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Introduction: The TGF-b signaling pathway (TSP) is pivotal in tumor progression.

Nonetheless, the connection between genes associated with the TSP and the

clinical outcomes of breast cancer, as well as their impact on the tumor

microenvironment and immunotherapeutic responses, remains elusive.

Methods: Breast cancer transcriptomic and single-cell sequencing data were

obtained from the The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus (GEO) databases. We identified 54 genes associated with the TSP from

the Molecular Signatures Database (MSigDB) and analyzed both data types to

evaluate TSP activity. Using weighted gene co-expression network analysis

(WGCNA), we identified modules linked to TSP activity. To assess patient risk,

we used 101 machine learning algorithms to develop an optimal TGF-b pathway-

related prognostic signature (TSPRS). We then examined immune activity and

response to immune checkpoint inhibitors and chemotherapy in these groups.

Finally, we validated ZMAT3 expression levels clinically and confirmed its

relevance in breast cancer using CCK-8 and migration assays.

Results: At the single-cell level, TSP activity was most notable in endothelial cells,

with higher activity in normal tissues compared to tumors. TSPRS was developed.

This signature's accuracy was confirmed through internal and external

validations. A nomogram incorporating the TSPRS was created to improve

prediction accuracy. Further studies showed that breast cancer patients

categorized as low-risk by the TSPRS had higher immune phenotype scores

and more immune cell infiltration, leading to better prognosis and enhanced

immunotherapy response. Additionally, a strong link was found between the

TSPRS risk score and the effectiveness of anti-tumor agents. Silencing the ZMAT3

gene in the TSPRS significantly reduced the proliferation and invasiveness of

breast cancer cells.

Discussion: Our study developed a TSPRS, which emerges as a potent predictive

instrument for the prognosis of breast cancer, offering novel perspectives on the

immunotherapeutic approach to the disease.
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Introduction

Breast cancer, with its high incidence and mortality rates among

women globally, stands as a leading cause of cancer-related deaths.

According to the latest data from the International Agency for

Research on Cancer in 2020, breast cancer has become the most

prevalent cancer worldwide, posing a significant threat to women’s

health (1). The complexity of breast cancer is further underscored

by its classification into various subtypes such as luminal A, luminal

B, HER2-positive, and triple-negative breast cancer (TNBC), each

with distinct biological behaviors and treatment responses. Among

these, TNBC is particularly challenging due to its high malignancy,

lack of relevant targets , poor prognosis , and limited

treatment options.

Although conventional treatments such as surgical resection,

radiotherapy, chemotherapy, targeted therapy, and endocrine

therapy have improved outcomes, they are not always successful,

leading to a persistent search for more effective strategies. In this

context, immunotherapy has emerged as a groundbreaking

approach that has shown remarkable success in treating

melanoma and lung cancer (2, 3). This success has paved the way

for exploring the potential benefits of immunotherapy in breast

cancer, traditionally considered to have “low immunogenicity”.

The pursuit of effective immunotherapy for breast cancer has

concentrated on vaccines, Chimeric Antigen Receptor T cell (CAR-T)

therapy, and immune checkpoint inhibitors (ICIs). ICIs, in particular,

have become a focal point of clinical research. While monotherapy

with ICIs has not been ideally successful, there is a growing interest in

combination therapies. Despite the low immunogenicity attributed to

breast cancer, its high heterogeneity presents both challenges and

opportunities. TNBC, for example, is characterized by stronger

immune infiltration and higher genomic instability compared to

other subtypes (4), suggesting a better response to immunotherapy

in certain patient populations. Meanwhile, hormone receptor-

positive breast cancers, once deemed “cold” tumors, are now

recognized to exhibit varying levels of immune activity (5, 6),

indicating that targeted therapies could be beneficial for a subset of

these patients.

The role of TGF-b, a multifunctional cytokine, in cancer

progression il lustrates the complexity of the tumor

microenvironment (TME) in breast cancer. TGF-b can act as

both a tumor suppressor and promoter, depending on the stage

of the disease and the cellular context (7–9). Its dual role in the

immune response further complicates the landscape, as it can

inhibit anti-tumor immunity while promoting immune tolerance

and tumor escape. Understanding the activity of the TGF-b
signaling pathway (TSP) in the breast cancer TME is thus crucial

for advancing immunotherapy strategies.

In our study, we sought to dissect this complexity by analyzing

breast cancer transcriptome and single-cell sequencing data from

the TCGA and GEO databases. We identified 54 TSP genes from
Abbreviations: BRCA, Breast Cancer; DEGs, Differentially Expressed Genes; OS,

Overall Survival; ssGESA, single sample Gene Set Enrichment Analysis; TCIA,

The Cancer Immunome Atlas; TMB, Tumor Mutational Burden.
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MSigDB and assessed the activity of the TSP in breast cancer at both

the single-cell and bulk transcriptome levels. Using weighted gene

co-expression network analysis (WGCNA), we analyzed the

module most related to the TSP activity score. Furthermore, we

employed a combination of 101 machine learning algorithms to

construct a prognostic model capable of predicting patient

outcomes, delineating the TME landscape, and estimating the

response to ICIs and sensitivity to anti-tumor drugs.
Materials and methods

Data collection

We sourced a gene expression matrix from 1,081 breast cancer

specimens and 99 non-cancerous tissues adjacent to tumors from

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

repository. This investigation concentrated on 1,029 breast cancer

instances that had comprehensive survival data and a post-

diagnosis duration exceeding 30 days. Additionally, we retrieved

the GSE20711 cohort, comprising 88 breast cancer cases with

exhaustive clinical profiles, from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) archive. Furthermore,

our study included an analysis of single-cell RNA-sequencing data

from five primary breast cancer samples, accessed from the

GSE180286 series within the GEO repository. A compilation of 54

genes implicated in the TSP was procured from the Molecular

Signatures Database (MSigDB, www.gsea-msigdb.org/gsea/msigdb).

Figure 1 illustrates the flowchart of the data analysis process.
Processing of single-cell RNAseq data

The "Seurat" package (10) was employed for the analysis of

single-cell sequencing data. Initial quality control (QC) involved

filtering out cells with mitochondrial gene content exceeding 20%

and selecting genes present in a minimum of three cells with

expression levels ranging from 200 to 7,500. The next step was to

identify a subset of 2,000 highly variable genes for further

examination. To correct for batch effects across the various

samples, we utilized the “Harmony” algorithm. For the

construction of cellular clusters, functions “FindClusters” and

“FindNeighbors” within "Seurat" were applied, and the resulting

clusters were visualized using the t-distributed Stochastic Neighbor

Embedding (t-SNE) technique. Cell type identification and

refinement were performed using the “SingleR” tool, guided by

known marker genes associated with various cell types.

The activity of specific gene sets within each cell was quantified

using the single-sample Gene Set Enrichment Analysis (ssGSEA)

method. When comparing differentially expressed genes (DEGs)

between two cohorts, the “FindMarkers” utility in "Seurat" was our

method of choice. We identified differentially expressed genes with

a log fold-change threshold of 0.25 and a minimum percentage of

0.25 while maintaining default settings for other parameters.

Additionally, the “CellChat” R package (11) was implemented to

explore cellular interactions.
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Weighted gene co-expression
network analysis

To conduct the WGCNA analysis on the TCGA-BRCA bulk

RNA-seq data, we utilized the “WGCNA” R package (12). Initially,

we determined an optimal soft threshold b that adhered to the

requirements for constructing a scale-free network. Subsequently,

we converted the weighted adjacency matrix into a topological

overlap matrix (TOM) and calculated the dissimilarity (dissTOM).

For gene clustering and module identification, we employed the

dynamic tree-cutting method. Ultimately, we pinpointed the

module exhibiting the strongest correlation with the TSP activity

scores for further investigation.
Construction of prognostic signature

We conducted differential analysis between normal and tumor

samples in the TCGA bulk RNA-seq data using the ‘DEseq2’ R

package, with criteria of |logFC|>0.5 and p.adjust<0.05.

Subsequently, we identified the intersection between the DEGs at

the bulk RNA-seq level and the genes belonging to the TSP-related

module identified through WGCNA. These genes were denoted as

TGF-b signaling pathway-related genes (TSPRG). To develop a

robust prognostic signature characterized by high predictive

accuracy, we followed the subsequent steps:
Fron
1. To ensure a balanced distribution of clinical characteristics,

we randomly partitioned the TCGA-BRCA dataset into a

training set and an internal validation set, maintaining a

ratio of 6:4. Additionally, we utilized the GSE20711 dataset

as an external validation set.

2. In the TCGA-BRCA training dataset, we conducted

univariate Cox regression analysis to identify TSPRG with

potential prognostic significance. Subsequently, we

employed ten machine learning algorithms, namely

CoxBoost, Ridge, Lasso, Random Survival Forest (RSF),

Stepwise Cox, Elastic Net (Enet), survival support vector

machine (survival-SVM), Generalized Boost Regression

Modeling (GBM), Supervised Principal Components

(SuperPC), and Partial Least Squares Regression for Cox

(plsRcox). To perform variable selection and construct

models, we generated 101 combinations of these ten

algorithms within the TCGA-BRCA training dataset,

employing a tenfold cross-validation framework.

3. We assessed the performance of all constructed models in

both the TCGA internal validation set and the GSE20711

dataset. For each model, we computed the concordance

index (C-index) across the training, internal validation, and

external validation sets. Subsequently, we ranked the

models based on their mean C-index to determine their

predictive performance. We selected algorithms that

demonstrated both robust performance and clinical

translational significance. Consequently, we developed a

final signature, termed the TGF-b signaling pathway-
tiers in Oncology 03
related signature (TSPRS), which can effectively predict

overall survival in BRCA patients.
Survival analysis and predictive
nomogram construction

The TCGA training set, internal validation set, and GSE20711

set were divided into high-risk and low-risk groups based on the

median TSPRS risk score. We conducted Kaplan-Meier (KM) curve

analysis using the “survminer” R package to assess whether there

was a significant difference in overall survival (OS), progression-free

survival (PFS), and disease-free survival (DFS) between the high-

risk and low-risk groups. Additionally, we performed receiver

operating characteristic (ROC) curve analysis using the

“timeROC” package to evaluate the sensitivity and specificity of

the TSPRS in predicting OS in BRCA patients.

Furthermore, we examined the correlation between the TSPRS

and various clinical characteristics, including age, T, M, N, and

stage. Univariate and multivariate Cox regression analyses were

conducted on the TCGA-BRCA datasets to determine whether the

TSPRS served as an independent prognostic factor for predicting

survival in BRCA patients.

To enhance the prognostic accuracy and predictive capability of

our model, we developed a nomogram that incorporated TSPRS

and clinical characteristics to quantify the expected survival of

BRCA patients. Finally, we evaluated the precision discrimination

and accuracy of the nomogram using ROC curves, the C-index, and

calibration curves.
Tumor mutation burden analyses

We acquired Tumor Mutation Burden (TMB) files containing

somatic mutation data from TCGA. We estimated and visualized

the differences in TMB levels between the two risk subgroups using

the “maftools” R packages. The correlation between risk scores and

TMB scores was assessed and depicted using the “limma”, “ggpubr”,

“ggplot2”, and “ggExtra” R packages.

KM analysis was employed to examine the survival differences

between groups with varying TMB levels as well as between

different risk status subgroups. The “Survival” and “survminer” R

packages facilitated this analysis.
Association of TSPRS with tumor
microenvironment and response
to immunotherapy

To elucidate the relationship between the TSPRS and immune cell

infiltration within the BRCA TME, our study utilized computational

methodologies including CIBERSORT, ESTIMATE, and ssGSEA.

These algorithms were instrumental in quantifying the degree of

immune cell infiltration and the activity of immune-related functions.
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Furthermore, the Tumor Immune Dysfunction and Exclusion

(TIDE) computational framework (accessible at http://

tide.dfci.harvard.edu/) was applied to appraise the potential for

immune escape mechanisms in patient groups stratified by high and

low prognostic risk.

Immune phenotype scores (IPS), retrieved from The Cancer

Immunome Atlas (TCIA) database (available at https://tcia.at/

home), were used to anticipate the efficacy of immunotherapeutic
Frontiers in Oncology 04
interventions in TCGA-BRCA patient subsets, delineated by the

aforementioned risk stratification.
TSPRS and drug sensitivity analysis

To facilitate the customization of therapeutic regimens, we

employed the “oncoPredict” package (13). This predictive model
FIGURE 1

Flowchart for analysis of prognostic signatures associated with the TGF-b signalling pathway. TSPRG, TGF-b signaling pathway-related genes; TSPRS,
TGF-b signaling pathway-related signature; TMB, tumor mutation burden.
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was applied to estimate the chemosensitivity of patients with BRCA,

stratified by varying TSPRS. OncoPredict executes a comparative

analysis between the gene expression profiles of patient-derived

tissue samples and established cancer cell line repositories, thereby

calculating the half-maximal inhibitory concentration (IC50) as a

metric of chemotherapeutic potency.
Cell culture and small-interfering
RNA transfection

The human breast cancer cell lines MCF-10A, MDA-MB-231

and MCF-7 were procured from the cell bank of the Chinese

Academy of Science. MDA-MB-231 and MCF-7 cells were

cultured in high glucose DMEM medium, supplemented with

10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin

Solution (P/S), in an incubator set at 37°C with a 5% CO2

atmosphere. The sequences of small-interfering RNA (siRNA)

targeting ZMAT3 were cloned into MDA-MB-231 and MCF-7

cells. Using GP-transfect-Mate (GenePharma, China), the siRNA

transfection process was conducted as instructed by the

manufacturer. The sequences of the siRNAs are shown in Table 1.
Cell transwell migration testing

After cell transfection was completed, the serum-free cell

suspension was spread evenly in the upper chamber of Transwell

(Corning, USA), and DMEM medium containing 20% FBS was

added to the lower chamber. After 8 hours of incubation, the upper

chamber was fixed with 4% paraformaldehyde, and the cells that did

not cross the polycarbonate membrane were gently scraped off with

a cotton swab. After gentian violet staining and washing with PBS,

cells at the bottom of the chambers were photographed in different

fields of view using a microscope, and cells were counted

using imageJ.
CCK-8 proliferation assay

The transfected cells were inoculated into 96-well plates at a

concentration of 200 mL containing 3000 cells per well, and 3-6

replicate wells were set up in each group. The surrounding circle of

wells should not be used as sample wells in principle, and 100 mL of

PBS was added to each well. 20 mL of CCK-8 solution was added to

each well at 0h, 24h, and 48h, respectively, and the absorbance at

450 nm was measured by enzyme labeling instrument after

incubation for 1-4 hours in the incubator.
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mRNA expression analysis

We collected 32 pairs of breast cancer tissue and matched adjacent

normal tissue from the Department of Breast Care Surgery, The First

Affiliated Hospital, Guangdong Pharmaceutical University.

Total RNA was extracted from clinical samples and cells using

TRIzol, after which it was reverse-transcribed into cDNA with a

reverse transcription kit (Tsingke,China). The reaction conditions

were set at 25°C for 10 minutes, 50°C for 15 minutes, and 85°C for 5

minutes, followed by Real-time Quantitative PCR. The PCR

amplification conditions were as follows: pre-denaturation at 95°C

for 1 minute, denaturation at 95°C for 30 seconds, and annealing at

60°C for 20 seconds, repeated for 40 cycles. The relative expression

of the target gene was calculated using the 2^(-△△Ct) method.

The primer sequences are shown in Table 2.
Statistical analysis

Data manipulation and statistical analyses were performed

utilizing the R statistical computing environment (version 4.1.2).

Comparative analyses between distinct groups were executed

employing the non-parametric Wilcoxon rank-sum test. To

quantify the strength and direction of the associations,

Spearman’s rank correlation coefficient was calculated for three

sets of relationships: between TMB and risk scores, between

immune cell infiltration scores and risk scores, and between

immune cell infiltration scores and gene expression profiles,

respectively. Statistical significance was established at a p-value

threshold of less than 0.05.
Results

Differential expression and genetic
variation mapping of TGF-b signaling
pathway genes in breast cancer

We first performed differential expression analysis of 54 TGF-b
signaling pathway genes (TSPG) in breast cancer tissues and

adjacent normal tissues. We found that 44 TSPG were

differentially expressed (Supplementary Figures S1A, B). Protein-

protein interaction network analysis constructed on the basis of the

String database showed that there was a close association between

all TSPG except BCAR3, RRAB31 and SLC20A1 (Supplementary

Figure S1C). In the subsequent phase of our investigation, we

assessed the frequency of somatic mutations within a cohort of 54

TSPG in breast cancer cohorts. A waterfall plot was constructed to

illustrate the mutational landscape, which identified CDH1 as the
TABLE 2 The primer sequences for ZMAT3.

Gene Primer sequence

ZMAT3 F-ATGCAGCAAATAGCTGTCCTC

R-GGGACTGGAACAACTGGAGTAG
TABLE 1 The sequences of the siRNA targeting ZMAT3.

Gene Sequence

si1-ZMAT3 GGGAATGAGTTTAAGATGA

si2-ZMAT3 GGCTCAGGCTCACTATCAA
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gene with the highest mutation frequency, followed in descending

order by ARID4B, TJP1, and APC (Supplementary Figure S1D).

Furthermore, we scrutinized the prevalence of copy number

variations (CNV) within the TSPGs. Our findings indicated a

significant amplification in copy numbers predominantly for

SMURF2, PPP1CA, and KLF10, while SKI, ID3, and RHOA were

the genes most notably subjected to copy number losses

(Supplementary Figure S1E).
Characterization of the TSP activity in the
single-cell transcriptome

From five primary breast cancer patients, we acquired single-

cell RNA-seq data encompassing 25,550 cells. The Harmony

algorithm was applied to mitigate batch effects, which facilitated

the integration of the quintet of samples. Subsequently, we

employed PCA and t-SNE on the most variable 2,000 genes to

achieve dimensionality reduction. This stratified the cells into 23

distinct clusters at a resolution parameter of 0.8 (Figure 2A).

Utilizing marker genes, six clusters were characterized,

representative of diverse cellular identities: Epithelial cells, T cells,

B cells, macrophages, Endothelial cells, and Fibroblasts (Figure 2B).

A heatmap was generated to display the three most prominent

marker genes within each cellular subset (Figure 2C).

In three out of the six cellular phenotypes—namely, Endothelial

cells, Fibroblasts, and Epithelial cells—a notably elevated activity of

TSP was detected (Figures 2D, E). TGF-b signaling plays a crucial

role in endothelial cells by regulating angiogenesis, vascular

homeostasis, and endothelial function. Through its receptors,

TGF-b activates the SMAD pathway, affecting endothelial cell

proliferation, migration, and differentiation. In fibroblasts, a

primary target of TGF-b, it promotes ECM protein synthesis and

fibrosis by inducing collagen and other ECM components, aiding

tissue repair and fibrosis. In the TME, fibroblasts, especially cancer-

associated fibroblasts (CAFs), use TGF-b signaling to promote

tumor progression and metastasis. Additionally, TGF-b regulates

epithelial-mesenchymal transition (EMT) in epithelial cells, a

process vital for embryonic development, tissue repair, and cancer

metastasis, by inducing epithelial cells to acquire mesenchymal

traits, enhancing their migratory and invasive capabilities (14–16).

We then identified 322 marker genes in the high TSP activity

group and 45 marker genes in the low TSP activity group.

Subsequent KEGG enrichment analysis revealed that the marker

genes in the high TSP activity group were mainly enriched in focal

adhesion, proteoglycans in cancer, and tight junction pathways

(Figure 2F). The marker genes in the low TSP activity group were

mainly enriched in the Antigen processing and presentation

pathway (Figure 2G).
Identification of TSP activity-related
modular genes

The ssGSEA method is frequently employed to evaluate

alterations in biological processes and the activity of pathways
Frontiers in Oncology 06
within individual specimens. We utilized this algorithm in the

present investigation to derive a quantification of TSP activity for

each sample within the TCGA-BRCA cohort. Notably, the tumor

specimens exhibited a markedly reduced TSP activity in

comparison to the adjacent non-tumor tissues (as depicted in

Figure 3A). This derived score was then incorporated as a

phenotypic variable for downstream WGCNA. The WGCNA

approach was subsequently applied to the TCGA-BRCA data to

pinpoint gene modules that show significant correlations with TSP

activity. After removing outlier samples, we constructed co-

expression networks (Figure 3B). The optimal soft threshold of

power=4 was selected to ensure a scale-free topological network

(Figure 3C). A total of 27 modules were obtained by setting the

minimum module gene count to 50 and MEDissThres to 0.15

(Figure 3D). Our findings indicated that the MEgreen module was

strongly correlated with the TSP activity score in bulk RNA-seq

(Figure 3E). Moreover, the scatter plot of gene significance (GS)

versus module membership (MM) for the blue module displayed a

significant correlation (Figure 3F), suggesting that genes within the

green module may have a functional significance associated with

the TSP.

The volcano plot (Figure 3G) illustrates the DEGs between breast

tumor and adjacent normal tissues in the TCGA-BRCA bulk RNA-

seq (|logFC|>0.5 and p.adjust<0.05). We intersected the 880 genes in

the green module with the DEGs from the bulk RNA-seq, finally

identifying a total of 654 genes (Figure 3H), named TSPRG. GO

enrichment analysis of TSPRG showed a significant enrichment in

biological processes (BP), including extracellular matrix organization

and extracellular structure organization, as well as in cellular

components (CC) such as collagen-containing extracellular matrix,

and in molecular functions (MF) including extracellular matrix

structural constituent (Supplementary Figure S2A). Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

of TSPRG showed a significant enrichment in Focal adhesion, Protein

digestion and absorption, Proteoglycans in cancer, and ECM

−receptor interaction (Supplementary Figure S2B).
Development of a prognosis signature
through comprehensive machine
learning integration

To develop a unified signature associated with the TSP, we

employed an ensemble of 101 machine learning algorithms to

evaluate the nine genes identified as prognostic by univariate Cox

regression analysis (Figure 4A). Within the TCGA training cohort,

we constructed 101 predictive models using a ten-fold cross-

validation scheme and calculated the C-index for each

combination of training and validation groups (Figure 4B).

Out of the 101 models, we calculated the C-index of each

machine learning algorithm combination in the three datasets and

ranked each algorithm combination according to its average C-

index. The results show that the six algorithm combinations, Enet

[alpha=0.8], CoxBoost+Enet [alpha=0.9], CoxBoost+Lasso, Lasso,

StepCox[both]+Lasso, and StepCo[both]+Enet [alpha=0.9], exhibit

good prediction ability. However, among these six algorithm
frontiersin.org
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combinations, only the Lasso algorithm showed the best prediction

ability in the training set and the internal validation set. The Lasso

algorithm achieved an area under curve (AUC) of 0.711 on both the

TCGA training and test sets, and 0.624 on the GSE20711 validation

set. These results show that Lasso’s performance is on par with

other models like Enet and CoxBoost, and it remains consistent

across datasets. By reducing some coefficients to zero for feature
Frontiers in Oncology 07
selection, the Lasso model simplifies and enhances interpretability,

focusing on identifying key genes in the TSP. These benefits led us

to select the Lasso model for constructing TSPRS.

Using a tenfold cross-validation framework, we identified the

optimal l value of 0.001900647 in the LASSO analysis by

minimising the partial likelihood deviation (Figures 4C, D). A

prognostic signature was developed employing the nine genes
FIGURE 2

TGF-b pathway activity in the single cell transcriptome. (A) t-SNE plot showing the cell clusters. (B) t-SNE plot showing the cell types. (C) Heatmap
showing the top 3 marker genes in each cell types. (D) t-SNE plot showing the distribution of TSP scores. (E) Violin plot of TGF-b pathway activity
scores in each cell type. (F) Bubble plots for KEGG enrichment analysis of high TSP score groups. (G) Bubble plots for KEGG enrichment analysis of
low TSP score groups.
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that retained non-zero coefficients subsequent to the LASSO

regression analysis (Table 3). For each patient, a risk score was

computed, facilitating the stratification of patients into high-risk or

low-risk categories predicated on the median value of the calculated

risk scores. Kaplan-Meier curves show that SDC1, NACAD,

ZMAT3, CCND2, XG and SGCE are associated with prognosis in

breast cancer patients (Supplementary Figures S3A–I). It was
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observed that there was a proportional escalation in mortality

concomitant with an increase in the risk score (Supplementary

Figures S4A–L). Furthermore, comparative analyses of OS rates

within the training cohort, the internal validation cohort, and the

external GSE20711 dataset revealed that patients categorized within

the high-risk bracket had significantly inferior OS outcomes

compared to their low-risk group (Figures 4E, G, I). In a similar
FIGURE 3

Identification of TSPRG. (A) Violin plots of TGF-b pathway activity scores in tumour tissue and adjacent paracancerous normal tissue. (B)
Dendrogram showing the hierarchical clustering of TCGA-BRCA samples. The bottom heatmap represents the TSPR score of each sample
calculated by the ssGSEA algorithm. (C) The determination of the optimal soft threshold in WGCNA analysis. (D) Cluster dendrogram from the
WGCNA analysis. (E) Module-trait heatmap showing that the MEgreen module was closely related to the TSPR score feature. (F) Scatter plot showing
the relationship between gene significance (GS) and module membership (MM) in the green module. (G) Volcano plot showing the results of the
differential analysis of TCGA-BRCA tumor samples and normal samples. (H) Venn plot showing the overlapping genes between the MEgreen module
and DEGs in bulk RNA-seq. DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis.
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FIGURE 4

TSPRS was developed and validated using machine learning. (A) Forest plots showing the results of univariate Cox regression analysis. (B) A total of
101 kinds of prediction models via a tenfold cross-validation framework and further calculating the C-index of each model across all validation
datasets. (C, D) Visualization of the LASSO regression in the TCGA training set. The optimal l was obtained when the partial likelihood deviation
reached the minimum value. (E, G, I) Kaplan-Meier curves of OS according to TSPRS in the TCGA training set, TCGA internal validation set, and
GSE20711. (F, H, J) ROC curves showing the specificity and sensitivity of TSPRS in predicting 1, 5, and 7-year OS in the TCGA training set, TCGA
internal validation set, and GSE20711.
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TABLE 3 The nine genes that constitute TSPRS.

Gene
Symbol

Full Name Function Known Biological Role in
Breast Cancer

References

ENPEP Glutamyl Aminopeptidase Involved in blood pressure regulation. May be related to tumor microenvironment
and angiogenesis.

(41)

XG Xg Glycoprotein Blood group antigen Specific role in breast cancer is unclear.

CACNA2D1 Calcium Voltage-Gated
Channel Auxiliary Subunit
Alpha2delta 1

Regulates calcium channel activity. Increasing the infiltration of immune cells and
up-regulating the expression of
immune checkpoints.

(42)

NACAD NAC Alpha
Domain Containing

Involved in protein transport Specific role in breast cancer is unclear. (43)

ZMAT3 Zinc Finger Matrin-Type 3 Involved in p53 signaling pathway May play a role in tumor suppression and cell
cycle regulation.

(40)

CCND2 Cyclin D2 Regulates cell cycle Promotes cell proliferation, potentially related to
breast cancer progression.

(44)

SDC1 Syndecan 1 Participates in cell proliferation, cell migration,
and cell-matrix interactions through its receptor
for extracellular matrix proteins.

Interacts with various ligands and receptors
involved in tumor progression, affecting cancer
stem cell function, cell proliferation, etc.

(45, 46)

C11orf24 Chromosome 11 Open
Reading Frame 24

Involved in cell cycle progression. Specific role in breast cancer is unclear. (47)

SGCE Sarcoglycan Epsilon A single pass transmembrane protein forming
part of the dystrophin-associated
glycoprotein complex.

Specific role in breast cancer is unclear. (48)
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vein, assessments of PFS and DFS demonstrated a markedly

improved prognosis for patients in the low-risk group relative to

those in the high-risk group (Supplementary Figures S4O, P).
Validation of TSPRS

The analysis of the ROC curve indicated that for the training

cohort, the AUC for the TSPRS was 0.670, 0.777, and 0.747 at 1, 5,

and 7 years, respectively. For the internal validation cohort, these

values were 0.749, 0.694, and 0.672, and for the GSE20711 dataset,

the AUCs were 0.690, 0.628, and 0.664 (Figures 4F, H, J). These

metrics underscore the superior prognostic efficacy of the TSPRS.

The comparative analysis of prognostic performance was

conducted between TSPRS and ten established prognostic

signatures, as devised by Wu et al., Zhan et al., Huang et al., Li

et al. (first instance), Yu et al., Tang et al., Li et al. (second instance),

Zhang et al., Zhu et al., and Zhao et al. (17–26), with respect to

patient outcomes in BRCA. Our analysis revealed that TSPRS

surpasses the aforementioned prognostic models, evidenced by a

significantly elevated C-index (Figure 5A). These findings reinforce

the remarkable prognostic precision of TSPRS in the context of

anticipating clinical outcomes for BRCA patients.

Then we observed the expression of the angiogenic marker

VEGF and the cell proliferation indicator KI67 in the high- and

low-risk groups, and the results showed that there were higher levels

of VEGF and KI67 expression in the high-risk group, suggesting

that the tumors of the patients in the high-risk group had higher

levels of angiogenic and proliferative capacity than those in the low-

risk group (Figures 5B, C).
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Given the routine utilization of clinical characteristics to

prognosticate outcomes for patients with BRCA, we conducted an

assessment of the association between the TSPRS and a spectrum of

clinical parameters. In the TCGA-BRCA dataset, we observed

significantly higher risk scores in patients with age greater than or

equal to 60 than in patients with age less than 60 (Figure 5D), but

did not observe differences in risk scores in stage, T, N, or M

(Supplementary Figures S5A–E). We also found that TSPRS showed

strong prognostic power in ER+/PR+ patients, TNBC patients, and

subgroups with different clinicopathologic features (Figures 5E–O).

However, this good predictive ability was not observed in patients

with M1-staged and HER2+ breast cancer, probably due to the

small sample size (Supplementary Figures S5F, G).
Association of TSPRS with
mutation landscapes

TMB is generally defined as the number of non-synonymous

mutations per megabase pair (Mb) of somatic cells in a given

genomic region. Tumor mutational load is a quantitative biomarker

that reflects the total number of mutations carried by tumor cells,

indirectly reflecting the ability and degree of neoantigen production

by tumors, and has been shown to predict the efficacy of

immunotherapy for a variety of tumors (27, 28). Tumor cells with

a high TMB have a higher level of neoantigens, and studies have

shown that patients with a high TMB are more likely to benefit from

ICIs therapy (29).

The ten genes with the highest mutation rates differed

significantly between the two groups (Figures 6A–D). TMB was
frontiersin.org

https://doi.org/10.3389/fonc.2024.1488137
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2024.1488137
significantly higher in the high-risk group than in patients in the

low-risk group (Figure 6E), and there was a significant positive

correlation between the risk score and TMB (Supplementary

Figure S4S). Suggesting that patients in the high-risk group may

benefit from ICIs treatment. To understand whether the risk

profile or TMB was a better predictor of survival, we divided the

samples into high and low mutation subgroups based on median
Frontiers in Oncology 11
TMB. KM survival curves showed no statistically significant

difference between the survival of patients in these two groups

(Figure 6F). However, in the combined analysis of TMB and

TSPRS, both low TMB in the high-risk group and high TMB in the

high-risk group possessed shorter survival times, suggesting a

worse prognosis (Figure 6G). This suggests the stronger predictive

ability of TSPRS.
FIGURE 5

Clinical relevance of TSPRS. (A) C-index comparison of TSPRS with ten published prognostic signatures for breast cancer patients. (B) Differences in
KI-67 expression levels between high and low risk groups. (C) Differences in VEGF expression levels between high and low risk groups.
(D) Differences in risk scores between patients younger than 60 years and those older than or equal to 60 years. (E-O) Kaplan-Meier curves showing
the stable performance of TSPRS in the subgroups of BRCA patients, including age, T, N, M, stage, ER+/PR+ and TNBC. ****, P<0.0001.
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Association of TSPRS with the breast
cancer microenvironment

To evaluate the status of immune cell infiltration within breast

cancer specimen, we utilized the Estimation of Stromal and Immune

cells in Malignant Tumor tissues using Expression data (ESTIMATE)

algorithm. This computational approach facilitated the quantification
Frontiers in Oncology 12
of the immune score, stromal score, ESTIMATE score, and an

estimation of tumor purity across different TSPRS risk stratifications.

Contrary to expectations, a comparative analysis between high-risk and

low-risk cohorts did not yield statistically significant differences for

these four scores (Supplementary Figures S5I–L).

To delve into the disparities in the infiltration of specific

immune cell types between the high- and low-risk groups, we
FIGURE 6

Correlation of TSPRS with TMB. (A) Waterfall plot of the top ten genes’ TMB status in the low-risk groups, and (B) the high-risk group. (C) Summary
of the maf files of the low-risk groups, and (D) the high-risk group. (E) Differences in TMB between high and low risk groups. (F) Kaplan-Meier curve
of different TMB levels. (G) Kaplan-Meier curves of different TMB and risk levels. TMB, tumor mutation burden.
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quantitatively assessed the prevalence of various infiltrating

immune cells within each sample by employing the CIBERSORT

algorithm. This analytical tool allows for a refined characterization

of the immune cell composition by deconvolving gene expression

profiles from bulk tumor transcriptomic data. We found lower

levels of CD8+ T cells, NK cells activated and higher levels of M2

macrophages in the high-risk group compared to the low-risk

group. This suggests a higher level of immunosuppression in the

high-risk group (Figure 7A). Concordant outcomes were procured

through the application of the ssGSEA algorithm, serving as a

validation method (Figure 7B). Moreover, within the TSPRS, we

identified nine genes that exhibited a strong correlation with the

presence of tumor-infiltrating immune cells. Notably, ENPEP, XG,

CACNA2D1, ZMAT3, and SDC1 demonstrated a significant inverse

correlation with activated CD8+ T cells and NK cells. Additionally,
Frontiers in Oncology 13
ENPEP, XG, and ZMAT3 showed a significant positive correlation

with M2 macrophages (Figure 7C).

CD8+ cytotoxic T lymphocytes (CTLs) are the preferred immune

cells for targeting cancer. However, during cancer progression, immune

tolerance and suppression within the TME lead to CTL dysfunction

and exhaustion, promoting adaptive immune resistance. M2

macrophages and regulatory T cells (Tregs) form immune barriers

against CD8+ T cell-mediated antitumor immune responses. In the

breast cancer microenvironment, TGF-b can induce macrophages to

transform into M2 macrophages, which possess immunosuppressive

and tumor-promoting characteristics. These cells secrete various

immunosuppressive factors, including TGF-b. TGF-b inhibits

CXCR3 expression in CD8+ T cells (30), thereby limiting their

infiltration into tumors. This finding is consistent with our research

results. Given the role of TGF-b signaling in the immunosuppressive
FIGURE 7

Association of TSPRS with the TME in breast cancer.The abundance of each TME-infiltrated cell type between high- and low risk groups, quantified
by the (A) CIBERSORT algorithm and the (B) ssGSEA algorithm. (C) The correlation between TME infiltrating cells and TSPRS genes. (D) Heatmap of
differences in activity of immune-related pathways between high- and low-risk groups. (E) Correlation analysis between TME infiltrated cells and
TSPRS scores. *, P<0.05; **, P<0.01; ***, P<0.001; ns, P≥0.05. TSPRS, TGF-b signaling pathway-related signature; TME, tumor microenvironment.
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TME, combining TGF-b signaling inhibitors with ICIs can enhance

antitumor immune responses.

Additionally, using the ssGSEA algorithm, we obtained

immune-related pathway scores. The high-risk group

demonstrated significantly stronger activity in APC co-

stimulation. The low-risk group demonstrated significantly

stronger activity in cytolytic activity, inflammation promoting, T

cell co-stimulation, and type II IFN response pathways (Figure 7D).

Next, we investigated the correlation between TSPRS and

immune cell infiltration by Spearman’s correlation analysis, and

in agreement with previous results, the risk score was positively

correlated with M2 macrophages, and negatively correlated with

NK cells activated and CD8+ T cells, suggesting that the risk score

predicts the immune status in breast cancer tissues (Figure 7E).
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The relationship between the TSPRS and
immunotherapy response

Prior studies have linked higher immune checkpoint levels to

better responses to ICIs (25). We compared immune checkpoint

expression in TSPRS risk subgroups. The results indicated that in the

high-risk group, CD27 and PDCD1 expression levels were lower, while

HAVCR2 expression levels were higher, compared to those in the low-

risk group (Figure 8A). Further analysis of IPS scores from the TCIA

database showed higher scores correlate with improved ICI response,

including treatments with PD-1 and CTLA4 inhibitors across four

categories: (1) ips_ctla4_pos_pd1_pos, (2) ips_ctla4_pos_pd1_neg, (3)

ips_ctla4_neg_pd1_pos, and (4) ips_ctla4_neg_pd1_neg. Our findings

reveal that the low-risk group had significantly higher IPS scores and
FIGURE 8

The relationship between TSPRS and immunotherapy response. (A) The expression of immune checkpoints in high-risk and low-risk groups. (B) The
IPS score between high-risk and low-risk groups. (C) The proportion of CR/PR or SD/PD patients receiving immunotherapy in the high- and low-risk
groups of the IMvigor210 cohort. (D) A boxplot showing the difference in risk score between patients with CR/PR and those with SD/PD in the
IMvigor210 cohort. (E) A boxplot showing the variation in risk score between patients with CR, PR, SD and PD in the IMvigor210 cohort. (F) KM
survival curves for high and low risk groups in the IMvigor210 cohort. (G) Heatmap showing the diference in the seven-step anti-cancer immunity
cycle activity between high- and low-risk groups. **, P<0.01; ***, P<0.001; ns, P≥0.05. CR, complete response; PD, progressive disease; PR, partial
response; SD, stable disease.
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better responses to all four ICIs treatment regimens compared to the

high-risk group (Figure 8B).

To validate TSPRS’s prognostic value in predicting immune

therapy outcomes, we analyzed the IMvigor210 cohort treated with

atezolizumab. Using TSPRS, we assigned risk scores and categorized

patients into high-risk and low-risk groups. The low-risk group

showed a higher rate of complete or partial responses (CR/PR),

whereas the high-risk group mainly had progressive or stable

disease (PD/SD, Figure 8C). Risk scores were significantly lower

in patients with PD/SD compared to those with PD/SD (Figure 8D).

Specifically, patients with progressive disease (PD) had notably

higher risk scores than those achieving responses (Figure 8E). In the

IMvigor210 dataset, shorter survival times were associated with the

high-risk group (Figure 8F). These results support TSPRS’s ability

to forecast outcomes of immune-based treatments, suggesting

better therapeutic outcomes for low-risk patients.

Finally, we evaluated the activity of the anticancer immune

cycle in high and low risk groups by the Tracking Tumor

Immunophenotype (TIP) database in order to gain a

comprehensive understanding of the anticancer role of immune

cells and to guide immunotherapy (31). The seven steps are release

of cancer cell antigens (Step 1), cancer antigen presentation (Step 2),

priming and activation (Step 3), trafficking of immune cells to

tumors (Step 4), infiltration of immune cells into tumors (Step 5),

recognition of cancer cells by T cells (Step 6) and killing of cancer

cells (Step 7). The results showed that the activities of Steps 5 and 6

of the anti-cancer immune cycle were significantly higher in the

low-risk group than in the high-risk group (Figure 8G).
The correlation of the TSPRS with single-
cell characteristics

To elucidate the influence of TSPRS within the TME at the level

of single-cell transcriptomics, we conducted an examination of the

expression profiles of a cohort of genes, namely ENPEP, XG,

CACNA2D1, NACAD, ZMAT3, CCND2, SDC1, C11orf24, and

SGCE, across diverse cellular phenotypes. Our findings delineated

that the aforementioned genes predominantly manifested

expression within fibroblasts, with CCND2 additionally exhibiting

pronounced expression in T cells (Figure 9A).

KEGG enrichment analysis showed that the differential genes in the

high and low risk groups weremainly enriched in the pathways of Focal

adhesion, Proteoglycans in cancer, and Leukocyte transendothelial

migration (Figure 9B). Gene Set Enrichment Analysis (GSEA)

enrichment analysis showed that the high-risk group was mainly

involved in pathways such as EPITHELIAL_MESENCHYMAL_

TRANSITION (Figure 9C).

In addition, we found that cells within the high- and low-risk

groups had different communication patterns (Figure 9D). In the

CXCL pathway, the high-risk group was dominated by

macrophage-endothelial cell communication, whereas the low-risk

group was dominated by fibroblast-T cell communication

(Figures 9E, F). In the MK pathway, the high-risk group was

dominated by fibroblast-fibroblast communication, whereas the
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low-risk group was dominated by fibroblast-endothelial cell

communication (Figures 9G, H).
Establishment and validation of
a nomogram

To evaluate the independence of TSPRS as a prognostic indicator

for BRCA, a series of Cox proportional hazards regression analyses—

both univariate and multivariate—were performed on overall survival

(OS) metrics within the TCGA-BRCA (Figures 10A–D). The results

demonstrated that TSPRS constituted a considerable hazard element

for OS based on the single-variable analysis. Further, TSPRS preserved

its status as an autonomous prognostic indicator in the multiple-

variable analysis, suggesting its strong predictive capacity for BRCA

patient outcomes.

To enhance the clinical utility of the TSPRS, stepwise regression

was employed to examine the interplay between clinical attributes

and TSPRS. This analysis facilitated the integration of age, disease

stage, and TSPRS into a predictive nomogram (Figure 10E). The C-

index affirmed the nomogram’s consistent and formidable

predictive performance, surpassing that of other clinical

parameters (Figure 10F). Calibration plots corroborated the

congruence between the nomogram’s forecasts and the actual

clinical outcomes (Figure 10G). Within the training cohort, the

AUC values for the nomogram were impressive, registering at

0.780, 0.830, and 0.796 for the 1-, 5-, and 7-year marks,

respectively (Figure 10H). The internal validation set yielded

AUC values of 0.854, 0.786, and 0.806 at the corresponding 1-, 5-

, and 7-year intervals, underscoring the nomogram’s high predictive

precision (Figure 10I). Collectively, these results endorse the

TSPRS-informed nomogram as a robust and precise instrument

for the tailored prognostication of BRCA patients.
Analysis of the correlation between the
TSPRS and drug sensitivity

We analyzed the correlation between TSPRS and drug

sensitivity using the R package ‘oncoPredict’, which showed that

the IC50 of the high-risk group for the PIK3CA kinase inhibitors

Alpelisib and Pictilisib (Figures 11A, B), the tyrosine kinase

inhibitor Lapatinib (Figure 11C), the estrogen receptor modulator

Tamoxifen (Figure 11D), and the conventional chemotherapeutic

agents Paclitaxel and Docetaxel were lower than those of the low-

risk group (Figures 11E, F).
ZMAT3 is associated with breast cancer
growth and invasion

Multivariate Cox regression analyses in the TCGA dataset

showed that XG and ZMAT3 were independent prognostic risk

factors for breast cancer, and ZMAT3 had higher HR values,

suggesting that it may be a key gene influencing the prognosis of
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breast cancer (Supplementary Figure S5M). The results of the GSEA

enrichment analysis showed that the high-expression ZMAT3

group was predominantly in the Cel lular senescence

(Supplementary Figure S5N). In the TCGA dataset, the

expression level of ZMAT3 in tumors was significantly lower than

that in adjacent normal tissues (Supplementary Figure S5O). In the
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32 matched pairs of clinical samples we collected from, the qPCR

results were consistent with TCGA (Figure 12A). The mRNA

expression level of ZMAT3 in human breast cancer cell lines

MDA-MB-231 and MCF-7 was significantly lower than that in

human breast epithelial cell line MCF-10A (Figure 12B).

Transfection of siRNAs targeting ZMAT3 was performed in
FIGURE 9

The correlation of TSPRS with single-cell characteristics. (A) The expression of ENPEP,XG,NACAD,CACNA2D1,ZMAT3,CCND2,SDC1,C11orf24 and
SGCE in different cell types by single-cell RNA-seq analysis. (B) KEGG analysis of DEGs between the high-risk and low-risk cells. (C) GESA
enrichment analysis of the high-risk groups. (D) Comparative analysis of the intensity of cellular signaling pathways in high- and low-risk groups.
(E) CXCL pathway network loops in high and low risk groups. (F) Heatmap of the role of different cell types in the CXCL pathway network in high
and low risk groups. (G) MK pathway network loops in high and low risk groups. (H) Heatmap of the role of different cell types in the MK pathway
network in high and low risk groups. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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MDA-MB-231 and MCF-7 cells to investigate the regulatory role of

ZMAT3 expression in breast cancer cell progression (Figures 12C,

D).Western blot confirmed that ZMAT3 was successfully knocked

down (Figure 12E). The proliferation of MDA-MB-231 and MCF-7

cells was significantly inhibited when ZMAT3 was knocked down in
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CCK-8 assays (Figures 12F, G). Additionally, knockdown of

ZMAT3 significantly inhibited the invasion and migration ability

of breast cancer (Figures 12H, 13A, B). Overall, our findings

indicated that ZMAT3 may promote the proliferation and

invasion of breast cancer.
FIGURE 10

Construction and validation of the nomogram. (A, B) Univariate and multivariate Cox regression analyses of clinical pathology variables and risk
scores with OS in the TCGA training set and (C, D) the TCGA test set. (E) Construction of the nomogram based on TSPRS and clinical characteristics,
including age and stage. (F) C-index comparison of the nomogram, TSPRS, stage and age. (G) Calibration curve of the nomogram for 1, 5 and 7-year
OS. (H) ROC curves showing the predictive performance of the nomogram in 1, 5, and 7-year OS in the TCGA training set and (I) the TCGA
testing set.
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Given that the attenuation of ZMAT3 expression diminished

the proliferative and invasive propensities of breast cancer cells, we

evaluated the sensitivity of ZMAT3 to a spectrum of

pharmacological compounds. Our findings reveal a pronounced

inverse correlation between ZMAT3 expression and the IC50 values

of Cediranib, JQ1, NU7441, and RO-3306, with correlation

coefficients all below -0.5 (Figures 13C–F). Subsequent molecular

docking analyses of ZMAT3 with these agents yielded binding

energies of -6.6 kcal/mol for Cediranib, -5.9 kcal/mol for JQ1,

-7.9 kcal/mol for NU7441, and -6.7 kcal/mol for RO-3306,

respectively, underscoring the potential for efficacious interaction

with ZMAT3 (Figures 13G–J).
Discussion

The TGF-b signaling pathway plays a crucial dual role in tumor

progress ion and the shaping of the tumor immune

microenvironment. Previous studies have reported that anti-TGF-

b/PD-L1 bispecific antibodies, such as YM101 and BiTP, exhibit

strong antitumor effects in mouse tumor models (32, 33). However,

despite extensive research on individual or several genes within this

pathway, our understanding of its overall activity and infiltration

characteristics in the TME is still limited. Unraveling the functions

of TGF-b signaling pathway activities within the TME could

advance our knowledge of the tumor immune microenvironment

and guide more precise personalized immunotherapy approaches.

In this study, we first performed a single-cell level analysis to

assess the TGF-b signaling pathway activity across various cell types
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within the breast cancer microenvironment. The highest activity

was noted in endothelial cells, fibroblasts, and epithelial cells. At the

bulk transcriptome level, we found that the pathway’s activity was

significantly higher in normal tissue compared to breast cancer

tissue. Through WCGNA analysis, we identified 880 module genes

closely associated with TGF-b signaling pathway activity. Crossing

these with differentially expressed genes in breast cancer yielded 654

module differential genes.

To establish a prognostic feature linked to the TSP with

enhanced predictive accuracy, we compared the C-index of

various models using ten machine learning algorithms and 101

algorithm combinations. We ultimately utilized the Lasso method

to construct a prognostic feature comprising nine genes: ENPEP,

XG, NACAD, CACNA2D1, ZMAT3, CCND2, SDC1, C11orf24, and

SGCE. This feature’s predictive capability was validated in training,

internal, and external validation sets. Compared to ten previously

published prognostic signatures, our TSPRS demonstrated the

highest C-index, indicating superior predictive power. We used

the TSPRS to assign risk scores to breast cancer patients, dividing

them into high and low-risk groups based on the median risk score.

Patients in the low-risk group had a longer OS and higher immune

cell infiltration, while the high-risk group exhibited a more potent

immune-suppressive TME, leading to reduced patient survival

times (34). Both univariate and multivariate COX regression

analyses confirmed that TSPRS is an independent prognostic

indicator for breast cancer. Additionally, a nomogram integrating

TSPRS with clinical pathological characteristics showed excellent

performance in predicting 1-year, 5-year, and 7-year OS rates for

breast cancer patients.
FIGURE 11

Association between the TSPRS and drug sensitivity. The box plots show the half-maximal inhibitory concentration of PIK3CA kinase inhibitors (A)
Alpelisib and (B) Pictilisib, the tyrosine kinase inhibitor (C) Lapatinib, the estrogen receptor modulator (D) Tamoxifen, and conventional
chemotherapy agents (E) Paclitaxel and (F) Docetaxel in high and low risk groups.
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The molecule PD-L1 on the surface of tumor cells can interact

with the PD-1 molecule on T cells’ surface, thereby evading T-cell

mediated immune surveillance. By using specific antibodies to block

the interaction between PD-1 and PD-L1, the proliferation and

cytotoxic functions of T cells can be enhanced, thus playing an anti-

tumor role. The levels of immune cell infiltration and PD-L1

expression in TNBC are significantly higher than in other

subtypes of breast cancer, indicating that PD-1/PD-L1 inhibitors

may have potential therapeutic value in TNBC. Therefore, several

clinical studies on ICIs treatment for breast cancer are targeted at

TNBC, but other subtypes of breast cancer also possess potential for

ICIs treatment. In terms of immunotherapy, our study found that

the low-risk group with breast cancer showed higher PD-1

expression levels, greater infiltration of CD8+ T cells and NK
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cells, and higher IPS, suggesting that these patients might benefit

more from ICIs treatment. TSPRS could thus potentially predict

immunotherapy response in breast cancer patients. Although data

on immunotherapy in breast cancer are scarce, the application of

IMV210 indirectly supports TSPRS’s predictive capacity

for immunotherapy.

To effectively use TSPRS in managing breast cancer, we suggest

applying this model for risk assessment post-diagnosis. By

analyzing TSPRS scores, patients can be quickly categorized as

high or low risk, guiding treatment decisions. For instance, our

study shows that low-risk patients, with higher immune checkpoint

expression, may benefit more from single immune checkpoint

inhibitor treatments. Conversely, high-risk patients, more

responsive to PIK3CA kinase inhibitors, tyrosine kinase
FIGURE 12

The role of ZMAT3 in breast cancer. (A) Expression levels of ZMAT3 in tumor tissues and normal tissues in 32 matched pairs of clinical samples.
(B) Expression levels of ZMAT3 in MCF-10A, MDA-MB-231 and MCF-7 cells. (C) Validation of ZMAT3 knockdown at the mRNA level in MDA-MB-231
cells. (D) ZMAT3 knockdown was verified at the mRNA level in MCF-7 cells. (E) ZMAT3 knockdown was verified at the protein level in MDA-MB-231
and MCF-7 cells. (F) CCK-8 assay to detect changes in proliferative capacity of MDA-MB-231 cells after ZMAT3 knockdown. (G) CCK-8 assay to
detect changes in proliferative capacity of MCF-7 cells after knockdown of ZMAT3. (H) Migration assay to detect changes in invasion ability of MDA-
MB-231 and MCF-7 cells after knockdown of ZMAT3. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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inhibitors, estrogen receptor modulators, and standard

chemotherapies, and with elevated HAVCR2 levels, might require

a combined approach of HAVCR2-targeted immunotherapy and

chemotherapy to enhance treatment efficacy.

Focusing on individual genes, our multivariate COX regression

analysis identified ZMAT3 and XG as independent prognostic risk

factors for breast cancer, with ZMAT3 having the highest HR value.
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ZMAT3 (Zinc Finger Matrin-Type 3) codes for an RNA-binding

protein that contains a zinc finger structure. Despite research

indicating that ZMAT3, as a target gene of p53, plays a crucial

role in p53-mediated tumor suppression (35), it is recognized as a

tumor suppressor factor (36). However, the molecular mechanism

through which it operates within cells still needs to be elucidated.

For instance, in colorectal cancer, silencing ZMAT3 can promote
FIGURE 13

The role of ZMAT3 in breast cancer. (A, B) Wound-Healing assay to detect changes in migration ability of MDA-MB-231 and MCF-7 cells after
knockdown of ZMAT3. (C) Scatterplot of correlation between Cediranib, (D) JQ1, (E) NU7441, and (F) RO-3306 sensitivity and ZMAT3 expression
levels. Molecular docking representations of ZMAT3 with (G) Cediranib, (H) JQ1, (I) NU7441, and (J) RO-3306. *, P<0.05; **, P<0.01; ***, P<0.001.
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the proliferation of cancer cells by increasing the inclusion of CD44

variant exons (37). In LUAD, ZMAT3 suppresses tumor growth by

inhibiting cell proliferation without inducing cell apoptosis (38).

However, research also shows that unlike p53, the absence of

ZMAT3 does not affect the development of lymphomas driven by

c-Myc or LUAD driven by KRAS mutations (39).

To date, no studies have reported on the role of ZMAT3 in

breast cancer. Contrary to previous reports, we found that ZMAT3

is an independent risk factor for poor prognosis in breast cancer,

with patients exhibiting high levels of ZMAT3 expression having

significantly lower OS compared to those with low expression levels.

It has been reported that ZMAT3 is directly transcriptionally

controlled by p53 in various cell types (38). In tumors lacking

p53, such as breast cancer, ZMAT3 expression is reduced, which is

consistent with our experimental results. In the 31 pairs of clinical

samples we collected, ZMAT3 expression levels were significantly

lower in breast cancer tissues compared to adjacent normal tissues.

p53 primarily induces cell cycle arrest through p21 and 14-3-3s
and apoptosis through target genes such as FAS, PUMA, and

NOXA. However, the molecular mechanisms by which cells

decide to enter growth arrest or apoptosis following p53

activation are not fully understood. By identifying transcripts

affected by ZMAT3 knockdown, researchers found (40) that FAS

and 14-3-3smRNA are regulated by ZMAT3 in a p53-independent

manner. Additionally, ZMAT3 deficiency is associated with

increased cell death and reduced cell cycle arrest in response to

DNA damage. When we used siRNA transfection to reduce ZMAT3

expression in breast cancer cells, the proliferation and invasion

capabilities of these cells were significantly inhibited. GSEA analysis

showed that high ZMAT3 expression is associated with enrichment

of the cellular senescence pathway. Cellular senescence is a stress

response that typically leads to cell cycle arrest. However, in cancer,

the senescence mechanism may be exploited by cancer cells to evade

apoptosis, which could be one of the mechanisms by which high

ZMAT3 expression promotes breast cancer progression.

Inhibiting ZMAT3 may enhance the sensitivity of tumor cells to

chemotherapy and radiotherapy by inducing DNA damage.

Furthermore, ZMAT3 could serve as a potential target for

targeted therapy in breast cancer. Developing inhibitors or small

molecule drugs against ZMAT3 could provide new treatment

options for breast cancer patients, especially those with high

ZMAT3 expression and poor prognosis.

Despite these insights, our study is not without limitations. It is a

retrospective study based on public data and requires further validation

through large-scale, multi-center prospective studies. To enhance the

reliability of TSPRS, we plan to validate this prognostic marker in

independent prospective cohorts or clinical trials. Additionally, a more

comprehensive integration of clinicopathological features is necessary

to fully analyze the clinical value of the risk signature. We recommend

designing and implementing prospective studies in future research to

evaluate the prognostic predictive ability of TSPRS in different patient

populations and to explore its potential application in clinical practice.

The role of ZMAT3 in the development and progression of breast

cancer also warrants further experimental investigation.
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SUPPLEMENTARY FIGURE 1

(A)Differential expression analysis of TSPG in breast cancer and adjacent

normal tissues. (B) Protein-protein interaction network analysis of TSPG in the

STRING database. (C) Mutation frequency analysis of TSPG in breast cancer.
(D) Frequencies of CNV gain, loss, and non-CNV among TSPG.

SUPPLEMENTARY FIGURE 2

Enrichment analysis of TSPRG. (A) GO enrichment of TSPRG. (B) KEGG
enrichment of TSPRG.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier curves for (A) SDC1, (B) NACAD, (C) ZMAT3, (D) CCND2, (E)
CACNA2D1, (F) XG, (G) SGCE, (H) ENPEP, and (I) C11orf24 in the TCGA dataset.
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SUPPLEMENTARY FIGURE 4

The distribution of the risk score, overall survival status of patients and
signature gene expression heatmap in (A–C) the TCGA training set, (D–F)
TCGA internal validation set, (G–I) TCGA entire set, and (J–L) GSE20711. (M)
Kaplan-Meier curves of OS according to TSPRS in the TCGA entire set. (N)
ROC curves showing the specificity and sensitivity of TSPRS in predicting 1, 5,

and 7-year OS in the TCGA entire set. (O) Kaplan-Meier curves of DFS
according to TSPRS in the TCGA entire set. (P) Kaplan-Meier curves of PFS

according to TSPRS in the TCGA entire set. (R) Risk coefficients for the nine
genes that make up the TSPRS. (S) Scatterplot of correlation between TMB

and riskScore.

SUPPLEMENTARY FIGURE 5

(A)Heatmap of correlations with clinical features based on TSPRS. Differences
in risk scores for (B) T, (C) N, (D)M, and (E) stage in high- and low-risk groups.

Kaplan-Meier curves for (F) M1 and (G) HER2+ patients. Differences in (I)
stromal score, (J) immune score, (K) estimate score, (L) tumor purity in high

and low risk groups. (M) Forest plot of multivariate Cox regression analysis. (N)
GSEA analysis of high and low ZMAT3 expression groups. (O) Difference in

expression of ZMAT3 in TCGA in breast cancer and adjacent normal tissue.
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