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Introduction: Intraperitoneal chemotherapy for ovarian cancer treatment has

controversial benefits as most methodologies are associated with significant

morbidity. We carried out a systematic review to compare tumor response,

measured by tumor weight and volume, between intraperitoneal chemotherapy

delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy

in animal models of ovarian cancer. The secondary aim was to assess the toxicity

of DDS-delivered chemotherapy, based on changes in animal body weight.

Methods: Based on PRISMA and SYRCLE guidelines, we identified 38 studies for

review, of which 20, were used in the meta-analysis. We evaluated outcome,

through tumor volume and tumor weight and, toxicity, through animal weight.

Analysis was based on drugs employed and treatment duration.

Results: Most studies were performed on mice. Ovarian cancer cell lines most

commonly used to induce xenografts were SKOV3 (19 studies) and A2780 (6

studies). Intraperitoneal device, also known as drug delivery systems (DDS),

consisted in nanoparticles, hydrogels, lipid polymer and others. The most

commonly used drugs were paclitaxel and cisplatin. Most studies used as the

control treatment the same chemotherapy applied free intraperitoneally and tumor

response/animal weight were evaluated weekly. There was a small benefit in overall

tumor reduction in animals treatedwith intraperitoneal chemotherapy applied through

the slow release device compared with animals treated with intraperitoneal free

chemotherapy, as evaluated through tumor weight - results in standardized mean

difference. (-1.06; 95%CI: -1.34, -0.78) and tumor volume (-3.72; 95%CI: -4.47, -2.97),
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a benefit that was seen inmost weekly evaluations and formost chemotherapy drugs,

such as carboplatin (tumor weight: -5.60; 95% CI: -7.83, -3.37), paclitaxel (tumor

weight: -1.18; 95% CI: -1.52, -0.83), and cisplatin (tumor volume: -2.85; 95% CI: -3.66,

-2.04) carboplatin (tumor volume: -12.71; 95% CI: -17.35, -8.07); cisplatin (tumor

volume: -7.76; 95% CI: -9.88, -5.65); paclitaxel (tumor volume: -2.85; 95%

CI: -3.66, -2.04). Regarding animal weight, there was no weight reduction in

animals treated with intraperitoneal chemotherapy applied through the slow-release

device compared with animals treated with intraperitoneal free chemotherapy.

However, significant heterogeneity was observed in some comparisons.

Conclusion: slow-release devices are overall safe and effective in animal models

of ovarian cancer. It was not possible to evaluate which one is themost promising

device to treat ovarian cancer, because many different types were used to apply

chemotherapy intraperitoneally.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42021224573.
KEYWORDS

ovarian cancer, drug delivery systems, animal model, intraperitoneal chemotherapy,
meta-analysis
1 Introduction

Ovarian cancer is the most lethal gynecologic cancer, with the

majority of cases being diagnosed when the patient already presents

with ascites and peritoneal dissemination of the tumor, restricting

the 5-year survival to 30% (1). This situation impairs complete

cytoreduction, and limits the chemotherapy response (2–4). The

majority of patients have relapsed disease (1, 5, 6).

The most common chemotherapy protocol for high grade

advanced stage serous ovarian cancer is based on six cycles of

systemic carboplatin and paclitaxel (1, 5). Toxicity is related to

unfavorable drug distribution and results in frequent peripheral

neuropathy, anemia, neutropenia due to bone marrow suppression,

alopecia and gastrointestinal symptoms.

Peritoneal administration of chemotherapy has been implemented

over the last few decades to increase drug concentration in neoplastic

spots with acceptable systemic toxicity due to lower absorption (3, 7),

but sequential outpatient administration did not improve survival in

the most expressive clinical trial (8). The single application during

cytoreduction of hyperthermic intraperitoneal chemotherapy (HIPEC)

was effective in three clinical trials.

The rational of HIPEC is to directly or indirectly affect the residual

neoplastic cells after cytoreduction. In this case, the desperitonized

region, which is more prone to the adhesion of neoplastic cells, is

protected by direct contact with the chemotherapy agent (9). The

technique presents promising results even in patients with platinum

resistance (10, 11). Studies show better survival compared with standard

treatment, when performed during interval cytoreduction surgery with
02
cisplatin (12) and in the context of secondary cytoreduction with

cisplatin (13) or cisplatin associated with paclitaxel (10).

The main disadvantage of HIPEC is the higher surgical morbidity

andmortality. The most frequent complications are bleeding, surgical

wound infection, sepsis, abscess, fistulas, renal failure, pleural effusion

and hematological toxicity associated with chemotherapy (7).

Although some series present good results regarding the

morbidity of the procedure (10), others report morbidity rates

that exceed 50% of patients (14), encouraging studies in murine

models for less toxic formulations.

The PIPAC (pressurized intraperitoneal aerosol chemotherapy)

resembles the principles of HIPEC with an innovative technology for

delivering drugs into the peritoneal cavity, that involves aerosolized

chemotherapy delivered under pressure. Unfortunately, it is mainly

offered to palliative patients, as there are still no randomized clinical

trials evaluating PIPAC as first therapeutic option (15).

Chemotherapy slow-release devices, also known as drug delivery

systems (DDSs), are designed to converge the advantage of in loco

peritoneal treatment with lower toxicity. The classification of DDSs is

based on its main mechanism of action and the types most currently

used are liposomes, micelles and nanoparticles (16). Its efficacy in disease

control has been demonstrated in several animal models but (17, 18) its

application in humans is limited to a few studies on slow-release systems

containing paclitaxel (19, 20). Several DDS formulations have been tested

in vitro and in murine models, and most studies have been conducted in

mice with ovarian tumor xenografts (17). The efficacy of various DDS

formulations reinforces this therapeutic option and supports the creation

of a device to be tested in animals with a larger peritoneal cavity.
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The primary aim of this study was to compare the tumor response,

assessed by tumor weight and volume, between intraperitoneal

chemotherapy delivered via drug delivery systems (DDSs) and free

intraperitoneal chemotherapy in animal models of ovarian cancer. The

secondary aim was to evaluate the toxicity of intraperitoneal

chemotherapy delivered through DDSs, compared to free

intraperitoneal chemotherapy, based on changes in animal body weight.
2 Methods

The research protocol was inserted into the PROSPERO

(Prospective Register of Systematic Reviews) platform with the

register code CRD42021224573, following the PRISMA (Preferred

Reporting Items for Systematic Review and Meta-Analysis) checklist

recommendations (21). We performed a literature search using

descriptors according to PICO methodology, as described in

Supplementary Table 1: (Ovarian OR carcinomatosis) AND

(Polymers OR Drug Delivery Systems OR Absorbable Implants OR

Phospholipids OR Delayed-Action Preparations OR Infusion Pumps,

Implantable OR Chitosan OR Polyvinyl Alcohol OR sustained release

OR slow release OR controlled release ORmembrane OR hydrogel OR

Polyethylene Glycol Acid OR Implant System OR Injectable

Biomaterial OR Continuous Release OR continuous intraperitoneal

delivery OR continuous chemotherapy OR continuous docetaxel OR

continuous cisplatin OR continuous paclitaxel OR continuous

carboplatin OR micellar OR micelle) AND (Intraperitoneal OR

peritoneal) AND (Toxicity OR survival OR treatment OR tumor

burden). The search strategy focused on DDSs capable of slow-

release chemotherapy in ovarian cancer animal models.

The literature search was performed on PubMed, MEDLINE,

Embase, Cochrane Central Register of Clinical Trials and Web of

Science, without any date restrictions on 2th October 2023. All results

were inserted into the Rayyan App, a multitask program created to

enable better management and selection of papers (22). Repeated studies

on different platforms were excluded, and papers were selected by six

researchers working in blinded pairs. After interrupting the blind

approach, discordant papers between the authors were reviewed by a

third author for final judgment on inclusion.

The selection criteria included studies with peritoneal

application of the device in which one or more of the following

chemotherapy drugs were used: cisplatin, docetaxel, paclitaxel and

carboplatin. The device type was restricted to gels, membranes,

microdevices or micelles.

Study inclusion required at least one of the following outcomes:

side effects (animal weight as a sign of toxicity), tumor response

(assessed by tumor weight, volume or bioluminescence), or animal

survival. Experimental group had be compared at least with one

control group (no treatment, empty device or free chemotherapy)

and minimal sample size and animal species were not an exclusion

criteria. Only studies published in English were included. Studies on

human beings were excluded. Data compilation for meta-analysis

was prepared when at least three studies with the same outcome,

unit of measure and standard deviation were present.
Frontiers in Oncology 03
Authors of abstracts and posters were contacted digitally

(email/LinkedIn platforms) and kindly asked to send additional

data that would facilitate the inclusion of the research in the review.

The selected studies had their data extracted and inserted into a

standardized Excel table by all researchers. The corresponding pair

reviewed all data entries; text, tables or graphs had their numbers

copied. When the results were presented only graphically, the

WebPlotDigitizer program was used to identify the results more

accurately. Data extracted from the papers consisted of authors,

year of publication, number of animals in each group (experimental

and control), cell lines, intervention, and outcomes.

Meta-analysis was performed using STATA MP version 14

software. When the variation in mouse weight was recorded as a

percentage, we considered the initial weight to be 20g to include the

data in the analysis.

We conducted a meta-analysis using a fixed-effect model. The

outcome measures were assessed based on continuous variables.

The effect of the treatment interventions and controls was evaluated

by calculating mean differences and their corresponding 95%

confidence intervals. The overall treatment effect was further

assessed using the standardized mean difference (SMD). A p-

value of < 0.05 was considered statistically significant. The degree

of heterogeneity across studies was evaluated using the I² statistic,

with the following interpretation: 0–25% indicating low

heterogeneity, 26–50% moderate heterogeneity, 51–75%

substantial heterogeneity, and >75% high heterogeneity (23).
2.1 Studies quality

The SYRCLE (Systematic Review Centre for Laboratory animal

Experimentation) risk of Bias Tool was used to quantify the quality

of the studies (24); this is an adaptation of the Cochrane Instrument

developed specifically for animal studies. Selection, performance,

detection, attrition and reporting biases were evaluated by the same

researchers who selected the articles, in pairs.
3 Results

The search was carried out on October 2, 2023 and 399 studies

were found in PubMed, 417 in Embase, 226 in Web of Science, 443

in the Virtual Health Library, 195 in Scopus and 23 in Cochrane,

totaling 1,703 articles. It should be noted that the terms were

searched in the title, abstract or entire text; only in Scopus was

the search for terms restricted to the title and abstract, as the high

number of articles in the text would make the selection of

articles unfeasible.

A total of 597 articles were excluded, resulting in an evaluation

of 1,106 articles. Of these, 104 papers were selected based on the

relevance of the title or summary for the final evaluation of the full

text (Figure 1). It was not possible to get in contact with the authors

of the six posters initially included.
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3.1 Systematic review

A total of 38 articles fulfilled the inclusion criteria and were

selected for a systematic review. The analysis was performed

according to treatment duration and chemotherapy drugs used. A

total of 11 studies published from databank inception up to 2010
Frontiers in Oncology 04
were selected, from 2011 to 2015, 14 studies, from 2016 to 2023, 10

studies, and from 2021 to 2023, 3 studies.

Eighteen studies were excluded from the meta-analysis. The

main reason for this was that the outcomes did not include the

predefined parameters. The reasons for excluding these studies and

their outcomes are summarized in Table 1.
FIGURE 1

Flowchart of selected studies.
TABLE 1 Main features of the studies selected for the systematic review and reason for exclusion.

Author Year Chemo
Physical

Presentation
N Control

vs. Experimental
Evaluated Outcomes

Exclusion
Reason

Amoozgar et al. (53) 2014 paclitaxel nanoparticles 16 vs. 8 survival
missing
standard
deviation

Bajaj et al. (28) 2012 paclitaxel hydrogel 27 vs. 19 tumor weight *

Bortot et al. (54) 2020 cisplatin nanoparticles 12 vs. 7 bioluminescence and animal weight *

Cho H and Kwon GS
et al. (55)

2014 paclitaxel micels and gel 10 vs. 10 bioluminescence and survival
missing
standard
deviation

Cho H and
Lai et al. (56)

2013 paclitaxel Micels 8 vs. 16 animal weight
*

Cho, S. and
Sun et al. (45)

2015 cisplatin nanoparticles 30 vs. 20 bioluminescence and tumor weight
*

Clercq et al. (27) 2019 paclitaxel nanoparticles 22 vs. 44 animal weight
time

treatment
missing

De Souza R and
Zahedi P et al. (33)

2010 docetaxel hydrogel 12 vs. 36 bioluminescence
outcomes
missing

(Continued)
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TABLE 1 Continued

Author Year Chemo
Physical

Presentation
N Control

vs. Experimental
Evaluated Outcomes

Exclusion
Reason

Desale SS et al. (35) 2015
cisplatin

and paclitaxel
nanoparticles 32 vs. 16 bioluminescence

outcomes
missing

Gilmore D et al. (57) 2013 paclitaxel nanoparticles 13 vs. 11 animal and tumor weight *

Hagiwara et al. (58) 1993 cisplatin microspheres 240 vs. 20 survival
outcomes
missing

Chunbai He et al. (59) 2016 cisplatin siRNA polymer 18 vs. 24
animal weight, tumor volume

and survival *

Ho et al. (60) 2007 paclitaxel nanoparticles 6 vs. 3 –
outcomes
missing

Kumagai et al. (25) 1996 cisplatin microspheres 5 vs. 40 survival
outcomes
missing

Lee, S.E. and Bairstow
et al. (61)

2014 paclitaxel nanoparticles 30 vs. 10 survival
outcomes
missing

Li SD and Howell
et al. (62)

2010 cisplatin microparticles 14 vs. 6 survival
missing
standard
deviation

Lu H and Li B
et al. (63)

2007 paclitaxel nanoparticles 45 vs. 15 tumoral weight
*

Lu Z and Tsai M
et al. (31)

2008 paclitaxel microparticles 43 vs. 26 survival
outcomes
missing

Padmakumar S
et al. (64)

2019 paclitaxel nanotextile 10 vs. 10 animal weight
*

Poon, C. et al. (43) 2016 carboplatin nanoparticles 20 vs. 10 tumor weight and volume *

Sun et al. (65) 2016 paclitaxel nanocristals 27 vs. 18 bioluminescence and survival
missing
standard
deviation

Tong et al. (66) 2014 paclitaxel
liposome

with nanoparticles
30 vs. 20 survival

missing
standard
deviation

Vassileva et al. (38) 2008 paclitaxel device not specified 24 vs. 12 tumor weight *

Wang et al. (47) 2020 cisplatin polymer stent 12 vs. 6 tumor and animal weight *

Xiao et al. (29) 2009 paclitaxel nanoparticles 15 vs. 10
bioluminescence, tumor weight,
animal weight and survival *

Xie et al. (67) 2019 paclitaxel microspheres 19 vs. 23 bioluminescence and Survival
missing
standard
deviation

Xiong et al. (68) 2012 paclitaxel nanoparticles 6
no DDs with
Slow release

Xu et al. (44) 2016 paclitaxel hydrogel 24 vs. 8 tumor and animal weight *

Yang et al. (69) 2017
gencitabin

and paclitaxel
polymer 20 vs. 15 tumor and animal weight

*

Yang et al. (34) 2014 paclitaxel microsphere 15 vs. 27 bioluminescence and PCI
missing
standard
deviation

Ye et al. (37) 2015 cisplatin microdevice 40 vs. 26
bioluminescence, tumor and

animal weight *

Ye et al. (70) 2013 paclitaxel liposome 27 vs. 21 tumor weight
missing
standard
deviation

(Continued)
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Almost all studies were performed on mice, except for one

performed on rats (25), and the experimental number varied from 3

(26) to 44 (27) animals, aged between 4 (28) and 12 (29) weeks. The

unique study in porcine model was excluded in the initial phase due

to lack information about DDS (30). The slow-release

chemotherapy device was applied from 1 (27) to 28 (31) days

after the induction of tumor formation. The most commonly used

cell lines to induce xenografts were the ovarian cancer lineages

SKOV3, in 19 studies and A2780, in six studies.

The models of slow-release chemotherapy devices used in each

study are listed in Table 1. The device formulation showed significant

variations among the studies. The most commonly used presentations

consisted of nanoparticles (12 studies) and hydrogels (seven studies).

The only standardized material used in more than one study (a total of

three articles) was a lipid-polymer containing docetaxel (polygel),

which showed good performance and low toxicity (26, 32, 33). The

most commonly used chemotherapy drugs were paclitaxel (22 studies)

and cisplatin (11 studies).

Most studies used only one chemotherapy drug but, Yang et al.

(34), Desale et al. (35) and Zahedi et al. (36) used a combination of

chemotherapy drugs. In addition Bajaj et al. (28) tested only one

drug, paclitaxel, dissolved in Cremophor or DMSO, and assessed

the outcomes separately.
Frontiers in Oncology 06
Mouse survival was the most studied outcome, assessed in 19

studies. However, we did not evaluate this parameter because most

studies presented the Kaplan Meier curve without confidence intervals.

Tumor response was assessed based on tumor weight (17 studies).

Xenograft bioluminescence was observed in 12 studies, and tumor

volume in 5 studies. Mouse weights were quantified in 14 studies. In

total, 18 studies compared outcomes of DDS vs intraperitoneal PBS, 10

of DDSs vs empty device (no chemotherapy), and 18 of DDS vs

intraperitoneal free chemotherapy. We present results of comparisons

between DDS versus intraperitoneal free in the text, and the other two

DDS comparisons (with intraperitoneal PBS or DDS without

chemotherapy) in Supplementary Material.

Most studies used as the control treatment the same

chemotherapy, administered intraperitoneally in bolus, using

various regimens, such as 1 dose every 3 days for 5 doses or 2

doses separated by 1 week interval, and others. The studies also

compared DDS with the absence of treatment (with phosphate-

buffered saline (PBS) infusion or application of a slow-release device

without any drug).

The risks of bias are shown in Figure 2. Most studies have

clearly described the methods used to equalize different groups

under the same care. The random/alternating cage distribution in

the vivarium or the blinding of caregivers was not reported in any
TABLE 1 Continued

Author Year Chemo
Physical

Presentation
N Control

vs. Experimental
Evaluated Outcomes

Exclusion
Reason

Zahedi et al. (36) 2010
docetaxel

and cepharanthine
hydrogel 12 vs. 6 tumor weight

*

Zahedi et al. (26) 2012 docetaxel hydrogel 36 vs. 24 tumor volume *

Zahedi et al. (32) 2009 docetaxel hydrogel 4 x 8 tumor volume
missing
standard
deviation

Zhang et al. (71) 2022 docetaxel micels 24 x 18 tumor and animal weight *

Yamaguchi et al. (46) 2022 cisplatin hydrogel 18 x 12 tumor volume and animal weight *

Zhao et al. (72) 2022 cisplatin nanotubes 15 x 5 animal weight *
*Included in the meta-analysis.
FIGURE 2

Risk of bias represented by the percentage of studies included.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1487376
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Simonsen et al. 10.3389/fonc.2024.1487376
study, negatively affecting the performance of the selection,

performance and detection domains. The presentation of all data

proposed initially in the methodology section, in the results section

and the presentation of different parameters to quantify the tumor

response (such as tumor weight and bioluminescence) guaranteed

satisfactory results in attrition and selection bias.
3.2 Meta-analysis

Data selection for the meta-analysis was based on the outcomes

of tumor volume, tumor weight, mouse weight and mouse survival

in 6, 11, 16 and 19 studies, respectively. The large variation in the

data units among the studies evaluating tumor growth by

bioluminescence precluded their inclusion in the meta-analysis,

even though it was described in 12 studies. Survival was not
Frontiers in Oncology 07
evaluated because most studies provided Kaplan Meier curve

without Confidence intervals, which precluded meta-analysis.

In the meta-analysis, we evaluated the outcomes of each study

considering weeks after the application of the slow-release device.

We compared the results of the device with those of three control

groups: I, peritoneal or intravenous application of the same free

chemotherapy (without conjugated formulation and without release

device), II, no treatment or PBS, and III, application of the slow-

release device without chemotherapy, The first, presented in the text

(II and III presented in Supplementary Material).

For the analysis of tumor weight and volume, animals were

euthanized at different time intervals, and separate groups were

analyzed at each time point. This approach allowed us to stratify the

tumor response and carry out the meta-analysis, as they were

independent groups. When analyzing the weight of the animals, the

same animals were weighed at multiple time points throughout the
FIGURE 3

Tumor weight at different time points following intraperitoneal chemotherapy administered via drug delivery systems (DDS) compared to free
intraperitoneal chemotherapy. Forrest plot presenting the pooled effect estimates from the meta-analysis with 95% confidence intervals (CIs) for each
study. The size of each square represents the weight of each study in the meta-analysis, with larger squares corresponding to studies with greater
weight. The horizontal lines through each square represent the confidence intervals for each study’s effect estimate. The diamond at the bottom of the
plot represents the overall pooled effect estimate and its confidence interval. Heterogeneity across studies was assessed using the I² statistic, with values
of 0-25%, 26-50%, 51-75%, and >75% indicating low, moderate, substantial, and high heterogeneity, respectively. A fixed-effect model was used for the
analysis, assuming that all studies estimate the same underlying effect. * Studies that only evaluated xenografts other than SKOV3.
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study. The outcomes could only be evaluated independently at each

time interval because the animals were grouped by different treatment

periods, resulting in the same group being assessed more than once.
3.3 Meta-analysis – study outcomes

Tumor response was evaluated based on the tumor weight and

tumor volume. Regarding the period of treatment (duration), tumor

weight was lower in the group treated with DDS for: a) 14, 21 and 35

days and overall (grouping all time intervals) when compared with

intraperitoneal free chemotherapy (Figure 3) and PBS

(Supplementary Figure 1); b) 14, 21, and 35 days and overall,

when compared with the empty device (Supplementary Figure 2).

However, there was significant heterogeneity, varying from

moderate to high, between groups.

Considering the chemotherapy drugs released by DDS, there

was a significant regression in tumor weight in mice treated with

DDS containing: a) carboplatin, docetaxel and paclitaxel and overall

when compared with mice treated with intraperitoneal free
Frontiers in Oncology 08
chemotherapy (Figure 4); b) carboplatin, cisplatin, docetaxel, and

paclitaxel compared with mice treated with PBS (Supplementary

Figure 3); and c) docetaxel, paclitaxel and overall compared with

mice treated with the empty device (Supplementary Figure 4).

There was significant heterogeneity between all the three groups.

Tumor response was also evaluated based on the tumor volume.

Regression of tumor volume was significantly greater in mice

treated with DDS for all time periods (7 - ≥35 days) than in mice

from all control groups, treated with intraperitoneal free

chemotherapy (Figure 5), or PBS (Supplementary Figure 5), or

the empty device (Supplementary Figure 6). There was significant

heterogeneity between groups for all comparisons.

Regarding chemotherapy drugs, there was a reduction in tumor

volume for mice treated with DDS containing: a) carboplatin,

cisplatin and paclitaxel, and overall, compared with mice treated

with intraperitoneal free chemotherapy (Figure 6); b) all drugs

tested, i.e., carboplatin, cisplatin, docetaxel, paclitaxel, and overall,

compared with mice treated with PBS (Supplementary Figure 7); c)

cisplatin and overall, compared with mice treated with the empty

device (Supplementary Figure 8). Significant heterogeneity between
FIGURE 4

Tumor weight following intraperitoneal administration of various chemotherapy drugs via drug delivery systems (DDS) compared to free
intraperitoneal chemotherapy. Consider P<0,001 in cases of p= 0.000. * Studies that only evaluated xenografts other than SKOV3.
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groups was observed in comparisons of the DDS with PBS and

intraperitoneal free chemotherapy.

We next evaluated animal body weight within treatments,

because it was the most common evaluation of toxicity among

studies. Indirect signs such as inactivity or change in eye color were

not commonly described.

Although 4/13 studies used percentage variation to evaluate

weight gain or loss, these studies reported an initial mice weight of

approximately 20g, which allowed us to estimate a numerical value

and build the meta-analysis. Animals treated with DDS were

heavier after 7, 28, and ≥35 days of treatment and overall, when

compared to the group that received intraperitoneal free

chemotherapy (Figure 7) for the same time period. There was no

weight difference in mice treated with DDS in most time periods (7,

14, 21, 28 days), but mice treated for ≥35 days and overall were

heavier when compared to mice that received PBS (Supplementary

Figure 9). In addition, mice treated with DDS were less heavy at 4,
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21 days and overall, but not at 7, 28 and ≥35 days, compared to

animals treated with the empty device (Supplementary Figure 10).

The studies that evaluated mice weight variation along the periods

of treatment showed 64.5% of heterogeneity among them.

Regarding the drugs used, mice treated with docetaxel, paclitaxel

and overall were heavier, but not mice treated with cisplatin, when

compared with mice treated with intraperitoneal free chemotherapy

(Figure 8). There was no significant weight difference in mice treated

with DDS containing docetaxel, and paclitaxel, but there was a reduced

weight in mice treated with cisplatin and overall, when compared with

the group treated with PBS (Supplementary Figure 11), with no

heterogeneity between groups. Besides that, mice treated with DDS

containing paclitaxel and overall were less heavy, but not those treated

with DDS with cisplatin, than mice treated with the device devoid of

chemotherapy (Supplementary Figure 12). There was heterogeneity

between groups for comparisons of DDS with intraperitoneal free

chemotherapy or the free device.
FIGURE 5

Tumor volume at different time points following intraperitoneal chemotherapy administered via drug delivery systems (DDS) compared to free
intraperitoneal chemotherapy. Consider P<0,001 in cases of p= 0.000.
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4 Discussion

We evaluated tumor response and treatment toxicity in studies

that compared intraperitoneal devices of chemotherapy release with

free chemotherapy intraperitoneal administration in animal models

of ovarian cancer xenografts. In the meta-analysis we observed a

small benefit in overall tumor reduction in animals treated with

intraperitoneal chemotherapy applied through the slow release

device compared with animals treated with intraperitoneal free

chemotherapy. In addition, there was no important toxicity that

negatively impacted animal weight in rodents treated with DDSs,

compared with rodents treated with free chemotherapy.

Continuous, low-dose release of chemotherapy is called

metronomic (37) and its efficacy is based mainly on compromising

integrity of endothelial cells, reducing angiogenesis (33, 38). A long

release time of the chemotherapy agent also allows the drug to

achieve favorable distribution to different organs. and not just on

the peritoneal surface (26, 38), and may have beneficial effects against

inadequate distribution of intraperitoneal chemotherapy, that is a

recurrent problem, possibly compromising peritoneal chemotherapy

efficacy (39).
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A previous meta-analysis, published in 2015, compared animal

studies of drug delivery systems for ovarian cancer treatment (17). In

this review, the outcomes were grouped into only one treatment time

interval, which allowed a greater number of studies to be included in

the same analysis. The selected studies included peritoneal and

intravenous release formulations (17). In the present study, 15 new

studies were available for inclusion, eight of which using cisplatin and

seven using paclitaxel. In 2022, a publication of an equivalent

systematic review on murine models of gastrointestinal cancer

involving 35 studies showed an important clinical improvement in

tumor reduction in animals that received the prototype, consisting of

DDSs containing cytostatics for the treatment of gastro-intestinal

peritoneal metastasis, compared to those that received free

chemotherapy in the abdominal cavity (18). Mice survival was one

important outcome in both studies (17, 18). In agreement some studies

included in this meta-analysis showed an increased survival without

important variation in animal weight. In most studies, animal survival

was described in Kaplan-Meier curves, whichmade ameta-analysis not

possible due to the absence of confidence intervals.

One of the major concerns with intraperitoneal delivery devices

is erratic chemotherapy release that could eventually increase the
FIGURE 6

Tumor volume following intraperitoneal administration of various chemotherapy drugs via drug delivery systems (DDS) compared to free
intraperitoneal chemotherapy. Consider P<0,001 in cases of p= 0.000.
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toxicity of the treatment or interrupt the supply of medication

prematurely. By separating the outcomes of each study into weekly

intervals, we were able to unravel the benefit of DDSs in terms of the

time after implantation. The maintained benefit over various time

intervals of follow-up supports the advantage of the devices in favor

of continued drug release, compared to free chemotherapy

administered in bolus.

The present data show that slow drug release devices did not

exhibit a deleterious impact on animal body weight compared with
Frontiers in Oncology 11
intraperitoneal free chemotherapy administration. Besides that,

overall analysis of mice treated with DDS revealed they were less

heavy than those treated without chemotherapy, i.e., PBS or the

device devoid of the drug. Measurement of mouse weight as an

outcome of treatment efficacy is controversial (40). Even though a

decrease in body weight of > 20% is an important sign of toxicity and

is prone to animal euthanasia, weight gain may be associated with

tumor weight growth and not necessarily with adequate nutrition. In

addition, weight stability is interpreted as an adequate indicator of
FIGURE 7

Animal weight at various time points following intraperitoneal administration of chemotherapy drugs via drug delivery systems (DDS), compared to
free intraperitoneal chemotherapy. Consider P<0,001 in cases of p= 0.000. * Studies that only evaluated xenografts other than SKOV3.
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favorable toxicity (37). No study in the present review described

euthanasia associated with mouse weight reduction and weight

stability is considered a favorable finding for treatment (37, 41).

An important finding described in most studies is tumor

regression, evaluated by tumor weight, tumor volume or tumor

bioluminescence. A meta-analysis of the tumor bioluminescence

could not be performed because there was a significant variation in

the way the studies expressed measurement units. The weight and

volume of the residual tumor are direct and objective methods,

however, in rodents, it is more reproducible in rats, because mice

normally develop very small tumor implants, that are difficult to

quantify (40).
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Most studies evaluated less than ten mice in each group and,

consequently, only a few reached statistical significance

individually. In total, 11 studies compared the regression of

tumor weight in the experimental groups, in comparison with

PBS, and in nine of them the evaluation was undertaken after 21

days of treatment. Indeed, most devices are designed to slowly

release medication over two weeks. Studies that evaluated

continuous treatment after 21 days also report maintenance of

good results after this period compared with free chemotherapy

(36, 37, 42–44) and the device without medication (36, 44).

It is important to note that various types of devices that release

chemotherapy drugs in different manners were evaluated in the
FIGURE 8

Animal weight following intraperitoneal administration of various chemotherapy drugs via drug delivery systems (DDS) compared to free
intraperitoneal chemotherapy (over different time periods, from 7 days to more than 35 days). Consider P<0,001 in cases of p= 0.000. * Studies that
only evaluated xenografts other than SKOV3.
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studies, as is expected in investigational experiments (17, 18). The

association of chemotherapy drugs with other agents that would

assist in the intracellular transport of the substance is quite common

and generally brings benefits in tumor regression. It is noteworthy

that the most recent studies looked for presentations with

nanoparticles and micelles because of their potential for greater

penetration into neoplastic tissue (17).

The most commonly used chemotherapy drugs in the present

review were paclitaxel and cisplatin, which are commonly used in

clinical practice. There is great interest in the development of

cisplatin slow release devices, because in a recent clinical trial,

there was efficacy when was applied to the peritoneal cavity in the

HIPEC procedure for interval ovarian cytoreduction (12).

In the present analysis, treatment of ovarian cancer xenografts with

cisplatin intraperitoneal delivery devices elicited dubious benefits, i.e.,

enhanced or absent additional growth inhibition, as evaluated through

tumor volume or tumor weight, respectively, compared with

intraperitoneal free chemotherapy. A trend toward tumor reduction

might be due to the optimization of cisplatin uptake by tumor cells

through formulations with nanoparticles (45–47). In a previous

systematic review, cisplatin intraperitoneal device also showed

inconsistent results with no additional benefit compared to free drug

administration regarding tumor inhibition, but with improved survival

(17). The use of nanotechnology can assist in targeted release of

hydrophobic agents, stabilization of transport molecules and

reduction of systemic toxicity of antineoplastic agents (48).

In the present review, the performance of intraperitoneal

paclitaxel release device was superior to that of intraperitoneal

free chemotherapy. Paclitaxel has been used in most studies, mainly

through nanoparticles. The contrast between the limited use of

nanoparticles in chemotherapy formulations in clinical practice

(49) and their high performance in in vitro studies (50) may have

driven further research using murine models.

Few studies evaluated the performance of carboplatin delivered

through intraperitoneal devices, but they showed favorable results in

reducing both tumor weight and volume of ovarian cancer

xenograf ts . Carboplatin has adequate intraperitoneal

pharmacokinetics and has been used in HIPEC clinical studies in

humans with good tolerability (51). In addition, carboplatin was used

in the largest clinical trial for outpatient peritoneal chemotherapy (8),

although it did not result in a survival gain, compared to conventional

intravenous application in advanced ovarian cancer.

Docetaxel has a high cytotoxic potential in vitro, but it is not

superior tomost chemotherapy drugs in human studies (52) and its use

is generally limited to relapsed cases of ovarian cancer. Three animal

studies using a standardized formulation of docetaxel showed favorable

results, but unfortunately, did not evaluate the same outcomes.

We used the SYRCLES instrument to identify biases. Animal studies

do not usually detail some methodological steps, such as the random

selection of animals and blinding of evaluators, which may compromise

some aspects of the instrument, as previously reported (18).

This systematic review has some limitations. In most studies,

animal survival was mainly shown in Kaplan-Meier curves, that

precluded a meta-analysis due to the absence of confidence

intervals. In addition, Xenografts bioluminescence could not be
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evaluated due to a lack of analysis standardization. We have then

used tumor response as a surrogate of treatment benefit. However,

tumor weight and volume are rather difficult to evaluate and lack

precision in mice (40). In addition, a limited number of animals

evaluated in each study and the large methodological variability led

to marked heterogeneity regarding tumor weight and volume. The

same scenario has been described in a previous study by Raave et al.

(17). Furthermore, although most studies compared DDS to release

chemotherapy intraperitoneally with the same chemotherapy

administered intraperitoneally in bolus, the dose and regimen of

administration varied and pharmacokinetic evaluations were

performed in some, but not all of them. These differential

chemotherapy doses and regimens may have also influenced

heterogeneity between groups.

The major contribution of this meta-analysis is a

comprehensive analysis of tumor response through the evaluation

of tumor volume and tumor weight, considering the drugs

employed and treatment duration, comparing the intraperitoneal

drug delivery systems (DDSs) containing chemotherapy with

intraperitoneal administration of free chemotherapy. In addition,

treatment toxicity, through animal weight was evaluated

considering the drugs used and time of treatment.
4 Conclusion

The present review further supports the notion that slow-release

intraperitoneal chemotherapy devices are effective and safe in

animal models of ovarian cancer.
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