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Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment

modality, offering promising outcomes for various malignancies. However, the

efficacy of ICIs varies among patients, highlighting the essential need of accurate

predictive biomarkers. This review synthesizes the current understanding of

biomarkers for ICI therapy, and discusses the clinical utility and limitations of

these biomarkers in predicting treatment outcomes. It discusses three US Food

and Drug Administration (FDA)-approved biomarkers, programmed cell death

ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and microsatellite

instability (MSI), and explores other potential biomarkers, including tumor

immune microenvironment (TIME)-related signatures, human leukocyte

antigen (HLA) diversity, non-invasive biomarkers such as circulating tumor DNA

(ctDNA), and combination biomarker strategies. The review also addresses

multivariable predictive models integrating multiple features of patients,

tumors, and TIME, which could be a promising approach to enhance predictive

accuracy. The existing challenges are also pointed out, such as the tumor

heterogeneity, the inconstant nature of TIME, nonuniformed thresholds and

standardization approaches. The review concludes by emphasizing the

importance of biomarker research in realizing the potential of personalized

immunotherapy, with the goal of improving patient selection, treatment

strategies, and overall outcomes in cancer treatment.
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1 Introduction

Immunotherapy, especially immune checkpoint inhibitors

(ICIs), has revolutionized the landscape of cancer treatment (1).

Compared to conventional treatment strategies such as

radiotherapy, chemotherapy, and targeted drugs, ICIs exhibited

superior efficacy for certain types of cancer, particularly in tumors

with progression or recurrence (2). Immune checkpoints

encompass a series of immunosuppressive molecules, represented

by programmed cell death protein 1 (PD-1), programmed cell death

ligand 1 (PD-L1), and cytotoxic-T-lymphocyte-associated protein 4

(CTLA-4), which primarily function to maintain self-immune

tolerance and suppress excessive auto-immunity (3, 4). By

targeting this mechanism, tumor cells can activate the immune

checkpoints to prevent T-cell activation, thereby evading the

surveillance of the immune system (5). ICIs work by blocking

these inhibitory signals to promote the tumor immune response

and inhibit tumor growth.

There are several immunosuppressive pathways in the

activation of T cells and the interaction of activated T cells with

tumor cells, and existing immune checkpoint blockades target two

specific pathways, CTLA-4/B7-1/2 and PD-1/PD-L1 (6). CTLA-4/

B7-1/2 pathway functions in regulating the early-stage T cell

activation in lymph nodes (7). CTLA-4 molecule is expressed by

CD4+ T cells and CD8+ T cells, and it binds with its ligand B7-1/2

(CD80/CD86) to suppress T cell activation signals, thereby blocking

the antitumor process (8, 9). Targeting on the CTLA-4 pathway,

ipilimumab is the first developed antibody approved by the US

Food and Drug Administration (FDA). The PD-1/PD-L1 pathway

is the most thoroughly investigated and has led to the development

of several FDA-approved drugs, including PD-1 inhibitors like

pembrolizumab, nivolumab, cemiplimab, as well as PD-L1

inhibitors, such as atezolizumab, and durvalumab. PD-1/PD-L1

pathway functions in the later stage of immune response, which

primarily limit the proliferation, differentiation and activation of T

cells (7). PD-1 (CD279) is expressed by various immune cells,

including activated T cells, natural killer cells, B cells, macrophages,

monocytes, and dendritic cells (DCs), and its ligand PD-L1/2 is

predominantly expressed on tumor cells and can also be found

on the surface of activated T cells, B cells, epithelial cells, and DCs

(10–13). These pathways inhibit the activation and proliferation of

T leukocytes, induce apoptosis in activated T leukocytes, and

enhance the immune evasion of tumor cells (4). Hence,

understanding these intricate interactions within immune cells

can lay the foundation for further novel developments

in immunotherapy.

ICIs have yielded satisfactory results in improving overall

survival (OS) rates in various types of tumors, such as melanoma

and non-small cell lung cancer (NSCLC) (14–16). However, fewer

than half of patients benefit from ICI therapy, and some may suffer

from immune-related adverse events (17–19). This emphasizes the

importance of patient stratification, to enable personalized and

effective treatment for each patient. Given this, the role of

biomarkers becomes critical. Biomarkers can facilitate more

accurate patient stratification, ensuring that each patient receives

appropriate and effective treatment. Thus, exploring and validating
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effective biomarkers for predicting treatment response and

monitoring possible side effects could optimize therapeutic

strategies and improve clinical outcomes for patients undergoing

ICI treatments.

As of yet, there are limited reliable biomarkers to predict the

efficacy of ICIs. Only three such biomarkers have garnered FDA

approval and are widely used in clinical applications: PD-L1

expression, tumor mutational burden (TMB), and microsatellite

instability/deficiency of DNA mismatch repair (MSI/dMMR) (20).

This review will provide an overview of these widely used

biomarkers, explore several promising biomarkers, such as tumor

immune microenvironment (TIME)-related signatures, human

leukocyte antigen (HLA), non-invasive biomarkers and others

(such as gut microbiome, psychological biomarker, and image-

derived biomarker), discuss multivariable models in terms of

their performance in predicting the response to ICI-based

immunotherapy (Figure 1), and identify their limitations.

Additionally, we will also outline future research directions aimed

at developing more precise and patient-responsive biomarkers. The

ultimate goal is to find biomarkers that can accurately predict

immunotherapy outcomes, leading to more effectively

personalized treatment strategies.
2 FDA-approved biomarkers

2.1 PD-L1 expression

PD-L1 expression, typically accessed by immunohistochemistry, is

one of the most commonly used biomarkers for immunotherapy

response prediction. The over-expression of PD-L1 by tumor cells

effectively suppresses the immune response and enables the tumor

cells to evade the detection, recognition, and destruction of immune

cells. Moreover, the quantification of PD-L1 expression primarily relies

on two scoring methods: the tumor proportion score (TPS, proportion

of stained tumor cells compared to all tumor cells of the sample) and

the combined positive score (CPS, the ratio of PD-L1 stained tumor

cells to all tumor cells multiplied by 100) (21, 22).

PD-L1 expression has been identified as a significant independent

predictive biomarker of ICIs effectiveness across multiple cancer

types, such as breast cancer, NSCLC, urothelial carcinoma, and

hepatocellular carcinoma (23–25). Table 1 summarizes the clinical

trials of PD-L1 as an independent immunotherapy biomarker in

recent years. In the KEYNOTE028 trial, PD-L1 CPS was significantly

associated with prolonged progression-free survival (PFS) in patients

treated with pembrolizumab (p = 0.005) (18). Similarly, the phase 3

nivolumab CheckMate 459 trial showed a trend towards a higher

objective response rate (ORR) in patients with advanced

hepatocellular carcinoma who had high PD-L1 expression level

(TPS ≥ 1%), albeit not statistically significant (ORR 28% vs 12%) (26).

However, conflicting results were observed in other studies.

A retrospective study of NSCLC patients exhibited worse PFS

in patients with positive PD-L1 level (TPS ≥ 1%) (27). In

CheckMate 067 trial of advanced melanoma, patients with both

high and low expression level of PD-L1 showed better ORR, PFS,

and OS in nivolumab-plus-ipilimumab combination and
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nivolumab monotherapy than ipilimumab alone (27, 28). Similar

results were found in NSCLC patients in CheckMate 017 and

CheckMate 057 trials (29, 30). It can be concluded from these

studies that PD-L1 may not be an eligible predictive biomarker in

certain patient populations.

Despite its usefulness, there are some limitations for PD-L1

expression as an independent biomarker, which may influence its

predictive accuracy (31). These include variations in detection

platforms and assays, especially the specific diagnostic antibody in

immunohistochemistry and the PD-L1 staining method; the

discrepancies of quality for tumor specimens and the approach

for sampling gathering; different threshold values used to define

PD-L1 positivity; and the spatial and temporal heterogeneity of PD-

L1 expression (32–35). All these factors contribute to conflicting

data regarding immunotherapy efficacy on PD-L1 expression across

various studies. Besides, it is noticed that PD-L1 status is not

constant but changes dynamically during the treatment. Thus, it

is necessary to address this issue utilizing dynamic detection (23).
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2.2 Tumor mutational burden

TMB is defined as the number of non-synonymous somatic

mutations occurring per megabase (muts/Mb). Theoretically, TMB is

accurately gauged through whole-exome sequencing, but big-panel-

based sequencing is commonly adopted in clinical trials (36). The

definition of TMB encompasses three types of mutations: all

mutations, non-synonymous mutations, and mutations in protein-

coding regions (37). The primary challenge in TMB assessment is the

need for unification in sequencing panels and mutation types

employed across studies.

TMB is reported as a significant biomarker that can

discriminate patients responsive to ICIs in numerous studies

(Table 2). Patients displaying high TMB levels (TMB-H) usually

respond better to ICI therapy. An elevated TMB level correlates

with more mutations, generating more neo-antigens, which

consequently amplify the recognition by the immune cells. These

neo-antigens serve as tumor-specific targets, and ICI-based
FIGURE 1

Potential predictive biomarkers in predicting the response to immunotherapy. According to the clinical utility, biomarkers can be divided into FDA-
approved biomarkers and emerging biomarkers. FDA-approved biomarkers include PD-L1 expression, TMB, and MSI/dMMR. Emerging biomarkers
have many categories, and the most representative ones are TIME-related signatures, non-invasive biomarkers, HLA, and multivariable predictive
models. PD-L1, programmed cell death ligand 1; TMB, tumor mutational burden; MSI, microsatellite instability; dMMR, deficiency of DNA mismatch
repair; TIME, tumor immune microenvironment; HLA, human leukocyte antigen.
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TABLE 1 Clinical trials of PD-L1 to predict immunotherapy in recent years.

Main results Reference

Patients with both PD-L1 high and PD-L1 low
expression showed better ORR, PFS, and OS in
nivolumab + ipilimumab and nivolumab
monotherapy than ipilimumab monotherapy.

PMID: 31562797 (14)

PD-L1 CPS was significantly associated with
both higher ORR (p = 0.018), and prolonged
PFS (p = 0.005).

PMID: 30557521 (18)

Nivolumab-treated patients with high PD-L1
expression level (TPS ≥ 1%) tend to have a
higher ORR than the low-level patients (28%
vs 12%).

PMID: 34914889 (26)

Pembrolizumab was significantly associated
with longer PFS (p < 0.001) and OS (p = 0.005)
in patients with PD-L1 TPS ≥ 50%.

PMID: 27718847 (118)

Patients with tumor cell PD-L1 expression ≥

1% had significantly improved OS (p = 0.032).
PMID: 32710922 (119)

Median PFS was significantly prolonged in PD-
L1 TPS ≥ 1% patients treated with
atezolizumab compared with placebo (p <
0.001).
Median OS was about 25 vs 15.5 months.

PMID: 30345906 (120)

Patients with PD-L1 CPS ≥ 5 had both
prolonged PFS and OS (both p < 0.0001).
Patients with PD-L1 CPS ≥ 1 also had
prolonged OS (p < 0.0001).

PMID: 34102137 (121)

Nivolumab + ipilimumab prolonged OS of
patients compared with chemotherapy,
regardless of PD-L1 expression level.

PMID: 31562796 (122)

Among patients with PD-L1 expression ≥ 1%,
the 6-month DFS was significantly higher in
patients treated with nivolumab compared with
placebo (p < 0.001).

PMID: 34077643 (123)

Longer PFS and OS were observed among
patients treated with ABCP and ACP compared
with BCP in both PD-L1 positive and PD-L1
high subgroups.

PMID: 34311108 (124)
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Trial Cancer type Number
of patients

Immunotherapy strategy Clinical
end points

CheckMate 067 (NCT01844505)
phase 3

Advanced melanoma 945 Nivolumab + ipilimumab or
nivolumab monotherapy or
ipilimumab monotherapy

PFS, OS

KEYNOTE-028 (NCT02054806)
phase Ib

20 types of advanced
solid tumors

475 Pembrolizumab ORR, PFS, OS

CheckMate 459 (NCT02576509)
phase 3

Advanced
hepatocellular carcinoma

743 Nivolumab or sorafenib PFS, OS

KEYNOTE-024 (NCT02142738)
phrase 3

Advanced non-small cell
lung cancer

305 Pembrolizumab or chemotherapy ORR, PFS, OS

CheckMate 040 (NCT01658878)
phase 1/2

Advanced
hepatocellular carcinoma

262 Nivolumab ORR, PFS, OS

IMpassion130 (NCT02425891)
phase 3

Advanced triple-negative
breast cancer

902 Atezolizumab + nab-paclitaxel
or placebo + nab-paclitaxel

PFS, OS

CheckMate 649 (NCT02872116)
phase 3

Gastric, gastro-oesophageal
junction, and
oesophageal adenocarcinoma

1581 Nivolumab + chemotherapy or
chemotherapy monotherapy

PFS, OS

CheckMate 227 (NCT02477826)
phase 3

Advanced non-small cell
lung cancer

1739 Nivolumab + ipilimumab or
chemotherapy monotherapy

PFS, OS

CheckMate 274 (NCT02632409)
phase 3

Muscle-invasive
urothelial carcinoma

709 Nivolumab or placebo PFS

IMpower150 (NCT02366143)
phase 3

Metastatic nonsquamous non-
small cell lung cancer

1202 Atezolizumab-carboplatin-paclitaxel
(ACP), atezolizumab-bevacizumab-
carboplatin-paclitaxel (ABCP),
bevacizumab-carboplatin-
paclitaxel (BCP)

PFS, OS

PD-L1, programmed cell death ligand 1; ORR, objective response rate; PFS, progression-free survival; OS, overall survival; TPS, tumor proportion score; CPS, combined posit
i
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TABLE 2 Clinical trials of TMB to predict immunotherapy in recent years.

notherapy
gy

Clinical
end points

Main results Reference

izumab ORR, PFS, OS Higher TMB was significantly associated with patients
who achieved ORR (p = 0.018) and had longer PFS (p
= 0.051).

PMID: 30557521 (18)

ab ORR, PFS, OS Higher TMB was significantly associated with
improved ORR, PFS, and OS (all p < 0.05).

PMID: 32532789 (24)

izumab ORR, PFS, OS TMB-H (> 10 muts/Mb) patients had larger ORR
than non-TMB-H patients (29% vs 6%).

PMID: 32919526 (38)

ab ORR, PFS, OS Patients with TMB-H (TMB > 12 muts/Mb) had
significantly longer median PFS (p = 0.0061).

PMID: 38485184 (40)

ab + ipilimumab ORR, PFS Patients with high TMB (≥ 10 muts/Mb) had higher
ORR than those with low TMB (< 10 muts/Mb).

PMID: 30785829 (114)

ab + ipilimumab or
ab monotherapy or
erapy monotherapy

PFS, OS Patients with TMB-H (≥ 10 muts/Mb) had
significantly longer PFS when treated with nivolumab
+ ipilimumab than chemotherapy (p = 0.007).

PMID: 29658845 (125)

ab or chemotherapy PFS, OS Patients with a high TMB had higher response rate
and longer PFS with nivolumab than chemotherapy.

PMID: 28636851 (113)

izumab ORR, PFS, OS TMB was significantly associated with improved ORR
(p = 0.007), PFS (p = 0.034), and OS (p = 0.025).

PMID: 37099733 (126)

izumab +
erapy or
izumab monotherapy
otherapy monotherapy

ORR, PFS, OS TMB (≥ 10 muts/Mb) was significantly associated
with ORR, PFS, and OS in patients treated with
pembrolizumab + chemotherapy, and pembrolizumab
(all p < 0.05).

PMID: 35657979 (127)
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Trial Cancer type Number
of patients

Immu
strate

KEYNOTE-028 (NCT02054806)
phase Ib

20 types of advanced
solid tumors

475 Pembro

CheckMate 275 (NCT02387996)
phase 2

Metastatic urothelial carcinoma 270 Nivolum

KEYNOTE-158 (NCT02628067)
phase 2

10 types of advanced
solid tumors

1066 Pembro

KM-06 (NCT04761744)
phase 2

Refractory solid cancers 48 Nivolum

CheckMate 568 (NCT02659059)
phase 2

Advanced non-small cell
lung cancer

288 Nivolum

CheckMate 227 (NCT02477826)
phase 3

Advanced non-small cell
lung cancer

1739 Nivolum
nivolum
chemoth

CheckMate 026 (NCT02041533)
phase 3

Stage IV or recurrent non-
small cell lung cancer

541 Nivolum

KEYNOTE-086 (NCT02447003)
phase 2

Metastatic triple-negative
breast cancer

254 Pembro

KEYNOTE-062 (NCT02494583)
phase 3

Advanced gastric cancer 763 Pembro
chemoth
pembro
or chem

TMB, tumor mutational burden; ORR, objective response rate; PFS, progression-free survival; OS, overall survival.
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immunotherapy can strengthen the antitumor response of T cells by

recognizing and eliminating tumor cells carrying a high neo-

antigen burden.

The KEYNOTE-028 study of 20 cancer types indicated that

participants who achieved ORR and extended PFS had significantly

higher TMB (p = 0.018 and p = 0.051, respectively) (18). As

reported in the phase 2 clinical trial KEYNOTE-158, 29% of

TMB-H (> 10 muts/Mb) patients and 6% of low TMB level

(TMB-L) patients showed response to ICI therapy (38). A study

on advanced cutaneous melanoma patients found that TMB value

was significantly higher in responders compared with non-

responders, and higher TMB was associated with improved PFS

(p < 0.0001) (39). The KM-06 trial of refractory solid tumors used a

threshold value of 12 muts/Mb, and the patients with TMB-H

(TMB > 12 muts/Mb) had significantly longer median PFS on

nivolumab responses (p = 0.0061) (40).

However, due to intra- and inter-tumoral heterogeneity, TMB

level varies among different sites and different cancer types. Kazdal

et al. (2019) studied the TMB heterogeneity between the primary

site and the lymph node metastases, and 24 samples of lung

adenocarcinoma was enrolled for paired sampling. It was noted

that significantly lower TMB was observed in lymph node

compared to the primary site (p = 0.016) (41). Besides, TMB level

was proved to have high variance among different cancer types.

Over 100,000 cancer samples of more than 100 cancer types in a

study had a median TMB value of 3.6 muts/Mb, but the range of

median TMB was from 0.8 muts/Mb in bone marrow

myelodysplastic syndrome to 45.2 muts/Mb in skin squamous cell

carcinoma (36). Moreover, the cut-off values of defining TMB-H are

even different in same cancer type among different studies. For

studies on NSCLC, Meng et al. (2022) defined TMB-H to be ≥16

muts/Mb (42), while the study MYSTIC used a threshold TMB

value of ≥10 muts/Mb (43).

Due to the heterogeneity among differences in regions of the

same tumor, cancer types, detection panels, accessed tissues, and

calculation methods, it is tough to establish a universal threshold

value for defining a high TMB level. Founder effect can also lead to

differences in TMB between different population of patients. For

instance, patients with germline gene BRCA1 or BRCA2 mutations

had significantly higher TMB (p = 0.004) than the non-carriers (44).

Moreover, TMB-H is not a perfect predictive biomarker, as some

TMB-L patients also respond well to immunotherapy (45, 46).

Future research should aim to construct a uniform diagnostic

standard of TMB-H, especially in standardizing the TMB

estimates across various platforms or panels. Despite the

challenge of reconciling variations across cancer types,

establishing specific cutoff values for particular cancer types could

serve as a useful reference.
2.3 Microsatellite instability

MSI is characterized by genetic alterations in the length of

microsatellite DNA sequences (47). Microsatellites, also known as

short tandem repeats, are repeating sequences of 1-6 base pairs of

DNA that are dispersed throughout the genome. MSI is the result of
Frontiers in Oncology 06
deficiency of DNA mismatch repair (dMMR), usually caused by the

mutation of MMR-related genes, which are MSH2, MSH6, MLH1,

and PMS2 (48, 49). The deficiency of MMR function attenuates the

capability of correcting the errors occurred during DNA replication

and maintaining the integrity of the genome. It would result in the

accumulation of genetic mutations, particularly in microsatellite

regions, thus escalating the risk of tumorigenesis.

MSI is observed in various types of cancers, including

endometrial, colorectal, gastric, pancreatic, brain, biliary tract,

urinary tract, and ovarian tumors, among which endometrial,

colorectal, and gastric cancers are the most prevalent ones (48,

50). MSI status can be categorized based on its degree into

microsatellite instability high (MSI-H), microsatellite instability

low (MSI-L), and microsatellite stability (MSS). However, there

has always been debate about the threshold of defining MSI-H, with

variations across different detection methods. The gold standard

detection method of MSI is the fluorescence multiplex polymerase

chain reaction and capillary electrophoresis, but NGS-based panels

have gradually become prevalent in MSI detection (47). MSI-H/

dMMR has been proven to symbolize responsiveness to

immunotherapy in several cancers (Table 3).

In the KEYNOTE-016 trial of metastatic colorectal cancer

(CRC), pembrolizumab monotherapy-treated patients were

categorized into three cohorts according to MMR status and

cancer type (51). The ORR was 40% in the dMMR CRC cohort,

0% in the proficient-MMR (pMMR) CRC cohort, and 71% in the

dMMR non-CRC cohort. It can be inferred that CRC patients with

dMMR/MSI-H are more likely to respond positively to

immunotherapy. The KEYNOTE-117 trial enrolled metastatic

CRC patients and found that patients with MSI-H/dMMR had

significantly better PFS with pembrolizumab therapy compared to

the standard chemotherapy (hazard ratio (HR) = 0.60, 95%

confidence interval (CI) 0.45-0.80, p = 0.002) (52). A meta-

analysis integrated patients diagnosed with advanced gastric

cancer from four phase 3 trials (KEYNOTE-062, CheckMate 649,

JAVELIN Gastric 100, and KEYNOTE-061) was performed to

explore the predictive power of MSI on immunotherapy (53).

Patients with MSI-H demonstrated significantly lower HR than

the MSS patients on OS (HR 0.34 vs 0.85, p = 0.003). Meanwhile,

MSI-H patients also had significantly better PFS (p = 0.04) and a

higher response rate to treatment (p = 0.02).

Despite the enduring clinical benefits conferred by ICI-based

therapy, its efficacy is predominantly confined to a selected subset of

patients harboring tumors of MSI-H status. Furthermore, patients

who initially exhibit a favorable response may ultimately develop

resistance to therapy (54).
3 Emerging biomarkers

3.1 Tumor immune microenvironment-
related signatures

The characteristics of TIME are proven to be associated with the

efficacy of immunotherapy of immune checkpoint blockades. Gene

expression profiling (GEP) signatures within the TIME, such as
frontiersin.org
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tumor inflammation signature (TIS) (55), epithelial-to-

mesenchymal transition (EMT) signatures (30), and innate anti-

PD-1 resistance (IPRES) (56) and the level of tumor-infiltrating

lymphocytes (TILs) (57) can serve as indicators for immunotherapy

outcomes. These signatures are primarily accessed through next-

generation sequencing techniques like RNA-seq, which reveal

specific GEP patterns of the TIME using small gene clusters, also

referred to as gene expression signatures.

3.1.1 Tumor inflammation signature
The 18-gene tumor inflammation signature (TIS) signature,

composed of genes related to antigen presentation, IFN-gamma

activity, and immune cell function, is calculated by the weighted
Frontiers in Oncology 07
sum expression of 18 normalized marker genes (58). TIS, initially

developed to predict ICI response in melanoma, has shown a

significant correlation with treatment outcomes (59). The CRETIM

pan-cancer cohort validated a strong correlation between higher TIS

scores and improved response rates, including complete response and

partial response in patients treated with nivolumab and

pembrolizumab (odd ratio (OR) = 2.64, 95% CI 1.4-6.0, p = 0.008).

Additionally, patients with higher TIS scores also exhibited prolonged

overall survival (HR = 0.37, 95% CI 0.18-0.76, p = 0.005) (55). These

findings were further corroborated by the KEYNOTE-028 trial,

which demonstrated a significant association between TIS and

ORR (p = 0.012) and PFS (p = 0.017) in a cohort encompassing up

to 20 different cancer types (18).
TABLE 3 Clinical trials of MSI status to predict immunotherapy in recent years.

Trial Cancer type
Number
of patients

Immunotherapy
strategy

Clinical
end points

Main results Reference

KEYNOTE-016
(NCT01876511)
phrase 2

Colorectal cancer
(CRC) and non-
CRC cancer

41 Pembrolizumab

Immune-related
ORR and the 20-
week immune-
related PFS rate

ORR was 40% in the
dMMR CRC cohort,
and 0% in the pMMR
CRC cohort. The 20-
week PFS was 78% in
dMMR CRC cohort,
compared with 11% in
the pMMR CRC cohort.

PMID: 26028255 (51)

KEYNOTE-177
(NCT02563002)
phase 3

Metastasis
colorectal cancer

307
Pembrolizumab
or chemotherapy

PFS, OS

MSI-H patients treated
with pembrolizumab
exhibited significantly
longer PFS than those
treated with
chemotherapy (p
= 0.0002).

PMID: 33264544 (52)

NCT03981796
phase 3

Primary advanced
or recurrent
endometrial cancer

494

Dostarlimab +
carboplatin-paclitaxel or
placebo +
carboplatin-paclitaxel

PFS, OS

In patients with
dMMR/MSI-H, PFS
was significantly longer
with dostarlimab than
placebo (61.4% vs
15.7%, p < 0.001).

PMID: 36972026 (128)

Study 309-
KEYNOTE-775
(NCT03517449)
phase 3

Advanced
endometrial cancer

827

Lenvatinib +
pembrolizumab or
chemotherapy
monotherapy

PFS, OS

Patients with pMMR
had significantly longer
PFS and OS with
lenvatinib +
pembrolizumab than
chemotherapy (both p
< 0.001).

PMID: 35045221 (129)

NRG-GY018
(NCT03914612)
phase 3

Advanced or
recurrent
endometrial cancer

816

Paclitaxel-carboplatin +
pembrolizumab or
paclitaxel-carboplatin
+ placebo

PFS, OS

In the dMMR cohort,
PFS was significantly
longer in patients
treated with
pembrolizumab than
those with placebo (p
< 0.001).

PMID: 36972022 (130)

GARNET
(NCT02715284)
phase 1

Endometrial cancer 290 Dostarlimab ORR, DOR

ORR in dMMR/MSI-H
patients was much
higher than pMMR/
MSS patients (43.5%
vs 14.1%).

PMID: 35064011 (131)
MSI, microsatellite instability; MSS, microsatellite stability; dMMR, deficiency of DNA mismatch repair; pMMR, proficiency of DNA mismatch repair; ORR, objective response rate; PFS,
progression-free survival; OS, overall survival; DOR, duration of response.
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3.1.2 Epithelial-to-mesenchymal
transition signature

The 12-gene signature epithelial-to-mesenchymal transition

(EMT) indicates the immunosuppressive intensity of tumor cells,

potentially leading to resistance to anti-PD-1 therapy (30). The

EMT score is derived by subtracting the summed log2 Z-scores of

epithelial genes from the sum of the log2 Z-scores of the

mesenchymal genes. For instance, in NSCLC, responders had

significantly lower (more epithelial genes) EMT signature scores

as opposed to non-responders (p = 0.016) (30). Similarly, another

study of advanced malignant peritoneal mesothelioma yielded

consistent results, spotting a significant correlation between a

high EMT score and poor ORR (60).

3.1.3 Innate anti-PD-1 resistance
The 26-gene signature known as innate anti-PD-1 resistance

(IPRES) highlights the up-regulation of several biological processes,

such as mesenchymal transition, cell adhesion, and angiogenesis,

contributing to immune suppression during anti-PD-1 therapy (56).

In the melanoma cohort, significant overexpression of IPRES was

noted among patients non-responsive to anti-PD-1 therapy (OR = 4.6,

p = 0.013), while under-enrichment was observed in responders (OR =

0.15, p = 0.04) (56). This suggests that targeting IPRES-related

pathways could potentially ameliorate anti-PD-1 responses. However,

similar results were not consistently replicated in other cohorts, hinting

at the possibility of IPRES being a cohort-specific signature (61).

3.1.4 Tumor-infiltrating lymphocytes
TILs refer to the infiltration of lymphocytes in tumor tissues,

typically CD8+ T cells and CD4+ T cells (62). Originating from the

migration of circulating blood lymphocytes, the intensity of TILs

infiltration of the tumor or the tumor stroma indicates tumor status

(63–65). The abundance and functional status of TILs have been

implicated in ICI-based immunotherapy response. A landmark

study showed that in advanced melanoma patients treated with

pembrolizumab, higher levels of TILs, particularly CD8+ T cells,

were correlated with improved response and survival rates (57). A

retrospective study on advanced NSCLC highlighted significant

correlations between TILs and PFS (HR = 0.50, 95% CI 0.34-0.74,

p < 0.001) as well as OS (HR = 0.37, 95% CI 0.24-0.57, p < 0.001)

(66). However, the composition of TILs is crucial. For instance, a

predominance of regulatory T cells (Treg) within the TILs can serve

as an antitumoral effector with a poorer prognosis (67, 68).

The TIME plays a critical role in determining the efficacy of

ICIs. Various gene expression signatures and the presence of TILs

serve as important biomarkers for predicting patient responses to

these therapies. In addition to the above scientific findings, there are

also ongoing clinical trials conducted to validate the effectiveness of

TIME-related signatures, especially TILs, as predictive biomarkers

of cancer immunotherapy (Table 4). While promising, the

variability in assessment methods and patient heterogeneity pose

challenges in standardizing these biomarkers. Further research and

standardization approaches are essential to completely leverage the

predictive power of these biomarkers and integrate them effectively

into clinical practice for cancer immunotherapy.
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3.2 Human leukocyte antigen

Human leukocyte antigen (HLA) molecules, also referred to as

the major histocompatibility complex in humans, play an

indispensable role in the immune system in presenting peptide

antigens to T cells. HLA genes reside on the short arm of human

chromosome 6 and there are three classes of HLA molecules: HLA-I

(HLA-A, HLA-B, and HLA-C), HLA-II, and HLA-III (69). HLA

molecules are highly polymorphic, with thousands of alleles

identified, allowing for diverse peptide presentation and immune

recognition (70). In the realm of cancer immunotherapy, HLA

molecules are integral for presenting tumor-specific antigens to T

cells, thereby triggering antitumor immune responses. Tumor-

specific antigens, derived from mutated or aberrantly expressed

proteins in cancer cells, are processed and presented by HLA

molecules on the surface of antigen-presenting cells or tumor cells

themselves. Recognizing these antigens, cytotoxic T lymphocytes will

be activated and then directly target and eliminate cancer cells.

Consequently, patients with higher HLA diversity or heterozygosity

are often correlated with better response rates and overall survival in

checkpoint inhibitor cancer immunotherapy.

The study by Chowell et al. (2018) demonstrated that the

heterogeneity of HLA-I was associated with enhanced OS in

patients treated with ICIs (71). They retrospectively analyzed high-

resolution HLA class I genotyping in 1535 advanced cancer patients

undergoing ICI-based immunotherapy. The study divided

participants into two cohorts based on cancer type. The maximal

heterozygosity at HLA-I locus was associated with increased OS in

Cohort 1 (HR = 1.4, 95% CI 1.02-1.9, p = 0.036), Cohort 2 (HR =

1.31, 95% CI 1.03-1.7, p = 0.028), and the integration of two cohorts

(HR = 1.38, 95% CI 1.11-1.7, p = 0.003) compared with homozygosity

of at least one locus. Additionally, the HLA-B44 subtype was

associated with extended survival (HR = 0.61, 95% CI 0.42-0.89, p

= 0.01), while the HLA-B62 subtype corresponded to shorter survival

times (HR = 2.29, 95% CI 1.4-3.74, p = 0.0007). In a different study

designed by Rodig et al. (2018), patients from two previously

published clinical trials, CheckMate 064 and CheckMate 069, were

enrolled, where pre-treated metastatic melanoma patients received

either monotherapy or combination therapy of ipilimumab and

nivolumab (72). A correlation between reduced expression of HLA

class I molecules (≤50% of cells) and worse OS was observed in

patients treated with single agent ipilimumab in both the CheckMate

064 cohort (HR = 0.38, 95% CI 0.18-0.82, p = 0.01) and CheckMate

069 cohort (HR = 0.34, 95% CI 0.11-1.03, p = 0.057). Another study

proposed the use of the HLA-I evolutionary divergence (HED) score

to measure how the HLA-I diversity predicts the efficacy of ICIs (73).

Patients were categorized into three cohorts based on cancer type and

treatment regimen. It was observed that patients exhibiting a high

meanHED score (meanHED level exceeding the upper quantile) had

longer OS than those with a low score across each of the three cohorts

and the combined cohort. Furthermore, a significant correlation was

noted between a high mean HED score and an improved response to

ICIs within the combined cohort. Several ongoing clinical trials also

provide clinical evidence supporting HLA as a potential and valuable

predictive biomarker for ICIs (Table 4).
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The aforementioned evidence affirms the significant role that

HLA, particularly HLA-I, plays in the efficacy prediction of immune

checkpoint inhibitors. However, the HLA system is highly

polymorphic, and its complexity can pose challenges in

standardizing measurements and interpretations. Variability in

HLA typing methods can also affect the reliability of the results.

Intra-tumoral heterogeneity can affect the presentation of

neoantigens, and despite high HLA diversity, some tumor regions

may not present immunogenic neoantigens effectively, leading to

variable responses to ICIs. In addition, factors such as the tumor

microenvironment, presence of immune-suppressive cells, and the

overall immune status of the patient, can influence the efficacy of

ICIs and may confound the predictive value of HLA diversity alone.

There may be additional mechanisms beyond broader neoantigen

presentation through which HLA diversity may influence ICI

efficacy, which are not fully understood. Therefore, continued

research efforts on how HLA diversity or specific subtypes could

benefit patient selection and optimize treatment strategy selection
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in cancer immunotherapy of various cancer types are needed. The

mechanisms of how these confounding factors affect the HLA in

predicting the ICIs efficacy should also be answered.
3.3 Non-invasive derived biomarkers

The aforementioned biomarkers, related to the TIME, are

derived from tumor tissue biopsies obtained through invasive

procedures such as puncture or surgery. Nevertheless, the tissue-

based assay is encumbered by several limitations. The process of

acquiring tissue samples is invasive, potentially harmful to patients,

and incapable of tracking the dynamic change over time.

Furthermore, due to intratumoral heterogeneity, tissue specimens

from a single site may not accurately reflect the overall tumor

characteristics of the patient (74). Consequently, blood sample-

based detection methods have been developed to address these

issues, providing a non-invasive and dynamic monitoring approach
TABLE 4 Ongoing clinical trials of TIME-related signatures and HLA to predict immunotherapy in recent years.

Biomarker
Clinical
trial
identifier

Phase
Number
of patients

Cancer type Treatment URL

CD8+ TILs NCT05270824 phase 3 120
Advanced
gastric carcinoma

Neoadjuvant
immunotherapy

https://clinicaltrials.gov/
study/NCT05270824

Percentage of CD4
+CD25+ CD127low
FOXP3+ Treg cells

NCT03628859 / 30 Renal cell carcinoma Nivolumab
https://clinicaltrials.gov/
study/NCT01884168

CD8+/CD4+ TILs NCT03267836 phase 1 9
Recurrent radiation-
refractory meningioma

Neoadjuvant avelumab
+ hypofractionated
proton therapy

https://clinicaltrials.gov/
study/NCT03267836

levels of CD3+, CD4+,
CD8+ lymphocytes

NCT03447678 phase 2 65
Stage IIIB-IV, PD-L1
low non-small cell
lung cancer

Pembrolizumab
https://clinicaltrials.gov/
study/NCT03447678

TILs, CD8
+ lymphocytes

NCT05088889 phase 1 10
Stage IV
pancreatic cancer

Radiation + ipilimumab
+ nivolumab

https://clinicaltrials.gov/
study/NCT05088889

CD8+ T lymphocytes NCT02554812 phase 1b/2 409
Locally advanced or
metastatic solid tumors

Avelumab + other
cancer
immunotherapies

https://clinicaltrials.gov/
study/NCT02554812

CD3, CCD4, D4/CD8
ratio, FOXP3

NCT04238988 phase 2 45
Advanced
cervical cancer

Pembrolizumab
+ chemotherapy

https://clinicaltrials.gov/
study/NCT04238988

Tregs, CD8 TILs NCT03602586 phase 2 14
Ovarian clear
cell carcinoma

Pembrolizumab
+ epacadostat

https://clinicaltrials.gov/
study/NCT03602586

Immune cell infiltrates
of IGHM, CD3, CD8,
FOXP3, CD68, CD205

NCT04522544 phase 2 55
Hepatocellular
carcinoma

Y-90 SIRT +
tremelimumab +
durvalumab or DEB-
TACE + tremelimumab
+ durvalumab

https://clinicaltrials.gov/
study/NCT04522544

TIS NCT05136196 phase 2 150
Advanced melanoma or
squamous cell head and
neck cancer

Cabozantinib
+ nivolumab

https://clinicaltrials.gov/
study/NCT05136196

HLA class I NCT03602586 phase 2 14
Ovarian clear
cell carcinoma

Pembrolizumab
+ epacadostat

https://clinicaltrials.gov/
study/NCT03602586

HLA NCT04636047 / 450
Non-small cell
lung cancer

Immune
checkpoint inhibitors

https://clinicaltrials.gov/
study/NCT04636047
TIME, tumor immune microenvironment; TILs, tumor infiltrating lymphocytes; TIS, tumor inflammation signature; HLA, human leukocyte antigen.
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that is more acceptable to patients (75). Circulating tumor DNA

(ctDNA) are the DNA fragments that tumor cells release into the

blood or other body fluids (76). ctDNA can be used to detect early-

stage cancers, predict treatment effectiveness, guide treatment

strategy selection, detect minimal residual disease, and offer

dynamic monitoring during treatment (77, 78). The abundance of

ctDNA itself, the blood-based TMB (bTMB), and blood-based MSI

(bMSI) derived from the ctDNA could serve as potential efficacious

biomarkers associated with the therapeutic response to cancer

immunotherapy (Table 5).

3.3.1 Circulating-tumor DNA
The INSPIRE (NCT02644369) prospective trial evaluated

ctDNA as a predictive biomarker for pembrolizumab

monotherapy across five advanced solid tumors (79). ctDNA

levels were detected at the baseline and after every three cycles of

pembrolizumab. Patients with baseline ctDNA level below the

median had better ORR (OR = 3.24, 95% CI 1.19-8.8), OS

(adjusted hazard ratio (aHR) = 0.49, 95% CI 0.29-0.83), and PFS

(aHR = 0.54, 95% CI 0.34-0.85). The trial also showed that the

decreased ctDNA level after three cycles of pembrolizumab

indicated a positive response to ICIs and a favorable prognosis. A

retrospective study of advanced melanoma also revealed that the

elevated ctDNA level after six weeks of ICI therapy compared to the

pre-treatment level was significantly associated with worse PFS (HR

= 22, p = 0.006) (80). Changes in ctDNA level associated with ICI

efficacy were also validated in a large cohort integrated 18 trials of

advanced solid tumors. Al-Showbaki L et al. (2023) analyzed

published clinical trials with ICI administration and multi-

timepoint ctDNA level screening (including both pre-treatment

and on-treatment) (76). For all cancer types of the integrated

cohort, patients with diminished or undetected ctDNA levels were

significantly linked to an elongated PFS (HR = 0.20, 95% CI 0.14-

0.28, p < 0.001) and OS (HR = 0.18, 95% CI 0.12-0.26, p < 0.001).

3.3.2 Blood-based tumor mutational burden
In the prospective phase 2 B-F1RST trial, 119 NSCLC first-line

atezolizumab-treated patients were accessed for bTMB levels (81).

Using the threshold from the POPLAR and OAK trials, ORR in the

bTMB-H (bTMB ≥ 16 muts/Mb) patients was significantly higher

than that in the bTMB-L patients (35.7% vs 5.5%, p < 0.0001) (82).

When the median follow-up reached 36.5 months, bTMB-H was

significantly associated with longer OS (HR = 0.54, 90% CI 0.34-

0.87, P = 0.032). Cohort C of the BFAST study of NSCLC also found

a distinguishable cutoff of FoundationOne Liquid Companion

Diagnostic detected bTMB ≥ 13.6 muts/Mb, with improved PFS

observed in the atezolizumab-treated patients than the

chemotherapy-treated patients (p = 0.029) (83). It was observed

that advanced solid tumor patients with bTMB-H (bTMB ≥ 14

muts/Mb) had significantly better ORR than other patients with

TMB-L in the SCRUM-Japan MONSTAR-SCREEN cohort (p =

0.05) (84). However, a phase Ib trial of 31 advanced triple-negative

breast cancer patients treated with combination therapy showed

that low-bTMB level (bTMB < 6.7 muts/Mb) was significantly

associated with better ORR and PFS (p = 0.015 and p = 0.012,
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respectively), indicating that the efficacy of bTMB as a biomarker

may vary by cancer type (85).
3.3.3 Blood-based microsatellite instability
bMSI was found to be a significant predictor of both PFS (HR =

0.15, p = 0.001) and OS (HR = 0.26, p = 0.01) for pembrolizumab-

treated metastatic tumors when the patients had adequate ctDNA

(86). Wang, et al. (2020) designed a retrospective study comprising

60 patients diagnosed with advanced gastrointestinal (GI) cancer

and treated with anti-PD-(L)1 immunotherapy (87). bMSI was

detected using a targeted panel of 150 genes through blood

samples. In this study, a better ORR (38.71% vs 6.90%, p =

0.005), and prolonged PFS (HR = 0.431, 95% CI 0.236-0.787, p =

0.005) and OS (HR = 0.489, 95% CI 0.249-0.961, p = 0.034) were

observed in patients with bMSI-H compared with patients with

bMSS. In another study of advanced GI cancer, the Guardant360

assay was utilized to obtain the MSI status through the ctDNA of

patients before receiving ICI therapy (88). It garnered a similar

outcome that MSI-H patients treated with ICIs showed significantly

prolonged real-world time to discontinuation and real-world time

to the next treatment (similar to PFS) than those treated with

chemotherapy or other treatments (p < 0.001 and p =

0.006, respectively).

ctDNA in the blood is a promising source of biological biopsies,

and it facilitates the early diagnosis and dynamic monitoring of

disease in a non-invasive and more acceptable manner (89). Zulato

et al. (2022) explored how the longitudinal cell-free DNA (cfDNA)

can predict the hyperprogression and early death of ICI-treated

advanced NSCLC patients (90). Plasma samples were collected at 2

time points: baseline (T1), and after 3/4 weeks of ICI (T2).

Significant correlations between cfDNA levels at both T2 and the

change between the 2 time points and high risk of early disease were

observed. In a prospective study of advanced NSCLC, liquid

biopsies of 113 patients at baseline (before treatment, T1) and

after 2 or 3 weeks of ICI (T2) were collected (91). Patients with

higher (median value cutoff) cfDNA at T1 and T2, and elevated

cfDNA compared to baseline (DT2-T1) had significantly worse

survival (both PFS and OS) and high progression risk.

In addition to predicting the treatment outcomes, ctDNA can

predict the relapse as well. In the ABACUS (NCT02662309) trial of

phase 2 muscle-invasive urothelial cancer, ctDNA positive patients

were more likely to relapse compared to ctDNA negative patients (p

< 0.001) (92). Similar results on muscle-invasive urothelial

carcinoma were observed in the phase 3 IMvigor010

(NCT02450331) trial, in which patients with positive ctDNA

showed higher relapse ratio after 3 cycles of treatment (p <

0.0001) (93).

However, the low levels of ctDNA in the blood have become the

major challenge with blood-based liquid biopsies, which may result

in reduced sensitivity for ctDNA detection, especially in the early

stage of the disease (94, 95). A pan-cancer research enrolled more

than 10,000 Chinese patients reported the ctDNA detection rate

among different cancer types, in which most of the stage IV disease

had detectable levels (79.7%), while the detection rate of stage I-III

disease was just 57.9% (96). Another unsolved issue is that the
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TABLE 5 Clinical trials of non-invasive biomarkers to predict immunotherapy in recent years.

Main results Reference

Patients with baseline ctDNA level below the
median had better ORR, PFS, OS, and CBR.
Negative DctDNAa was associated with favorable
ORR, PFS, OS and CBR.

PMID: 35121950 (79)

Early ctDNA response and dynamic ctDNA
changes were associated with
toripalimab effectiveness.

PMID: 37584165 (132)

Patients with positive ctDNA status showed much
longer OS with atezolizumab than observation (p
< 0.001).

PMID: 37500339 (133)

ctDNA positive patients exhibited a much higher
relapse rate than ctDNA negative patients (PFS, p
< 0.001)

PMID: 35577646 (92)

Baseline ctDNA level above the median was
associated with shorter OS.

PMID: 33941921 (134)

ORR in the bTMB-H (≥16 muts/Mb) patients was
significantly higher than the bTMB-L patients
(35.7% vs 5.5%; p < 0.0001). bTMB-H was
significantly associated with longer OS (p = 0.032).

PMID: 35422531 (81)

Atezolizumab-treated patients with a bTMB ≥ 13.6
muts/Mb had improved PFS than the
chemotherapy-treated patients (p = 0.029).

PMID: 35995953 (83)

Patients with bTMB-L (< 6.7 muts/Mb, median
level) showed better ORR (p = 0.015) and longer
PFS (p = 0.012) than those with bTMB-H (≥ 6.7
muts/Mb).

PMID: 37973901 (85)

Patients with high bTMB level (≥ 28 muts/Mb)
had significant OS benefit with durvalumab plus
tremelimumab than BSC (p = 0.004)

PMID: 32379280 (135)

Patients with a bTMB ≥ 20 muts/Mb had better
median OS, 24-month OS, PFS, and ORR for
durvalumab plus tremelimumab
than chemotherapy.

PMID: 32271377 (43)

In bMSS patients/subgroup, OS was significantly
improved with durvalumab + tremelimumab than
BSC (p = 0.02).

PMID: 32379280 (135)

n; bMSI, blood-based microsatellite instability; bMSS, blood-based microsatellite stability;
, relapse-free survival; BSC, best supportive care.
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Biomarker Trial Cancer type Number
of patients

Immunotherapy
strategy

Clinical
end points

ctDNA INSPIRE (NCT02644369)
phase 2

5 advanced solid tumors 94 Pembrolizumab ORR, PFS, OS, CBR

ctDNA POLARIS-03 (NCT03113266)
phase 2

Metastatic
urothelial carcinoma

27 Toripalimab ORR, PFS, OS

ctDNA IMvigor010 (NCT02450331)
phase 3

Muscle-invasive
urothelial carcinoma

581 Adjuvant atezolizumab
or observation

DFS, OS

ctDNA ABACUS (NCT02662309)
phase 2

Muscle-invasive
urothelial cancer

95 Neoadjuvant
atezolizumab

pCR, RFS, DFS, OS

ctDNA BISCAY (NCT02546661)
phase

Advanced
urothelial cancer

391 Durvalumab +
targeted therapies

PFS, OS

bTMB B-F1RST (NCT02848651)
phase 2

Advanced or metastatic
non-small cell
lung cancer

152 Atezolizumab ORR, PFS, OS

bTMB BFAST cohort C
(NCT03178552)
phase 3

Advanced or metastatic
non-small cell
lung cancer

472 Atezolizumab
or chemotherapy

ORR, PFS, OS

bTMB (NCT03855358)
phase Ib

Advanced triple-
negative breast cancer

34 Benmelstobart
+ anlotinib

ORR, PFS, OS

bTMB CO.26 Study (NCT02870920)
phase 2

Advanced
colorectal cancer

180 Durvalumab +
tremelimumab or BSC

OS

bTMB MYSTIC (NCT02453282)
phase 3

Metastatic non-small
cell lung cancer

1118 Durvalumab or
durvalumab +
tremelimumab,
or chemotherapy

ORR, PFS, OS

bMSI CO.26 Study (NCT02870920)
phase 2

Advanced
colorectal cancer

180 Durvalumab +
tremelimumab or BSC

OS

a: DctDNA, a lower ctDNA level at the beginning of 3 cycles pembrolizumab treatment versus baseline; ctDNA, circulating tumor DNA; bTMB, blood-based tumor mutational burde
ORR, objective response rate; PFS, progression-free survival; OS, overall survival; CBR, clinical benefit rate; DFS, disease-free survival; pCR, pathological complete response; RFS
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degree of defining ctDNA decrement is uncertain. Therefore, more

sensitive methods should be developed to increase the detection rate

of ctDNA in the peripheral blood, and a standard of decrement of

the change and detection time needs to be further constructed.
3.4 Multivariable predictive models

The biomarkers described previously are independent

predictive biomarkers, and their individual correlation to ICI

efficacy may be somewhat limited. To address this, the multi-

biomarker model, which was developed using multiple such

biomarkers or by integrating multi-omics data, facilitates the

creation of more robust and powerful biomarkers. These models

can more precisely and comprehensively predict the effectiveness of

ICI immunotherapy by integrating the attributes of multiple

biomarkers or multiple characteristics of patients.

3.4.1 DIREct-On model
The DIREct-On (Durable Immunotherapy Response

Estimation by immune profiling and ctDNA) model incorporates

three non-invasive biomarkers, pre-treatment ctDNA-normalized

bTMB, circulating CD8 T cell fraction and on-treatment early

ctDNA dynamics, and it was initially constructed to predict the

clinical response of NSCLC patients who received anti-PD-(L)1

immunotherapy (97). DIREct-On is a robust binary classifier for the

clinical responses of patients undergoing PD-1/PD-L1 inhibitors,

classifying patients into durable clinical benefit and no durable

benefit. Patients exhibiting high DIREct-On scores demonstrated

markedly prolonged PFS in comparison to those with low DIREct-

On scores in both training and validation cohorts (HR = 8.93, p <

0.0001 and HR = 7.11, p < 0.0001, respectively). Meanwhile, it is

also validated that the DIREct-On model significantly outperforms

each of the individual ones, and each of the three features is

indispensable for the optimal performance model. DIREct-On

was also confirmed to be an independent predictor and the only

factor significantly associated with PFS (HR = 0.06, p < 0.0001) in

the multivariable Cox proportional hazard model of DIREct-On

score, age, ECOG performance status, and line of therapy. The

classification accuracy of the DIREct-On model for patients with

different cancer types and different treatment modalities requires

confirmation through larger cohorts of prospective studies.
3.4.2 RF16 model
RF16 is a random forest-based model established to predict the

potential of patients responding to immunotherapy (98). The model

incorporates a total of 16 genomic features and clinical and

demographic features. A total of 1,479 samples from the MSK-

IMPACT cohort were enrolled, and they were randomly divided

into the training set and the testing set at a ratio of 4:1. Those

predicted as responders by the RF16 model showed significantly

longer OS compared to the non-responders in both the training set

(HR = 0.31, 95% CI 0.26-0.36, p < 0.0001) and testing set (HR =

0.29, 95% CI 0.21-0.41, p < 0.0001). Additionally, significantly

longer PFS was also observed among the responders. The RF16
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model achieved the best predictive performance in separating

patients into responders and non-responders compared with each

of the individual covariant.

3.4.3 A XGBoost multivariable model
Ameta-analysis including over 1,000 ICI-treated patients across

seven types of cancers from several published studies constructed a

multivariable model employing the XGBoost machine learning

algorithm (99, 100). It comprised 11 features related to the host,

tumor, and TIME. This multivariable model classifies the patients

into responders and non-responders according to the RECIST

criteria. In order to evaluate the predictive capability of the

multivariable model, the FDA-approved TMB was used as a

benchmark for comparison. The performance of the model was

tested in three independent cohorts, and the multivariable

predictive model significantly outperformed the TMB level in

predictive accuracy. For example, the data from validation cohort

1 was from the KEYNOTE-28 trial, and the AUC (area under the

curve) value of the XGBoost multivariable classifier was

significantly higher than that of the TMB (AUC 0.86 vs 0.68, p =

0.0049) (101). Consistent results were obtained from the additional

two test cohorts (p = 0.025 for cohort 2 and p = 0.047 for cohort 3).

3.4.4 LORIS model
Chang et al. (2024) constructed a pan-cancer predictive model

referred to as LORIS (logistic regression-based immunotherapy-

response score), which was developed using six clinical and tumor-

related features using retrospectively collected data from ICI-treated

samples from MSK cohort and other six published cohorts, and

non-ICI-treated samples from MSK cohort (102). The six-feature

(TMB, systematic therapy history, blood albumin level, blood

neutrophil-lymphocyte ratio, age, and cancer type) classifier for

beneficiary patients of ICIs was constructed using logistic

regression. LORIS outperformed other machine learning-based

models, as well as the aforementioned RF16 model constructed by

Chowell et al. (2022) (98). It was observed that high LORIS was

associated with prolonged PFS (HR = 3.2, 95% CI 2.6-3.9, p < 0.001)

and OS (HR = 2.6, 95% CI 2.2-3.0, p < 0.001). Additionally, LORIS

outperformed independent TMB and can identify low-TMB

patients who would like to benefit from ICIs.
3.5 Other biomarkers

In spite of the biomarkers mentioned above, other biomarkers

like the gut microbiome, emotional stress, and images of histology

slides or CT can also indicate the response to checkpoint inhibitors.

3.5.1 Gut microbiome
The gut microbiome, which encompasses the entire collection

of microbiotas (bacteria, the Archaea, viruses, and fungi), as well as

their genes and products, such as metabolites, within both the

lumen and mucosa of the gastrointestinal tract, has recently

emerged as a pivotal factor influencing the efficacy of

immunotherapy (103–105). A study revealed that patients with a
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more diverse gut microbiome prior to anti-PD-1 therapy

demonstrated enhanced responses (106). It also showed that

enrichment of specific strains of gut microbiota, such as

Akkermansia muciniphila was significantly enriched in patients

with better PFS. A machine-learning constructed signature

quantifying 22 gut microbial strains was able to distinguish

responders from non-responders in pan-cancer cohorts

(107).Based on these studies, it can be concluded that changing

the composition or abundance of gut microbes may also effectively

enhance the anti-cancer efficacy, and improve the survival

of patients.

3.5.2 Psycho-biomarkers
In addition to the technically detectable features, psychological

factors (psycho-biomarkers) may also influence the response to ICIs

(108). Emotional distress (ED) refers to the adverse emotional states

or feelings triggered by stressful stimuli, which is typically assessed

using questionnaire-based surveys, and it is prevalent in cancer

patients (after being informed of cancer diagnosis) (109). Zeng et al.

(2024) designed a prospective study using the STRESS-LUNG-1

NSCLC cohort treated with various kinds of anti-PD-1/PD-L1

inhibitors, and found that patients with baseline ED (high ED

and moderate ED) had significantly shorter DFS, OS, and smaller

ORR compared with no ED patients (108). The result of this study

implies that addressing the ED could be a potential approach to

improve the efficacy of ICIs. In future research, the reliability of ED

should be validated in larger cohorts with pan-cancer. It also

provides an inspiration that other confounding factors may also

influence the ICIs’ efficacy.

3.5.3 Image-derived biomarkers
Images of histology slides or the CT images also have potential

in predictive model construction of immunotherapy response.

Johannet et al. (2021) constructed a deep convolutional neural

networks-based model, which extracted features from the whole

slide images of melanoma patients, to stratify the patients into the

high and low risk of progression (110). The patients with low

progression risk were validated to have significantly longer PFS than

the high risks in two validation datasets. Huang et al. (2023)

developed a CT imaging biomarker of pretreatment samples to

predict the response of patients who underwent anti-PD-1/PD-L1

immunotherapy (111). Features selected from each CT image were

conducted to a radiomics score (RS), and the patients were divided

into the RS-high and RS-low groups (threshold 0.22). Compared to

patients with RS-high, RS-low patients showed significantly lower

rate of progression disease and longer median PFS, 12-month PFS,

and 12-month OS.
4 Combination biomarker strategies

To enhance the predictive accuracy of immunotherapy

responses, the combination of two biomarkers has emerged as a

promising strategy, especially in cases where individual biomarkers

have shown limited predictive power.
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4.1 PD-L1 expression and TMB

Enhanced predictive accuracy of immunotherapy can be

achieved by combining the two FDA-approved biomarkers, PD-

L1 expression and TMB, rather than using them independently

(112). In the CheckMate-016 trial of NSCLC, nivolumab-treated

patients displaying both elevated TMB levels and PD-L1 expression

above 50% demonstrated an increased response rate compared to

patients with only one of these features (113). Similar findings were

observed in the CheckMate 275 trial of nivolumab-treated

urothelial carcinoma. Despite an absence of correlation between

PD-L1 expression and TMB in this study, the combination of these

two biomarkers outperformed PD-L1 alone in predicting PFS and

OS (p = 0.0056 and p = 0.013, respectively) (24). Notably, results

from CheckMate 568 trial on NSCLC demonstrated no association

between PD-L1 expression and TMB. No matter the PD-L1

expression levels, patients with high TMB levels showed higher

ORR and longer PFS compared to those with low TMB levels (114).
4.2 PD-L1 expression and TILs

The combination of PD-L1 and tumor infiltrating lymphocytes

also indicates the effectiveness of ICIs. In a study of metastatic

melanoma, PD-L1+/CD8+TILs (PD-L1 expression on tumor cells

(TC) ≥ 5%) status was identified as a significant independent

prognostic factor for improved OS (HR = 0.138, 95% CI 0.024-

0.779, p = 0.022) (15). A study of NSCLC also elicited analogous

findings. Patients with high CD8+ PD-L1+ TILs levels had longer

PFS than patients in the low-level group (HR = 0.55, p = 0.0429),

where PD-L1 positivity was defined as ≥ 1% of TC staining (115).
4.3 HLA class I and other biomarkers

Improved predictive efficacy of HLA class I was noted when

combined with other biomarkers. In the NTR7015 study of 30

nivolumab-treated NSCLC patients, correlations between

combinations of HLA and TMB, CD8+ T cell infiltration, and

PD-L1 expression with survival were observed (116). The

combination of no loss of HLA class I and (1) high TMB (p =

0.023) (2), CD8+ T cell infiltration (p = 0.041) (3), high PD-L1

expression (p = 0.032) was correlated with better PFS. The research

of Montesion et al. (2021) indicated the combination of HLA class I

loss of heterozygosity (LOH) and TMB as more powerful biomarker

of ICIs (117). Patients with HLA-I LOH and TMB-L (TMB < 10

muts/Mb) had the worst PFS, and the predictive efficacy was

improve compared to individual biomarker.
5 Discussion and future perspective

Immunotherapy, particularly ICIs, has emerged as a

revolutionary approach in the cancer treatment landscape. The

ability of ICIs to harness the immune system of patients to target
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and eradicate cancer cells has led to significant advancements in the

management of various malignancies. However, the response to ICI

therapy is highly variable, with only a subset of patients

experiencing durable clinical benefits. This variability underscores

the urgent need for reliable biomarkers to predict treatment

outcomes and to guide personalized treatment strategies.

The current review has extensively discussed the role of

biomarkers in predicting the efficacy of ICIs. The three FDA-

approved biomarkers, PD-L1 expression, TMB, and MSI, have

shown promise but with limitations. PD-L1 expression, while a

valuable predictor, is not uniformly predictive across all cancer

types and can be influenced by various factors such as variations in

detection platform, quality of tumor specimens, tumor

heterogeneity and dynamic changes during the treatment. TMB,

though associated with clinical benefits, faces challenges in

standardization across different sequencing platforms and cancer

types, selection for optimal representative sample, and the impact of

specific genetic ethnicity. MSI, identified as a predictor of response

primarily in endometrial cancer, colorectal cancer, and gastric

cancer, has limited predictive power in other cancer types.

The search for more robust and accurate biomarkers has led to

the exploration of other potential markers, such as TILs, HLA

diversity, ctDNA, gut microbiome, emotional distress, and image-

derived biomarker. TILs have been shown to correlate with

improved responses to ICIs, but challenges remain in

standardizing assessment methods and interpreting their presence

in the context of complex tumor microenvironments. HLA plays a

crucial role in antigen presentation, and its polymorphism has been

linked to improved outcomes in ICI therapy. However, the

influence of specific HLA genotypes or the expression level on

treatment response requires further elucidation. ctDNA, offering a

non-invasive approach to assess tumor characteristics, has emerged

as a promising biomarker as well. It holds significant promise for

revolutionizing cancer management by enabling early disease

detection, monitoring treatment efficacy, and predicting relapse.

However, challenges related to the sensitivity of detection rate, and

standardization must be addressed. The mechanism of gut

microbiome demonstrating treatment outcome is unclear, since in

addition to the diversity and enrichment of themselves, they are also

greatly affected by the diet and environment of the host. Emotional

distress is technically undetectable and more subjective, which

poses a great challenge to clinical applications. Image-derived

biomarker indicates the features extracted from histological or CT

images, but it relies heavily on the deep learning models and large

dataset for model construction.

The integration of multiple biomarkers into multivariable

predictive models presents a promising strategy to improve

predictive accuracy. The DIREct-On score, RF16, XGBoost

multivariable model, and LORIS model are examples of such

approaches, combining various features and multi-omics data to

discriminate immunotherapy responsive patients. These models

have demonstrated improved predictive capabilities over

individual biomarkers, suggesting that an integration of

biomarkers may provide a more comprehensive assessment of a

patient’s likelihood to respond to ICIs. However, standardized and
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practice constitute a significant challenge. These models first need

to be replicated in other independent validation cohorts, and

secondly, sufficiently large datasets are needed to retrain and test

the model to achieve the optimal predictive effects. It is important to

note that the integration of these models into clinical practice

should be guided by evidence from well-conducted clinical trials.

Despite the progress in biomarker research, several challenges

remain. The intra- and inter-heterogeneity of tumors, differences in

immune microenvironments, and the influence of various genetic

and non-genetic factors complicate the development of universal

biomarkers. Furthermore, the dynamic nature of the tumor-

immune interaction implies that the expression of biomarkers

may change over time, necessitating longitudinal assessments.

Looking ahead, the future of biomarker research in

immunotherapy lies in several directions. First, the standardization

of biomarker assessment across different platforms and studies is

crucial to ensure consistency and reproducibility of results. Second,

the development of more sensitive and specific assays for biomarker

detection, particularly for ctDNA, will enhance the clinical utility of

these markers. Third, the exploration of novel biomarkers, including

those derived from the immune microenvironment and the tumor’s

metabolic profile, may uncover new avenues for predicting

treatment response.

The integration of multi-omics data, genomics, transcriptomics,

proteomics, metabolomics, and clinical data, may provide a more

holistic view of the tumor-immune dynamics and improve

predictive models. Machine learning and artificial intelligence can

aid in deciphering complex patterns and interactions between

various biomarkers, potentially identifying synergistic

combinations that predict treatment outcomes more accurately.

Moreover, the role of non-molecular factors, such as psychological

stress, in modulating treatment response to ICIs warrants

investigation. The influence of the patient’s psychological state on

their immune system and, consequently, on the efficacy of

immunotherapy is an emerging area of research that may lead to

novel psycho-biomarker discovery.

In conclusion, the discovery and validation of effective

biomarkers for ICI therapy are critical for advancing personalized

cancer treatment. While significant strides have been made, the

journey towards precision immunotherapy is ongoing. Future

research should focus on addressing the current limitations,

standardizing biomarker assessment, and exploring innovative

approaches to biomarker discovery. By doing so, we can enhance

the ability to predict and optimize treatment outcomes, ultimately

improving patient care and quality of life in the era

of immunotherapy.
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