7.4) and in

a tumor endolysosomal compartment interior environment (pH

5.5). As shown in Figure 3, HE/DOX and LP/DOX were rapidly

released in the acidic environment; however, their release was

slower under physiological conditions (Figures 3C, D).
2.3 BMSC-derived exosomes home into
osteosarcoma cells in vitro

To determine whether BMSC-derived exosomes enter

osteosarcoma cells in vitro, we isolated exosomes from BMSCs

and used liposomes as a control. PKH26-labeled BMSC-derived
Frontiers in Oncology 03
exosomes and liposomes were co-cultured with the osteosarcoma

cell lines 143B and MG63 for 12 h, and fluorescence was quantified

using confocal microscopy. The results showed that the uptake of

BMSC-derived exosomes by 143B and MG63 cells was significantly

higher than that of liposomes (Figures 4A, B). In addition, we co-

cultured DiD-labeled exosomes with osteosarcoma cells and used

flow cytometry to quantify exosome uptake by detecting

fluorescence. The results also indicated that BMSC-derived

exosomes were taken up by osteosarcoma cells more easily than

were liposomes (Figures 4C, D).
2.4 Tumor uptake and inhibition

To investigate the uptake of HE/DOX by tumor cells, we co-

cultured PKH26-labeled HE/DOX with 143B and MG63. To study

the temporal pattern of osteosarcoma cell internalization of

HE/DOX, we observed internalization at 1, 3, and 6 h using

confocal microscopy (Figures 5A, B). Osteosarcoma cell

internalization of HE/DOX was significantly time-dependent,

showing a distinct increase in internalization over time.

We used the Cell-Counting Kit- 8 (CCK-8) assay to evaluate the

growth inhibition/cytotoxic effects of free DOX and HE/DOX on
FIGURE 1

Schematic diagram of a drug delivery system involving the fusion of BMSC-derived exosomes and liposomes to generate HEs, which were loaded
with DOX for anti-osteosarcoma therapy. The upper panel illustrates the process of HE/DOX preparation. The lower panel shows that HE/DOX easily
penetrates the tumor tissue through vascular endothelial cells, achieving effective DOX delivery.
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143B and MG63 cells (Figures 5C, D). The dose-response curves

showed that HE/DOX had a significantly stronger inhibitory effect

on 143B and MG63 cells than free DOX. The half-maximal

inhibitory concentrations (IC50) of HE/DOX on 143B and MG63

cells were 1.5 and 1.97 mg/mL, respectively, which were significantly

lower than the IC50 of free DOX at 4.81 and 4.89 mg/mL,

respectively. These results indicate that HE/DOX has an

inhibitory effect on osteosarcoma and enhances the toxicity of

free DOX. Additionally, we investigated the cytotoxic effects of

BMSC-derived exosomes, liposomes, and HEs on cells

(Supplementary Figure S2). The dose-response curves indicated

that BMSC-derived exosomes, liposomes, and HEs did not show

significant cytotoxicity.
2.5 Therapeutic effects of HE/DOX in vivo

To evaluate the inhibitory effect of HE/DOX on tumors, we

injected phosphate-buffered saline (PBS), HEs, free DOX, LP/DOX,
Frontiers in Oncology 04
or HE/DOX into orthotopic tumor-bearing mice every other day for

a total of five injections. Figure 6A shows the treatment of the nude

mouse tumor model. The dose of DOX administered to each mouse

in the treatment group was 5 mg/kg. The results showed that mice

in the PBS and HE groups had the fastest increase in tumor volume,

whereas those in the free DOX, LP/DOX, and HE/DOX groups

showed slow tumor growth (Figures 6B–D). Compared to the free

DOX group, the LP/DOX group showed better tumor growth

inhibition. Furthermore, HE/DOX showed a more successful

therapeutic effect than LP/DOX. Additionally, no significant

difference in body weight was observed between the groups

during treatment (Figure 6E), indicating that the drugs had no

significant side effect on mice.
3 Discussion

Exosomes serve as carriers for drug delivery and as substances

for intercellular communication. Exosomes from BMSCs contain
FIGURE 2

Morphological identification and protein characteristics of exosomes, LP/DOX, and HE/DOX. (A) Transmission electron microscopy images showing
the morphology of exosomes, LP/DOX, and HE/DOX. (B) Nanoparticle size tracking analysis revealed the size distribution and concentration of
exosomes, LP/DOX, and HE/DOX. (C) Western blot analysis of exosomal markers (ALIX, TSG101, and CD63) and a negative marker (calnexin) on HEs
and exosomes (Exo). (D) Zeta potential of exosomes, LP/DOX, and HE/DOX. (E) Co-localization analysis and confocal images of pkh26-labeled HEs
(red) and DOX (green). (F) Changes in the size of exosomes (Exo), LP/DOX, and HE/DOX under storage conditions at 4°C. (G) Changes in the zeta
potential of exosomes (Exo), LP/DOX, and HE/DOX under storage conditions at 4°C. *** P < 0.001. All the statistical graphs are the results of three
experiments repeated, and the pictures are the representative results of the three experiments.
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specific molecular libraries, including proteins, lipids, DNA, and

RNA that participate in the communication and cellular processes

of osteosarcoma cells (25). Exosomes closely associated with

osteosarcoma cells as nanovesicles serve as effective drug delivery

carriers. Our findings demonstrate that BMSC-derived exosomes

can target osteosarcoma cells, a targeting capability that can be

utilized by fusing them with liposomes to effectively inhibit

osteosarcoma growth with DOX. Specifically, we fused exosomes

from BMSCs with liposomes to carry DOX, forming a composite

nanodrug that transports chemotherapeutic drugs to the tumor site

and inhibits tumor growth.

HEs formed by the fusion of exosomes and liposomes express

similar marker proteins as exosomes. Therefore, HEs may have

characteristics similar to those of exosomes; for example, BMSC-

derived exosomes can actively home into osteosarcoma. We

speculate that the ability of HEs to target osteosarcoma may be

related to the targeting by exosomes.

Owing to their lack of natural components, synthetic materials

exhibit strong immunogenicity, making them prone to clearance by

the immune system. Therefore, surface modifications of

nanomaterials can reduce their immunogenicity, enabling their

effective delivery to tumor cells. Previous studies have reported

that synthetic materials, with surface modifications using tumor cell

membranes, can effectively target such type of tumor cells (26).

DOX, a key chemotherapeutic drug for osteosarcoma, has

limited applications owing to its accumulation in non-targeted

organs and particularly its off-target cardiac toxicity (27).

Exosomes, acting as encapsulation carriers, can increase the
Frontiers in Oncology 05
solubility of certain natural compounds (28) and promote

endocytic processes through expressed transmembrane or

anchored proteins (29). Unlike liposomes, the integrin-related

transmembrane proteins on the surface of exosomes can activate

“don’t eat me” signals to protect loaded contents from immune

system phagocytosis (30, 31). The results of confocal and flow

cytometry analyses showed that BMSC-derived exosomes were

taken up more readily by osteosarcoma cells than liposomes,

which also suggests that liposomes hybridized with exosomes may

be more advantageous as drug carriers for the treatment of

osteosarcoma than liposomes alone. We believe that this is one of

the reasons why HE-DOX has a stronger inhibitory effect on

osteosarcoma in vivo than the other groups.

We also tested the drug release characteristics of HE/DOX. The

release of HE/DOX is higher in acidic environments, which is a

rational feature of cancer treatment, given that cancer cells reside in

an acidic microenvironment (32, 33). We found that the release of

HE/DOX in an acidic environment can reach up to 82%, whereas it

was only 58% under normal physiological conditions. This

increased drug release may be due to the increased solubility of

DOX in acidic environments or may be attributed to the fact that

the vesicle structure is more prone to disruption in acidic

environments, thereby facilitating faster drug release (34).

Furthermore, HE/DOX is more susceptible to protonation in

acidic environments, which accelerates DOX release.

However, the mechanism underlying the targeting of

osteosarcoma cells by mesenchymal stem cell-derived exosomes

remains unclear. Currently, cancer targeting is primarily achieved
FIGURE 3

Loading and release of DOX by LP/DOX and HE/DOX. (A) Encapsulation efficiency (EE) and loading efficiency (LE) of DOX by LP/DOX. (B) EE and LE
of DOX by HE/DOX. (C) Drug release efficiency of LP/DOX under pH 5.5 and 7.4. (D) Drug release efficiency of HE/DOX under pH 5.5 and 7.4. All the
statistical graphs are the results of three experiments repeated, and the pictures are the representative results of the three experiments.
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through the receptor-ligand interactions of specific antigens on the

surface of cancer cells (35). Tumor cells often overexpress

numerous surface proteins compared with normal cells, which

could be a probable reason for the increased internalization of

HEs. In this study, using HEs prepared by the fusion of

mesenchymal stem cell-derived exosomes with liposomes, we

observed a significant enhancement in internalization and

cytotoxic characteristics. These findings suggest promising

prospects for osteosarcoma treatment.

In this study, we used BMSC-derived exosomes to modify

liposome nanoparticles, providing a new method for modification

of other nanoparticles. Previous studies have employed red blood

cell, platelet, or leukocyte membranes to mimic cellular features and

enhance the functionality of nanoparticles (36–38). Compared to

cellular membrane camouflage, the exosomal membrane used in our

study mimicked natural nanobiomaterials, displaying similarities in

size and co-functionality, while remaining less susceptible to

mononuclear phagocytic system clearance. The adhesive molecules

on the exosome membrane also conferred the enhanced cell binding

and internalization capabilities of HEs. Therefore, as a novel drug

delivery material, HEs can effectively prolong circulation time,

improve biocompatibility, and offer targeting potential.
Frontiers in Oncology 06
In conclusion, our study demonstrated that mesenchymal stem

cell-derived exosomes can naturally target osteosarcoma and can be

utilized as a camouflage membrane to fuse with liposomes to deliver

chemotherapeutic drugs for osteosarcoma treatment. Although these

results are promising, we have not fully elucidated the mechanism of

exosome targeting in tumors, as some studies have suggested that

mesenchymal stem cell-derived exosomes can promote the

progression of osteosarcoma (24). Therefore, future studies should

focus on understanding the mechanisms underlying exosome

targeting in osteosarcoma, such as those involving integrins,

surface proteins, and lipids. Our study suggests that HEs can serve

as effective carriers for chemotherapy in cancer patients.
4 Methods

4.1 Cell culture

The human BMSCs and osteosarcoma 143B and MG63 cell

lines were purchased from the Peking Union Cell Bank, China. All

cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum, 1%
FIGURE 4

Cell uptake and internalization of exosomes and liposomes. (A, B) Quantitative representative confocal images and cellular uptake of exosomes and
liposomes by 143B and MG63 osteosarcoma cells, Red represents PKH26-labeled exosomes and liposomes, and blue represents DAPI-labeled
nuclei. (C, D) Quantification of osteosarcoma cell uptake of exosomes and liposomes using flow cytometry. **P < 0.01, ***P < 0.001. All the
statistical graphs are the results of three experiments repeated, and the pictures are the representative results of the three experiments.
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streptomycin, and 100 IU/mL penicillin. The BMSCs were cultured

in exosome-free medium; specifically, the added fetal bovine serum

was centrifuged at 100,000 × g for 16 h to remove the exosomes in

the serum. All cells were cultured at 37°C in a 5% CO2 incubator.
4.2 Exosome isolation

The exosomes were isolated using ultracentrifugation.

Specifically, BMSCs were cultured in DMEM without exosomes for

48 h and the cell supernatant was collected. Debris or dead cells were

removed by gradient centrifugation at 300 × g for 10 min, at 2000 × g

for 20 min, and at 10,000 × g for 30 min. The supernatant was then

placed in an ultracentrifuge tube and centrifuged at 100,000 × g for

70 min to obtain uniform exosomes. The concentrated exosomes

were resuspended in PBS and stored at −80°C for further study. All

centrifugation procedures were performed at 4°C.
4.3 Synthesis of liposomes

The liposomes were prepared via film hydration and membrane

extrusion. Specifically, L-a-phosphatidylcholine (Egg, Chicken)

(EggPC) and cholesterol were uniformly mixed in chloroform at a

ratio of 66:34. The mixture was dried overnight. The next day, the

dried film was hydrated with PBS and fully dispersed using
Frontiers in Oncology 07
ultrasound. An extruder (Avanti Mini-Extruder) was used to

extrude the dispersed post-solution subsequently through 400-

and 200-nanometer polycarbonate membranes to obtain

uniform nanoliposomes.
4.4 Synthesis of HEs and HE/DOX

HEs were prepared using a simple extrusion method.

Specifically, the isolated exosomes and prepared liposomes were

fully mixed in PBS solution at a mass ratio of 1:5 and ultrasonically

treated. The mixed solution was extruded through 400- and 200-

nanometer polycarbonate membranes using an extruder to obtain

monodisperse HEs.

DOX was encapsulated within HEs using the ammonium

sulfate concentration gradient method. Briefly, exosomes were

mixed with liposomes and resuspended in 240 mM ammonium

sulfate solution. After sufficient vortexing and ultrasonic treatment,

HEs encapsulated in an ammonium sulfate solution were obtained

through 400- and 200-nanometer polycarbonate membranes. The

solution was injected into a Slide-A-Lyzer Nutritional Cassette

(MWCO 20 kDa) and dialyzed overnight at room temperature in

PBS solution (pH 7.4) to remove ammonium sulfate outside the HE

membrane and obtain a solution with a concentration gradient. The

next day, a final concentration of 0.2–0.8 mg/mL DOX was added to

the HE solution and then incubated at room temperature for 6 h.
FIGURE 5

Cellular uptake and cytotoxicity of HE/DOX. (A, B) Quantitative representative confocal images and cellular uptake of HE/DOX. Red represents
PKH26-labeled HEs, green represents DOX, and blue represents DAPI-labeled nuclei. (C, D) Cell viability following administration of free DOX and
HE/DOX of the osteosarcoma cell lines 143B and MG63. *P < 0.05, ***P < 0.001. All the statistical graphs are the results of three experiments
repeated, and the pictures are the representative results of the three experiments.
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Subsequently, the solution was injected into the Slide-A-Lyzer

Nutritional Cassette (MWCO 20 kDa). The obtained HE solution

containing DOX was named HE/DOX and stored at −80°C for

subsequent research. Liposomes loaded with DOX were prepared in

the same manner without exosomes and were named LP/DOX.
4.5 Characterization of LP/DOX and
HE/DOX

The surface morphologies of LP/DOX and HE/DOX were

observed using transmission electron microscopy (Hitachi,

HT7700). The concentration and size distribution of LP/DOX
Frontiers in Oncology 08
and HE/DOX were measured using nanoparticle tracking analysis

(Malvern, NanoSight NS300). The surface charges on LP/DOX and

HE/DOX were characterized using dynamic light scattering (DLS,

Malvern ZSP). Confocal microscopy (A1, Nikon) was used to

confirm the successful encapsulation of DOX within HEs.

Positive exosomal markers (ALIX, CD63, and TSG101) and a

negative marker (calnexin) in HEs and exosomes were analyzed using

western blotting. RIPA lysis buffer (R0010, Solarbio) was used to

extract proteins from the cells, HEs, and exosomes, and the total

amount of protein was determined by BCA colorimetry. The

extracted protein samples were then analyzed using polyacrylamide

gel electrophoresis and western blotting. The following antibodies

were used: ALIX (1:1000 dilution; Proteintech, USA), CD63 (1:1000
FIGURE 6

In vivo antitumor effect. (A) Schematic diagram for the treatment of a mouse orthotopic tumor-bearing model. (B) In situ images of osteosarcoma
treated with PBS, HEs, free DOX, LP/DOX, or HE/DOX (n = 5). (C) Changes in tumor volume over time. (D) Tumor mass of mice at the endpoint. (E)
Weight of mice following treatment. *P < 0.05, ***P < 0.001. All the statistical graphs are the results of three experiments repeated, and the pictures
are the representative results of the three experiments.
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dilution; ABclonal Technology, China), TSG101 (1:1000 dilution;

Proteintech), and calnexin (1:1000 dilution; ABclonal Technology).
4.6 Drug loading and release study

A standard curve was drawn using a Multimode Microplate

Reader (Thermo Fisher Technologies, USA) at excitation and

emission wavelengths of 480 and 594 nm, respectively, and the

concentration of DOX was determined.

As mentioned above, DOX was loaded into HEs using the

ammonium sulfate concentration gradient method, and the

concentration of DOX added was 0.2–0.8 mg/mL (0.1, 0.2, 0.4,

0.6, and 0.8 mg/mL). The following DOX loading efficiency (LE)

and encapsulation efficiency (EE) formulas were used: LE =

DOXloaded/(HEinitial + DOXloaded) × 100% and EE = DOXloaded/

DOXinitial × 100%, where DOXloade is the mass of DOX loaded into

HEs, HEinitial is the mass of HEs, and DOXinitial is the mass of DOX

initially added to the solution.

We measured the drug release rates for HE/DOX and LP/DOX

in different pH environments (pH 7.4 or 5.5). The concentrations of

HE/DOX or LP/DOX were adjusted to 100 mg/mL. Next, 1 mL of

HE/DOX or LP/DOX solution was added to a Slide-A Lyzer Dialysis

Cassette (MWCO 20 kDa). The dialysis cassette was placed in 150

mL of PBS at pH 7.4 or 5.5. The samples were placed on a shaker at

37°C and shaken at a constant speed. At 3, 6, 12, 24, 48, and 72 h, 1

mL of the PBS dialysate was removed to determine the DOX content,

and 1 mL of fresh PBS was added to replenish the sample.
4.7 Exosome labeling and homing to the
osteosarcoma cell lines in vitro

Exosomes were labeled with PKH26 (Sigma-Aldrich).

Specifically, 3 mL of PKH26 reagent and 500 mL of diluent C were

added to 100 mg of exosome suspension and incubated at 37°C for

30 min. Free PKH26 was then removed using ultracentrifugation.

143B and MG63 cells were seeded onto 24-well culture slides at

a density of 2 × 104 cells/well. After 24 h of culture in an incubator,

PKH26-labeled human BMSC-derived exosomes or liposomes were

added. After 12 h of re-culture, all the cells were washed three times

with PBS, fixed in 4% paraformaldehyde for 30 min, and then

washed three times with PBS. Subsequently, 100 mL of DAPI

staining solution (Beyotime, China) were added to each well for

nuclear staining. Cell fluorescence was measured using an Axio Vert

A1 fluorescence microscope (Carl Zeiss, Germany), and

fluorescence intensity was calculated using the ImageJ software.

DiD (Thermo Fisher) was used to label exosomes. Brielfy, 10 mL
of DiD reagent was added to 100 mg of exosomes and incubated at

37°C for 30 min. Free DiD was removed using ultracentrifugation.

143B and MG63 cells were seeded in 6-well plates and cultured for

24 h. DiD-labeled liposomes or BMSC-derived exosomes were added

and co-cultured for 12 h. The cells were then digested with trypsin,

the supernatant was removed by centrifugation, and the cells were

washed twice with PBS. The cells were resuspended and analyzed

using flow cytometry on a DxFLEX system (Beckman Coulter).
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following the same method.
4.8 Uptake of HE/DOX by tumor cells
in vitro

Osteosarcoma 143B and MG63 cells were seeded onto glass

slides in 24-well plates at a density of 2 × 104 cells/well. PKH26-

labeled HE/DOX were co-cultured with 143B and MG63 cells for

12 h. After washing three times with PBS, the cells were fixed with

4% paraformaldehyde for 30 min, washed three times with PBS, and

stained with DAPI. Images were captured using a confocal

microscope and quantitatively analyzed using the ImageJ software.
4.9 In vitro toxicity

A CCK-8 (Sigma-Aldrich) assay was conducted to analyze the

toxicity of free DOXand HE/DOX in the osteosarcoma cell lines.

First, 2,000 cells were seeded in 96-well plates and cultured in

DMEM medium containing 10% fetal bovine serum for 24 h. The

next day, the medium was replaced with fresh medium containing

BMSC-derived exosomes, liposomes, HEs, free DOX, or HE/DOX

and cultured for 24 h. The CCK-8 reagent was added and incubated

at 37°C for 2 h. Absorbance was measured at 450 nm using a

Multimode Microplate Reader (Thermo Fisher Technologies).
4.10 In vivo antitumor effect

Osteosarcoma 143B cells were inoculated into the right tibia of

nude mice. After 10 days, the mice were randomly divided into four

groups (N = 5) and injected with 150 mL of PBS, HEs, free DOX, LP/

DOX, or HE/DOX every 2 d for five times. Free DOX, LP/DOX, and

HE/DOX were administered at a dose of 5 mg/kg. The body weight

of the mice was measured every 2 d, and the tumor volume was

measured using a Vernier caliper. The formula for calculating

tumor volume (V) is as follows:

V =
4
Q
3

AP + L
4

� �2

where AP is the distance between the tumors on both sides of

the kneecap and L is the length of the tumor in front of the tibia.
4.11 Statistical analyses

All statistical analyses were performed using GraphPad Prism 8

(GraphPad software). All experimental data were described as mean

± standard deviation. Differences between groups were analyzed

using two-way analysis of variance. P values less than 0.05 were

considered statistically significant (*P < 0.05, **P < 0.01, ***P <

0.001). All the results were obtained from three replications of

the experiments.
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SUPPLEMETARY FIGURE S1

Time-dependent doxorubicin leakage rate from LP/DOX and HE/DOX.

SUPPLEMETARY FIGURE S2

Cellular toxicity of exosomes, liposomes, and HE on osteosarcoma cells 143B
(A) and MG63 (B) revealed that there was no significant increase in

cytotoxicity with increasing concentrations.
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