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Pharmacological inhibition of the
MAP2K7 kinase in human disease
H. Daniel Lacorazza*

Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase

(JNK) in response to stress signals, such as inflammatory cytokines, osmotic

stress, or genomic damage. While there has been interest in inhibiting JNK due to

its involvement in inflammatory processes and cancer, there is increasing focus

on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation

is associated with disease progression. Despite some progress, further research is

needed to fully comprehend the role of MAP2K7 in cancer and assess the

potential use of kinase inhibitors in cancer therapy. This review examines the

role of MAP2K7 in cancer and the development of small-molecule inhibitors.
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Introduction

Protein kinases are enzymes that catalyze the transfer of a phosphate group from ATP

to specific amino acid residues (e.g., serine, threonine, and tyrosine) in target proteins. This

process activates cellular pathways in response to various stimuli. The mitogen-activated

protein kinases (MAPK) are Ser/Thr kinases that are part of eukaryotic signal transduction

pathways that translate extracellular and intracellular stress signals to cellular responses by

regulating gene expression in cell division, differentiation, and death. The conventional

MAPK signaling units (e.g., ERK1/2, p38, JNK, and EKR5) are composed of a three-tier

kinase cascade (MAP3K, MAP2K, and MAPK) stabilized by protein scaffolds (e.g., JNK

interacting protein-1 or JIP1). Stress signals activate the upstream MAP kinase kinase

kinase (MAP3K) that, in turn, sequentially phosphorylates and activates a downstream

MAP kinase kinase (MAP2K) and downstream MAPK effectors (ERK1/2, p38, JNK, and

EKR5) or MAPK-activated protein kinases (MAPKAPK). The activation strength depends

on the duration and intensity of stimuli driven by extracellular factors sensed by cell surface

receptors (e.g., growth factors, cytokines, and mitogens) and endogenous metabolic and

DNA damage stress.

Abnormal activation of kinases has driven the development of small-molecule

inhibitors for treating diseases. The catalytic domain contains a conserved core

comprising two lobules (N-terminal and C-terminal) connected by a hinge region that

defines the ATP-binding domain, which is the target of most kinase inhibitors. Kinase
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1486756/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1486756/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1486756&domain=pdf&date_stamp=2024-12-09
mailto:hdl@bcm.edu
https://doi.org/10.3389/fonc.2024.1486756
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1486756
https://www.frontiersin.org/journals/oncology


Lacorazza 10.3389/fonc.2024.1486756
inhibitors can be classified into seven types (type I-VII) based on

their binding (to the active ATP-binding site, inactive ATP-binding

site, or different domain/allosteric) and binding mode (reversible or

irreversible). The tyrosine kinase inhibitor Imatinib (classified as

type IIA) was the inaugural small-molecule inhibitor to receive

approval from the Food and Drug Administration (FDA) in 2001.

Its successful management of patients with chronic myeloid

leukemia marked a significant milestone in cancer therapy and

paved the way for the development of various kinase inhibitors. The

FDA has approved 72 such drugs, which collectively target

approximately 12% of the kinome (comprising over 518 protein

kinases) (1). MAP2K7 has emerged as a promising therapeutic

target for pharmacological inhibition. The availability of crystal

structure, chemical probes, and cell-free assays for MAP2K7, a

member of the STE kinase family in the kinome, facilitates the

development of specific inhibitors by medicinal chemistry. This

review summarizes the current understanding of MAP2K7-driven

JNK activation as a potential therapeutic target.
The MAPK unit MAP2K7-JNK

The MAP2K7 (a.k.a. MKK7, MEK7) gene (14 exons) encodes

for a conserved regulatory dual specificity kinase of the JNK

signaling cascade. Transcription of the MAP2K7 gene can

generate six isoforms through alternative splicing, named with the

Greek alphabet (a1, a2, b1, b2, g1, g2) or variants 1-6 (2).

MAP2K7a lacks an N-terminus fragment conserved in the other

isoforms (3). Although the functional role of each isoform remains

unclear, it was shown that T cell activation promotes a spliced

isoform that restores the JNK-docking site by skipping the exon 2
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(4). The full-length protein contains three conserved D-motifs in

the N-terminus (docking of substrates), the kinase domain

phosphorylated in the SXKAT motif by upstream kinases, and the

DVD domain in the C-terminus (5).

MAP2K7 is part of the three-tiered signaling unit MAP3K (e.g.,

ASK1, TAK1), MAP2K (MAP2K7), and MAPK (JNK) that

contributes to tissue homeostasis and responds to stress signals

(Figures 1A, B) (5). Seven MAP2K proteins named MAP2K1 to

MAP2K7 define the signaling units based on the downstream

substrates (e.g., ERK1/2, JNK, p38, or ERK5). Specifically,

MAP2K1 and MAP2K2 phosphorylate ERK1/2, MAP2K4 and

MAP2K7 phosphorylate JNK, MAP2K3, MAP2K4, and MAP2K6

phosphorylate p38, and MAP2K5 phosphorylates ERK5. While

MAP2K4 activates both JNK and p38, JNK is considered the sole

substrate of MAP2K7, although it has been shown that MAP2K7

could activate p38 in macrophages (6). The upstream MAP3K,

poorly defined, would bind to the MAP2K7 DVD domain and

phosphorylates Ser 271 and Thr 275 in the SXAKT motif, causing a

conformational change and increasing accessibility to the active site.

This interaction leads to the phosphorylation of JNK, which

is bound to the D domains in the N-terminus of MAP2K7

(Figures 1C, D). Although JNK does not phosphorylate a

downstream MAPKAPK, JNK prevents DLK ubiquitination

through phosphorylation in a potential feedback regulation (7).

JNK phosphorylates transcription factors involved in gene

regulation to respond to stress stimuli (e.g., ATF2, c-Jun). The

MAP3K-MAP2K7-JNK complex is stabilized by scaffolding

proteins, such as JNK interacting proteins (JIP1, JIP2, JIP3),

modulating the intensity of the elicited signal.

Reports suggest that MAP2K7 activity is regulated via miRNAs

and metabolism. Treatment of glucocorticoid-resistant CCRF-CEM
FIGURE 1

The MAP2K7-JNK pathway. (A) Extracellular (LPS, growth factors, TNFa, IL1) and intracellular (metabolism, DNA damage) stress signals activate the
MAP3K-MAP2K7-JNK pathway. This is a three-tier kinase cascade stabilized by the scaffolding protein JIP-1. NF?B activates the inhibitor GADD45b.
(B) Structural domains of MAP2K7 proteins, D domains, kinase domain with Ser 271 (S271) and Thr 275 (T275) phosphorylated by MAP3K, and DVD
domains. (C) Phosphorylation of S271 and T275 induces a conformation change, increasing accessibility to the ATP binding domain. (D)
Phosphomimetic mutation activates MAP2K7. The phosphomimetic mutant S271D and T275D mimic the active form of MAP2K7.
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cells with rapamycin, alone or combined with methylprednisolone,

was associated with the upregulation of miR-331-3p and inhibition

of the MAP2K7 pathway (8). Although the receptor tyrosine kinase

inhibitor Sunitinib caused cardiotoxicity in old rats, the drug led to

upregulation of miR-133b and inhibition of MAP2K7 in young rats

(9). Amino acid deprivation induces ATF2 phosphorylation by

activating GTPase Rac1/Cdc42 via Ga12 and MAP2K1/MAP2K7/

JNK2 signaling to adapt to amino acid scarcity (10). The TOR

signaling pathway regulator-like protein (TIPRL), upregulated in

hepatocellular carcinoma cells, inhibits MAP2K7-JNK activation

through binding of TIPRL to MAP2K7 and protein phosphatase

type 2A (PP2Ac), causing dephosphorylation of MAP2K7 and

preventing TRAIL-induced apoptosis (11).

Although JNK could be activated downstream of the T cell

receptor (TCR), the function of MAP2K7 in T cells has yet to be

thoroughly investigated. During thymic negative selection,

immature CD4 and CD8 double-positive T cells activate JNK via

MAP2K7 (12). The role of MAP2K7 in the JNK activation upon

TCR crosslink in naïve CD4 T cells was disregarded due to

undetectable levels (13). However, MAP2K7 is required for JNK

activation and LPS-induced cytokine production in macrophages

(6). In the immune response, the avian coronavirus induces a JNK-

dependent pro-apoptotic activity through MAP2K7 upregulation in

patients with post-COVID-19 infection (14, 15).

In addition to homeostatic and physiological regulation, the

MAP2K7-JNK pathway can be modulated with small molecules.

Treatment with luteolin, a natural product found in fruits and

vegetables, attenuates the hepatic and adipocyte fibrosis in high fat-

fed mice via the toll-like receptor (TLR) signaling, which was

associated with increased expression of MAP2K7 among other

MAPKs downstream of TLR5 signaling (16). The nucleoside

analog cordycepin inhibits GADD45b by suppressing NF-?B,

resu l t ing in the upregulat ion of MAP2K7 and JNK
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phosphorylat ion in renal cancer cel ls (17) . Cobalt ic

protoporphyrin IX chloride (Rosiglitazone), an anti-diabetic

medication, has a neuroprotective effect by inducing heme

oxygenase that prevents the assembly of the MELK3-MAP2K7-

JNK3 complex via JIP1 and thus heme oxygenase can be beneficial

in cases of cerebral ischemia (18).

DNA damage by ionizing radiation activates the MAP2K7-JNK

pathway through PKCd (15). Oncogenic stress can also trigger

DNA damage during replication, which induces p53-mediated

apoptosis by activating the MAP2K7-JNK pathway (19). The

complex formed by the glucocorticoid receptor and its ligand

inhibits MAP2K7 by dissociating JNK and translocating it to the

nucleus; however, this complex cannot promote transcription with

JNK (20). The control of programmed cell death during

homeostasis and carcinogenesis by NF-?B involves activation of

GADD45b, which inhibits MAP2K7 via protein-to-protein

interaction that hinders access to the ATP binding site (21).
Loss of function MAP2K7 mouse
models reveal physiological functions

Loss-of-MAP2K7 models have provided information on its

function in different tissues (Table 1). Although homozygous

gene deletion causes embryonic lethality, the study of viable

heterozygous mice allowed their use as a model of mono-allelic

deletion of theMAP2K7 gene in humans (23). The functional role of

MAP2K7 in lymphoid and mast cells was evaluated in chimeric

mice generated with recombination activating gene (Rag1)

blastocyst complementation (Table 1) (22). Loss of MAP2K7

caused hyperproliferation of T and B lymphocytes in response to

antigen receptor stimulation, which was associated with reduced

expression of JunB and p16 and upregulation of Cyclin D1 (22).
TABLE 1 Mouse models of MAP2K7 genetic loss.

GEMM model Gene deletion Finding Ref

Map2k7−/− Embryonic gene deletion ▪Decreased proliferation (G2/M arrest) and premature senescence in mouse
embryonic fibroblasts

(68)

Map2k7+/− Embryonic gene deletion ▪Cognitive impairment
▪Attention deficit

(69)

Map2k7neo/hyg and Map2k7+/neo

somatic chimeras
Complementation chimeras ▪Reduced JNK activation in mast cells

▪Increased growth factor and antigen receptor-driven proliferation of
hematopoietic cells

(22)

Map2k7fl/fl Synapsin-Cre Conditional deletion in neurons ▪Impaired circadian rhythm, decreased locomotor activity, axonal
degeneration in the spinal cord
▪Depression like behavior

(26)
(27)

Map2k7fl/fl nestin-cre Conditional deletion in the
nervous system

▪Perinatal lethality
▪Reduced axon elongation and radial migration in the developing brain

(28)

Map2k4fl/fl Map2k7fl/fl actin-CreERT2 Inducible deletion in adult mice ▪Alterations in dendritic structure
▪;Reduced JNK activation

(70)

Map2k4fl/fl Map2k7fl/fl Six3-cre Conditional deletion in the retina ▪Alteration in retinal structure
▪Disruption of inner nuclear layer cell somal and synaptic organization

(29)

Map2k7fl/fl myosin light chain-Cre Conditional deletion
in cardiomyocyte

▪Deterioration in ventricular function after pressure overload
▪Increased cardiomyocyte apoptosis

(30)
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A wealth of studies indicates that MAP2K7 regulates functions

in the central nervous system. JNK3 activity in cortical neurons led

to research on the involvement of MAP2K4 and MAP2K7 in

neurological disorders (23, 24). The impact of MAP2K7

haploinsufficiency on behavioral tasks was studied because post-

mortem brain analysis showed lower MAP2K7 expression in

individuals with schizophrenia compared to brain tissue from

healthy individuals (Table 1) (4). The genetic association between

MAP2K7 and schizophrenia correlated with impaired working

memory in Map2k7 heterozygous mice (25). The development of

Map2k7-floxed mice allowed conditional gene deletion in different

tissues through tissue-specific Cre-recombinase transgenic mice.

Mice with conditional deletion of the Map2k7 gene in neurons,

using synapsin-cre mice, displayed macrocephaly, impairment of

circadian rhythms, and progressive motor dysfunctions associated

with axonal neuropathy and muscle atrophy (Table 1) (26).

Another group reported that loss of MAP2K7, using the same

conditional gene deletion approach, did not alter locomotor

functions and cognitive capacity; however, the mice presented

social depression-like behavior (27). Nestin-cre-driven Map2k7

gene deletion in neural stem cells and postmitotic neurons

resulted in lethality at birth (28). Post-mortem analysis of brains

from Map2k7fl/fl nestin-cre mice showed large ventricles, reduced

striatum, reduced axon formation positive for the transient axonal

glycoprotein-1 in different areas, and defects in axon elongation and

radial migration of neurons in the developing brain (28). Dual

conditional deletion of the Map2k4 and Map2k7 genes using actin-

Cre-ERT2 alters neuroblast migration and differentiation through a

reduced JNK activation (28). Double deficiency in the retina caused

a defect in retinal development and axonal injury-induced retinal

ganglion cell death (29).
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MAP2K7 has a protective function in cardiomyocytes.

Conditional deletion of the Map2k7 gene in Map2k7fl/fl myosin-

cre (Table 1) revealed that MAP2K7 promotes cardiomyocyte

survival, suppressing extracellular matrix deposition and

inhibiting hypertrophic growth, and thus preventing heart failure

in response to pressure overload (30).
Role of MAP2K7 in cancer

The impact of aberrant activation of the MAP2K7-JNK

pathway in human disease has yet to be thoroughly investigated,

even though JNK is implicated in diverse physiological processes

and carcinogenesis. Since JNK is involved in cellular processes

targeted in cancer and JNK is the sole substrate of MAP2K7,

MAP2K7 emerges as a new potential therapeutic target. Studies

on mouse models suggest that the MAPK pathway likely plays a role

in cancer progression, metastasis, and resistance to chemotherapy.

The generation of mice carrying a Map2k7-floxed allele by

Penninger’s group has led to studies on the role of MAP2K7 in solid

tumors (Table 2) (31). For example, inactivation of MAP2K7

revealed a tumor suppressor function in two models of epithelial

lung carcinomas (KRasG12D) and mammary tumors (NeuT) (31).

The induction of lung cancer through inhalation of Cre-adenovirus

in Map2k7fl/D Lox-Stop-Lox-KRasG12D mice shows accelerated

cancer initiation and growth of lung adenomas with a rapid

demise of tumor-bearing mice with 100% penetrance. Because

MAP2K7-JNK stabilizes p53 through phosphorylation, the DNA

damage response mechanism is activated in early lung lesions with

low p53 levels. Map2k7 deletion in mammary epithelial cells in

Map2k7fl/D MMTV-Cre+ mice showed normal epithelial
TABLE 2 Functional role of MAP2K7 in cancer models.

Disease Role of MAP2K7 Pre-clinical model Ref

Breast cancer Tumor
suppressor function

Acceleration of tumor onset in NeuT-driven mammary tumors Map2k7fl/fl K5-Cre. (31)

Lung carcinoma Tumor
suppressor function

Reduced survival to K-Ras induced lung carcinoma in the Map2k7 fl/fl lox-stop-lox-KRasG12D

and adenovirus-Cre model.
(31)

Liver metastasis of
colon cancer

Pro-oncogenic Mediates miR-493 suppression of liver metastasis of colon cancer cells. (32)

Pancreatic ductal
adenocarcinoma
(PDAC)

Tumor
suppressor function

Dual loss-of-function of MAP2K4 and MAP2K7 cooperates with Kras(G12D) to accelerate
invasive PDAC. JNK inhibits Kras(G12D)-induced acinar to ductal metaplasia.

(34)

Glioblastoma Pro-oncogenic HDAC6 inhibition induces repression of MAP2K7 and JNK. HDAC4 deacetylates SP1 and
KLF5 upregulating MAP2K7.

(35, 36)

Prostate cancer Pro-oncogenic. Increased levels of MAP2K4, MAP2K6, and MAP2K7 in mouse prostate TRAMP model and
tissues from patients with high-grade prostatic intraepithelial neoplasia.

(38)

Lung squamous cell
carcinoma (LSCC)

LKB1-mediated
tumor suppression

Loss of LKB1 induces LSCC by reducing MAP2K7 levels and JNK1/2 activation. (40)

MBNL1-low cancers MBNL1 promotes exon 2
skipping in MAP2K7

MBNL1 and MAP2K7Dexon2 promote cancer stemness and increased susceptibility to
JNK inhibition.

(41)

Leukemia Pro-oncogenic. KLF4 epigenetic silencing leads to de-repression and aberrant activation of MAP2K7-JNK in
pediatric T-ALL.

(50)
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morphology but exhibited an early onset of mammary tumors

associated with impaired p53 protein stability when crossed to

MMTV-NeuT mice (31).

Analysis of genes downregulated by miR-493 in the colon

cancer cell line HCT116 allowed the prediction of potential

targets through a combination of in silico programs. The miR-493

inhibits colon cancer metastasis in the lung by targeting the IGF1R

and MAP2K7 transcripts (32). Although genomic silencing of

MAP2K7 in HCT116 cells inhibited the foci formation in the

liver, the mechanism of MAP2K7-driven liver metastasis has not

been further investigated. Notably, the MAP2K7 p.Glu116Lys

variant has been associated with lung cancer cell proliferation,

tumor growth, and metastasis; however, the link between this

variant and colon cancer metastasis remains unclear (33).

Pancreatic ductal adenocarcinoma (PDAC) is a devastating

cancer with a poor prognosis. Map2k4fl/fl Map2k7fl/fl Pdx1-CreER

mice carrying the KrasG12D knock-in allele were generated to induce

dual gene deletion by administering tamoxifen in the lactating dam

and studying the role of JNK activity in PDAC pathogenesis (34).

Dual deletion of Map2k4 and Map2k7 did not alter the tissue

structure but led to accelerated development of abnormal cell

growth driven by KrasG12D in the pancreatic lining. This

resulted in widespread highly dysplastic ductal structures, intense

stromal desmoplasia, and accelerated progression of PDAC with

high penetrance and short latency (34). It is worth mentioning that

individual deletion of MAP2K7 in the KrasG12D model did not

accelerate the progression of pancreatic cancer, suggesting that both

kinases are required to suppress KrasG12D-induced reprogramming

of acinar cells into duct-like cells. In a model of inflammatory ductal

metaplasia, mice with the dual loss of MAP2K4 and MAP2K7 could

not efficiently resolve pancreatitis, leading to only partial acinar

regeneration (34). This is intriguing, considering the link between

inflammation and carcinogenesis. This data supports the

therapeutic relevance of pharmacological inhibition of MAP2K4

and MAP2K7 in pancreatitis and PDAC.

Pharmacological inhibition of histone deacetylase 6 (HDAC6)

prevents the progression of glioblastoma multiforme, an aggressive

form of cancer affecting the central nervous system with a poor

prognosis. Inhibition of HDAC6 reduces glioma cell proliferation

and invasion by destabilizing MAP2K7 protein, decreasing JNK and

c-Jun activation, and subsequently downregulating cyclin D1 and

matrix metalloproteinases (35). Furthermore, it was determined

through genomic silencing that MAP2K7, not MAP2K4,

phosphorylates JNK/c-Jun in glioma cells. The fact that HDAC4

and MAP2K7 are expressed at high levels suggests that the cancer-

promoting effects of MAP2K7 in glioma cells could be stopped

using drugs that inhibit HDAC4. In this scenario, inhibiting

HDAC4 reduces the acetylation of the SP1 and KLF5

transcription factors, leading to decreased expression of MAP2K7

(36). These reports indicate that HDACs may regulate MAP2K7

expression in glioma cells by controlling transcription and

protein stability.

The transcription factor c-Jun, a target of JNK activity,

contributes to etoposide-induced apoptosis in prostate cancer

cells by activating the death receptor FAS (37). Histopathological
Frontiers in Oncology 05
analysis revealed the presence of kinases MAP2K4, MAP2K6, and

MAP2K7 in human prostate adenocarcinoma and neoplastic tissues

from TRAMP mice but not in benign glands (38). While this

finding does not establish a cause-effect relationship, the aberrant

activation of these kinases provides an opportunity to investigate

the use of specific small molecule inhibitors to inhibit prostate

tumor growth. In addition, MAP2K7 also mediates signals from the

discoidin domain receptor 1 (DDR1) and promotes the epithelial-

mesenchymal transition during prostate cancer metastasis (39).

Finally, a study of an upstream regulator indirectly links

MAP2K7 to cancer. Deleting the Lkb1 gene, which is often

mutated in lung squamous cell carcinoma (LSCC), is sufficient to

induce LSCC through the inactivation of the MAP2K7-JNK1/JNK2

pathway, rather than the AMPKa and mTOR pathways (Table 2)

(40). This finding suggests that LKB1 regulates the MAP2K7-JNK

pathway, at least during lung carcinogenesis. Another example is

the master splicing regulator MBNL1. Low levels of MBNL1 were

linked to poor survival in metastasis in triple-negative breast, lung,

and gastric adenocarcinomas. Transcriptome analysis of isoforms in

the stomach cell line HFE-145 with genomic silencing of MBNL1

identified a short list of alternative splicing events and genes

regulated by transcript stability in MBNL1-regulated tumors. Loss

of MBNL1 led to skipping exon 2 in the MAP2K7 gene with

generation of the MAP2K7Dexon2 splice variant responsible for

increased stem/progenitor-like properties because of increased JNK

signaling driven by a higher affinity of JNK to bind MAP2K7 (41).

This study suggests that MBNL1 suppresses tumors by preventing

the oncogenic MAP2K7 splice variant generation.
Aberrant activation of MAP2K7 in
pediatric T-ALL

As discussed above, most of the knowledge on the carcinogenic

role of MAP2K7 relates to solid tumors (Table 2). Our group

discovered that the MAP2K7-JNK pathway is aberrantly activated

in children with T-cell acute lymphoblastic leukemia (T-ALL). ALL

is the most common cancer in children under 14 years of age, and it

is classified depending on the lymphocytes involved, such as B-ALL

(B cells) and T-ALL (T cells) (42–45). Treatment modalities have

significantly improved outcomes in specialized centers, with 5-year

relapse-free survival rates greater than 80-85% (46). Unfortunately,

the prognosis is not as favorable for children whose treatment fails

to induce long-lasting remission, with the event-free survival rate

dropping to around 30% in subsequent treatments (47). As a result,

leukemia continues to be a significant cause of cancer-related deaths

in children, especially for those with refractory or relapsed disease.

This highlights the critical need for alternative drugs to improve

survival rates in frontline and salvage therapies for leukemia

(47–49).

We studied the tumor suppressor function of the Krüppel-like

factor 4 (KLF4) in pediatric leukemia because we identified that

KLF4 inhibits T cell proliferation during homeostasis, and it is

expressed at low levels in lymphoblasts from children with T-ALL,

especially in the poor prognoses of ETP-ALL and TLX groups and
frontiersin.org

https://doi.org/10.3389/fonc.2024.1486756
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lacorazza 10.3389/fonc.2024.1486756
the inhibitory role in T cell proliferation (50–52). Consistent with

these findings, NOTCH1-induced T-ALL mice with conditional

deletion of the Klf4 gene displayed more aggressive leukemia,

associated with increased expansion of leukemia-initiating cells

(LICs) determined by immunophenotypic analysis and limiting-

dose transplantation. Mechanistically, the acceleration of leukemia

was linked to the upregulation of the mitogen-activated kinase

MAP2K7 because the loss of KLF4 released repression of the

Map2k7 gene (Figure 2). Consistent with these findings in the

mouse model, analysis of lymphoblasts from children with T-ALL

showed epigenetic silencing of the KLF4 gene by CpG methylation,

low KLF4 expression, and elevated levels of total and

phosphorylated MAP2K7 protein (Figure 2). The fact that the

activated MAP2K7-JNK pathway augmented the proliferation of

bulk leukemic cells and LICs suggests that MAP2K7 inhibition

represents a novel approach to eradicating LICs thought to drive

chemoresistance and relapses. Analysis of the ShinyDepMap

database shows a low MAP2K7 dependency (−0.575) because it

contains mainly AML and B-lymphoma cell lines (53). According

to the cell line Encyclopedia (CCLE), MAP2K7 is highly expressed

in multiple myeloma, chronic myeloid leukemia, lymphomas, B-cell

acute lymphoblastic leukemia (B-ALL), and T-cell acute

lymphoblastic leukemia (T-ALL). Further, proteomic analysis

revealed higher levels of MAP2K7 expression in acute

lymphoblastic leukemia (ALL), lymphoma, and myeloma

compared to other cancer types.
Frontiers in Oncology 06
Pharmacological modulation of
MAP2K7-JNK activity

There is an increasing interest in developing MAP2K7

inhibitors not only to treat human disease but also as a tool to

investigate MAP2K7 in T-ALL pathobiology. Specific inhibitors are

needed because most small molecules used to study MAP2K7, with

a few exceptions, were identified as off-target inhibitors. Although

medicinal chemistry aims to increase specificity through covalent

inhibition, clinical oncologists are concerned that covalent

inhibitors may cause off-target toxicity. Despite this, many kinase

inhibitors used in the clinic covalently bind to the target. The

arduous path of drug discovery is fraught with challenges, including

high costs , low clinical efficacy, toxicit ies , and poor

pharmacokinetics that decrease the likelihood of clinical success.

However, the potential benefits outweigh the inherent risks.

Based on the interaction of the NF?B-regulated antiapoptotic

factor GADD45b and MAP2K7, screening a combinatorial library of

L-tetrapeptides to identify peptides capable of disrupting the

MAP2K7:GADD45b complex resulted in the development of the

D-tripeptide (DTP3). Selected compounds with low IC50 were

further optimized for stabilization (D-enantiomers), cell membrane

permeability (replacing the N-terminal acetyl group with a

benzyloxycarbonyl group), and chemical derivatization to improve

bioavailability while retaining anticancer activity. DTP3 retained the

capacity to induce apoptosis with high potency by allosterically
FIGURE 2

Aberrant MAP2K7 activation in pediatric T-ALL. Samples from pediatric T-ALL patients showed epigenetic silencing of KLF4 via CpG methylation with
elevated activation of the MAP2K7-JNK pathway. The conditional deletion of the Klf4 gene in the NOTCH1-induced T-ALL model recapitulates the
findings in human samples showing upregulation of MAP2K7 and activation of the MAP2K7-JNK pathway that drives the proliferation of leukemia-
initiating cells and leukemic T-ALL cells.
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disrupting the MAP2K7:GADD45b interaction. The survival of

multiple myeloma (MM) malignant plasma cells is driven through

MAP2K7-JNK inhibition by GADD45b activated by constitutively

activated NF-?B. Hence, DTP3 induces apoptosis by releasing

inhibition of MAP2K7 by GADD45b and reactivating the

MAP2K7-JNK pathway in MM cells (54). The effect of DTP3 on

MAP2K7 activity is the only known example where MAP2K7-JNK

activation instead of inhibition has antileukemic properties (Table 3).

Next, we will summarize the development of MAP2K7

inhibitors for therapeutic use. HWY336 was identified in a

protoberberine compounds chemical library screen as a MAP2K4

and MAP2K7 kinase inhibitor in the human embryonic kidney

HEK293 cell line (Table 3) (55). HWY336 competes with substrates

but not with ATP via non-covalent interactions in the activation

loop of MAP2K4 and MAP2K7, yet this inhibitor’s anticancer

properties have to be investigated. A structure-based design was

conducted using the structure of an EGFR inhibitor able to inhibit

MAP2K7 with low potency because pyrazolopyrimidine-based

compounds inhibit EGFR, and the ATP binding pocket of EGFR

is similar to MAP2K7 (Table 3) (56). The compound 4a showed the

highest potency (10 nM) in a biochemical assay and inhibited

MAP2K7 by covalently reacting to Cys218 at the end of the hinge

region in the ATP binding domain. Kinome studies of compound

4a revealed off-target kinases with more than 50% inhibition (e.g.,

BLK, BMX, BTK, ITK, JAK3, mTOR, and S6K) all containing the

Cys218 in the ATP-binding pocket (56). It is essential to highlight

that only 11 kinases in all the kinome have cysteine in position 218.
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Compound 4a showed suitable pharmacokinetics parameters that

are encouraging for in vivo studies.

A recent study showed a structural analysis of MAP2K7 activation

and identified small molecules with inhibitory activity (57). The wild-

type DN115-MAP2K7 protein in the non-phosphorylated form and

the phosphorylation-mimetic mutant, substituting Ser287 and Thr291

for aspartic acid, adopted an inactive state with a closed ATP binding

site (57). An active conformation was achieved by eliminating the N-

terminal helix in DN75-MAP2K7-S287D/T291D crystals, suggesting

that the N-terminal regulates the kinase activation (57). Then, a small-

scale screen (360 compounds) using the melting thermal shift assay

identified nine compounds that could bind the flexible MAP2K7 ATP

binding pocket with KD in the nanomolar range. These compounds

included type I inhibitors (e.g., Ibrutinib, OTSSP167, and CPT1-70-1)

and trifluoromethyl-benzene-based type II inhibitors (e.g., HYJ2-002-1,

XMD15-46, and TL10-105) (57). It has been postulated that Ibrutinib

inhibits MAP2K7 by forming a covalent adduct with Cys 218 and

through allosteric binding. Kinase assays using full-length MAP2K7-

S287D/T291D protein with ATP pre-incubation showed high potency

for the nine identified compounds with IC50 values ranging from 60

nM to 160 nM. The compounds that showed higher cytotoxicity in the

monocytic cell line THP-1 at 1 mM concentration were OTSSP167,

CPT1-70-1, and TL10-105. In this assay, THP-1 cells were pre-treated

with sorbitol to activate MAP2K7-JNK because this pathway is not

activated in THP1 cells, as we have shown for T-ALL cell lines (50).

This report has shed important information on the MAP2K7 structure

in the inactive and active form, the flexibility of the ATP binding
TABLE 3 Pharmacological modulation of MAP2K7 activity.

Chemical compound Specificity MAP2K7 inhibition
(IC50)

Cytotoxicity
IC50

Cancer Activity in a
mouse model

(dose)

Ref.

DTP3 peptide Inhibits interaction of
GADD45b and MAP2K7

Activation
(28 nM)

17-31 nM MM +++
(14.5 mg/Kg)

(54)

HWY336 MAP2K4, MAP2K7 Inhibition
(10 mM)

n.d. n.d. n.d. (55)

Cov-2
Cov-4
Cov-3

MAP2K7
(covalent)

Inhibition
(11 nM,
502 nM,
873 nM)

n.d. n.d. n.d. (71)

4-aminopyrazolo pyrimidine-
based inhibitors

MAP2K7, EGFR Inhibition
(10 nM)

n.d. n.d. n.d. (56)

Ibrutinib BTK, MAP2K7 Inhibition
(160 nM)

>5 mM CLL n.d. (57)

5Z-7-Oxozeaenol MAP2K7 (covalent) Inhibition
(1.2 mM)

0.2-1.1 mM T-ALL +
(15 mg/Kg)

(64)

OTSSP167 MELK, MAP2K7 (pan-
kinase inhibitor)

Inhibition
(160 nM)

10-57 nM T-ALL +++
(10 mg/Kg)

(65)

Compound 1 and
Compound 2

MAP2K7 (covalent) Inhibition
[3 nM (1), 0.6 nM (2)]

n.d. OS n.d. (66)

DK-2403 MAP2K7 (covalent) Inhibition
(10 nM)

1.1-2.9 mM T-ALL n.d. (67)
frontier
nd, not determined.
MM, multiple myeloma; CLL, chronic lymphocytic leukemia; T-ALL, T-cell acute lymphoblastic leukemia; OS, osteosarcoma.
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domain, and the inhibitory activity of Type I and Type II reversible and

covalent inhibitors.

Our group decided to investigate whether the MAP2K7-JNK

pathway could be a druggable target to treat pediatric T-ALL. JNK

inhibitors (e.g., JNK-IN-8) showed cytotoxicity in T-ALL cell lines

with IC50 > 10 mM by inhibiting the MAP2K7-JNK pathway (58,

59). Even if JNK inhibition reduced the expansion of human

leukemia cells in a cell-based xenograft model, low specificity and

potency prevented reaching sustained therapeutic concentrations

with minimal toxicity (50, 60). We hypothesize that direct MAP2K7

inhibition could increase specificity to T-ALL, considering that

MAP2K7 and MAP2K4 can activate JNK. Selective inhibition of the

kinase MAP2K7 with small molecules is possible because of the

distinct features of its ATP binding pocket compared to other

MAP2Ks (61, 62). For instance, four cysteine residues, including

Cys 218, exist in the hinge region. The fungal natural product 5Z-7-

Oxozeaenol, which covalently reacts with the Cys 218 (62, 63),

induced cytotoxicity in T-ALL cell lines with IC50s ranging from

0.2-1.1 mM by inducing G2/M cell cycle arrest and apoptosis (64).

5Z-7-Oxozeaenol synergistically induces in vitro cytotoxicity with

etoposide and dexamethasone, suggesting the feasibility of using

this inhibitor in frontline therapy. However, this compound failed

to efficiently control leukemia in the cell-based xenograft (CBX) and

patient-derived xenograft (PDX) models due to drug toxicity that

prevented achieving therapeutic concentrations in vivo (64). We

recently found that the MELK inhibitor OTSSP167 also inhibited

MAP2K7 kinase activity at an IC50 of 160 nM and induced

cytotoxicity in T-ALL cells at low nanomolar concentrations

(IC50 10-57 nM) through inhibition of the MAP2K7-JNK

pathway in T-ALL cell lines (57, 65). OTSSP167 inhibition was

also evaluated upon MAP2K7 activation through genetic (ectopic

expression of the MAP2K7-JNK fusion) or metabolic (sorbitol)

approaches. Despite being a pan-kinase inhibitor, OTSSP167

targeted other pathways besides MAP2K7-JNK, such as mTOR

and NOTCH1, in T-ALL cells (65). These off-target inhibitions

could be beneficial because mTOR and NOTCH1 are critical in the

T-ALL pathogenesis. Daily administration of OTSSP167 (10 mg/

Kg) in T-ALL PDX mice, generated with remission and relapse

clinical samples, showed efficient control of leukemia burden (65).

Finally, OTSSP167 showed synergism when combined with drugs

used in standard therapy (e.g., vincristine, asparaginase,

dexamethasone), which is highly relevant for clinical translation

because any new drug will be added as an adjuvant of the standard

treatment. Yet, despite being potent and well tolerated, future use of

OTSSP167 in the clinic is somehow overshadowed by the potential

of target toxicity due to its pan-kinase inhibitor activity.

Recently, covalent MAP2K7 inhibitors were identified in a high-

throughput nanomole-scale synthesis for late-stage functionalization

of acrylamide-based kinase inhibitors (Table 3) (66). Two MAP2K7

inhibitors (compounds 1 and 2), previously identified via structure-

based drug discovery and virtual screening, were used to generate

libraries through copper-catalyzed azide-alkyne cycloaddition

synthesis that were screened with the in-cell western assay

(phosphorylated JNK detection) using U2O2 cells (osteosarcoma)

treated with sorbitol. The generated series from compounds 1 and 2

yielded derivatives (4-amino-pyrazolpyrimidine core and indazole
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scaffold) with JNK inhibition capacity in the low nanomolar range

(<30 nM) and irreversible binding to the Cys 218 in the recombinant

protein. Although the top inhibitors in each series were selected for

absorption, distribution, metabolism, and excretion studies, none of

these compounds were tested in mouse models.

Finally, Scheidt’s group designed a novel MAP2K7 inhibitor,

DK-2403, based on rational design with a streamlined one-pot

synthesis (67). Besides MAP2K7, a screen of 90 kinases revealed

that DK-2403 could bind EGFR at 1 mM, suggesting high target

selectivity. This off-target activity is irrelevant for T-ALL because

EGFR inhibition does not cause significant cytotoxicity. The

specificity of DK-2403 to inhibit MAP2K7 is partly driven by the

capacity of DK-2403 to bind to Cys 218 covalently, which was

determined by liquid chromatography and time-of-flight mass

spectrometry (LC-TOF MS) and confirmed by wash-out

experiments. Cell viability assays showed IC50 cytotoxicity in the

1.1-2.9 mM range and reduced levels of phosphorylated JNK and

ATF2 in the T-ALL cell lines JURKAT, KOPT-K1, RPMI-8402,

ALL-SIL (67). DK-2403 has not yet been tested in leukemic

mouse models.
Discussion

The abnormal kinase activation in diseases makes it suitable to

develop pharmacological inhibition through medicinal chemistry

campaigns as a therapeutic approach. In recent years, significant

efforts have been dedicated to developing novel MAP2K7 inhibitors

for use as research tools and potential new cancer treatments.

Among the nine small molecules with MAP2K7 inhibitory

capacity described in the literature, only four were evaluated in

cancer models, predominantly multiple melanoma and T-cell acute

lymphoblastic leukemia, and three were assessed in mouse models.

Our research group identified abnormal MAP2K7 activation in

pediatric T-ALL and conducted proof-of-concept evaluations of 5Z-

7Oxozeaenol and OTSSP167 compounds. Although promising

results indicated that MAP2K7 inhibition can control leukemia

burden in preclinical mouse models, the compounds did not exhibit

the desired high potency, high specificity, and low toxicity. More

recently, we described the design and synthesis of an irreversible

MAP2K7 inhibitor, DK2403, with high specificity that has yet to be

investigated in pre-clinical mouse models.

The clinical application of potent and specific MAP2K7

inhibitors in leukemia also requires optimal pharmacology and

toxicology studies in animal models and pre-clinical evaluation

using patient samples. The targeting of leukemia-initiating cells,

which are responsible for refractory and relapsed disease, should

also be evaluated in pre-clinical models of T-ALL. Because

haploinsufficiency and conditional MAP2K7 gene deletion were

associated with lymphocyte hyperproliferation, schizophrenia,

neuropathy, and depression, systemic MAP2K7 inhibition may

cause side effects due to off-tissue activity. Undesired activity in

the central nervous system could be minimized by decreasing the

lipophilicity of lead compounds or devising delivery systems that

are not permeable in the blood-brain barrier. MAP2K7 inhibition

should not alter lymphocyte function unless the patient has an
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underlying immune response, which could represent exclusion

criteria in clinical trials. For all these reasons, Phase I clinical

trials should examine the safety and adverse events of MAP2K7

inhibitors, particularly in cognition, cardiac function, and

immunity. Drug combination studies are needed because

MAP2K7 inhibition would be part of a multi-drug frontline or

salvage treatment. In addition, additional research on the role of

MAP2K7 in normal tissue homeostasis is necessary to predict the

potential side effects and safety of pharmacological inhibition.

Another alternative to overcome these shortcomings is

repurposing existing kinase inhibitors tested in humans for new

therapeutic purposes, although this would imply off-target

inhibition of MAP2K7 (low potency). In addition to leukemia,

MAP2K7 inhibition may also benefit cancers associated with

increased activation of the MAP2K7-JNK pathway, such as liver

metastasis of colon cancer, glioblastoma, and prostate cancer.

A clearer understanding of MAP2K7's role in normal and

disease states and the development of small-molecule inhibitors

will facilitate the exploration of potential clinical applications in

cancer and other diseases.
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