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of Medicine, Shanghai, China, 3Department of Radiology, Huadong Hospital, Fudan University,
Shanghai, China
Background: This study aimed to develop and validate a multiregional radiomic-

based composite model to predict symptomatic radiation pneumonitis (SRP) in

non-small cell lung cancer (NSCLC) patients treated with stereotactic body

radiation therapy (SBRT).

Materials and methods: 189 patients from two institutions were allocated into

training, internal validation and external testing cohorts. The associations

between the SRP and clinic-dosimetric factors were analyzed using univariate

and multivariate regression. Radiomics features were extracted from seven

discrete and three composite regions of interest (ROIs), including anatomical,

physical dosimetry, and biologically equivalent dose (BED) dimensions.

Correlation filters and Lasso regularization were applied for feature selection

and fivemachine learning algorithms were utilized to construct radiomic models.

Multiregional radiomic models integrating features from various regions were

developed and undergone performance test in comparison with single-region

models. Ultimately, three models—a radiomic model, a dosimetric model, and a

combined model—were developed and evaluated using receiver operating

characteristic (ROC) curve, model calibration, and decision curve analysis.

Results: VBED70 (a/b = 3) of the nontarget lung volume was identified as an

independent dosimetric risk factor. The multiregional radiomic models eclipsed

their single-regional counterparts, notably with the incorporation of BED-based

dimensions, achieving an area under the curve (AUC) of 0.816 [95% CI: 0.694–

0.938]. The best predictive model for SRP was the combined model, which

integrated the multiregional radiomic features with dosimetric parameters

[AUC=0.828, 95% CI: 0.701–0.956]. The calibration and decision curves

indicated good predictive accuracy and clinical benefit, respectively.
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Conclusions: The combined model improves SRP prediction across various

SBRT fractionation schemes, which warrants further validation and

optimization using larger-scale retrospective data and in prospective trials.
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1 Introduction

Lung cancer remains the most common malignant tumor

worldwide. Nearly 20% of older patients with early-stage non-

small cell lung cancer (NSCLC) may not be able to tolerate

surgery due to concomitant comorbidities. Hypofractionated

stereotactic body radiation therapy (SBRT) has been proven to be

more effective than conventional radiotherapy (1–3), significantly

improving local control and overall survival (2, 4). Despite of the

favorable safety profile of SBRT, symptomatic radiation

pneumonitis (SRP) is the most common adverse reaction, with a

reported incidence ranging from 9% to 28% (5), and may lead to

treatment failure or even death due to progressive fibrosing

interstitial reaction and pulmonary dysfunction (6, 7). Therefore,

accurate prediction of SRP and associated factors is important for

treatment plan optimization and prophylactic management to

minimize the incidence and severity of SRP.

Many dosimetric parameters, including the gross target volume

(GTV), planning target volume (PTV), and internal target volume

(ITV), the mean lung dose (MLD), Vx ranging from 2.5 to 50, and

maximal dose, are reportedly associated with the probability of SRP

(5, 8, 9). Due to individual variations in radiosensitivity, the risk of

developing SRP varies even using the same treatment protocol.

However, these aforementioned dosimetric indicators only reflect

the characteristics of the treatment protocol itself and lack

information related to the heterogeneity of radiosensitivity of

normal lung tissue.

Radiomics is a high-throughput analytical technique that can

extract many quantitative features from medical images, and

increasing attention has been given to radiotherapy efficacy and

adverse reaction prediction (10, 11). In a recent study on

conventional intensity-modulated radiotherapy (IMRT),

researchers reported that the combination of dose distribution

and radiomic features within different anatomical regions of

interest (ROIs) of nontarget lungs improved the accuracy of SRP

prediction in lung cancer patients (9). In another study, an

incremental-dose-interval-based lung subregion segmentation

(IDLSS) method, which defined ROIs corresponding to different

dose coverage areas, was shown to be of value of predicting SRP

(12). These studies have proven that radiomic features from

multiregional ROIs in radiotherapy images can provide additional

information beyond the single regional ROI, as well as dosimetric
02
and traditional clinical parameters, and thus may better reflect the

normal lung tissue radiosensitivity of the individual patient and the

risk of developing SRP.

Our previous study revealed that the biologically effective dose

(BED) of normal lung tissue serves as an independent risk factor for

SRP, with high consistency observed between the coverage area of

BED70Gy (a/b = 3) and the range of radiation pneumonitis (13).

However, the majority of published radiomics studies regarding

predicting SBRT-related SRP established their conclusions on

traditional anatomical dimensions and standard fractionated

radiation regimes, considering little the fractionation

heterogeneity and the ensuing impact on the complications of the

lung tissues in terms of BED (14–17). To the best of our knowledge,

there are currently no radiomic studies that integrate

multidimensional ROIs, particularly those incorporating the BED

dimension of the nontarget lung, to predict the occurrence of SRP

following SBRT.

This study introduced a sophisticated multiregional radiomic

model that incorporated imaging and dose distribution data

corrected for fractionation in radiotherapy planning across three

dimensions (anatomy, traditional physical dose, and biologically

equivalent dose) to predict SRP in patients with NSCLC treated

with SBRT. Furthermore, we developed dosimetric, radiomic, and

combined models using presumptive dosimetric parameters and the

best radiomic features, thus revealing the great significance of the

individualization of SBRT radiotherapy planning and the early

diagnosis and treatment of SRP.
2 Materials and methods

2.1 Patients

After obtaining approval from the Institutional Review Board

(IRB), we retrospectively collected data from patients with NSCLC

who underwent SBRT at a single center (Huadong Hospital, Fudan

University) between 2015 and 2023 as the primary cohort for model

establishment, followed by the collection of data from patients at

another center (Shanghai Chest Hospital, Shanghai Jiao Tong

University School of Medicine) using the same procedure as the

test cohort for the external validation of the model. The patients

were treated with 6 MV X-rays, receiving a prescribed dose ranging
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from 48 to 75 Gy administered in 4 to 12 fractions at the isocenter,

ensuring that all patients received radiation doses approximately

equivalent to 100 Gy of a biologically effective dose with a/b = 10.

We collected medical records, CT images, and radiotherapy plans

from the databases for analysis. The exclusion criteria were (1)

incomplete medical records (2); follow-up less than 6 months after

SBRT (3); poor-quality CT images before treatment; and (4) a

history of prior thoracic radiotherapy. There were 144 participants

in the primary cohort and 45 participants in the test cohort. The

entire workflow of our radiomic analysis is detailed in Figure 1,

providing a thorough overview of the methodologies applied in

this research.
2.2 CT imaging and treatment planning

CT simulation was conducted using a 4-dimensional computed

tomography (4D-CT) acquisition protocol (SOMATOM Definition

AS, Siemens Healthineers Corporation, Germany) 3 to 7 days

before SBRT in the two cohorts. The CT scans for all patients

were conducted using the following imaging parameters: voltage at

120 kV, tube current at 26-140 mAs, pixel size of 0.98 mm × 0.98

mm, and slice thickness of 2-3 mm (13, 18). Subsequently,

reconstructed images with a slice thickness of 1 mm were

generated and imported into the Pinnacle (v9.1, Philips Medical

Systems, USA) or Eclipse (v8.6, Varian Medical Systems, USA)

treatment planning system (TPS) workstation for contouring and

treatment planning purposes. The GTV was delineated on each of

the ten-phase CT imaging series using a lung window setting
Frontiers in Oncology 03
without any expansion. Then, the ITV was calculated by

summing the GTVs from all respiratory phases. To account for

daily motion variations, the PTV was generated by expanding the

ITV with margins of 3 mm in the posteroanterior/lateral planes and

5 mm in the craniocaudal plane (13, 19). All patients received linear

accelerator therapy (Trilogy/Vital Beam/Edge, Varian Medical

Systems, USA) and all cone beam computed tomography (CBCT)

images were reviewed online by the attending physician to verify

tumor locations and correct errors before each fraction. The dose

distribution was calculated by Collapsed cone Convolution

Superposition (CCCs) or Acuros XB algorithm on the TPS, with

the grid size being 2.5 mm × 2.5 mm× 2.5 mm in all

three dimensions.

Following the completion of treatment, patients underwent

monthly follow-up assessments for a duration of 6 months, after

which follow-up appointments were scheduled every 3 months.

During routine follow-up, based on the clinical symptoms, signs,

and imaging findings of the patients, RP was graded by two

physicians according to the Common Terminology Criteria for

Adverse Events 5.0 (CTCAE 5.0). If there was any difference, it was

determined by a third joint consultation. RP of grade ≥2 is

considered SRP.
2.3 Clinical parameters and DVH metrics

In our prior research, lung BED was identified as an

independent predictor for SRP. In this study, employing the same

procedure, we converted physical doses to BED values using the
FIGURE 1

Radiomics workflow of this study. Multiregional segmentation was conducted to generate various ROIs, from which radiomic features were
extracted and then selected by ten-fold cross-validation, LASSO, and mean standard error (MSE). Five machine learning algorithms were utilized to
construct radiomic models, and their performance was assessed using ROC, calibration, and decision curves analysis. ROI, regions of interest.
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following formula derived from the linear-quadratic (LQ) model:

BED (Gy) = n*d* [1 + d/(a/b)], where n and d are the number and

size of the dose fractions, and the ratio of a/b is assumed as 10Gy

for normal lung tissue, and then derived VBEDx (x ranges from 10 to

200 in intervals of 10) from DVH, representing the percentage of

normal lung volume receiving a dose over x Gy of BED.

Furthermore, we gathered additional clinical and dosimetric

parameters as analytical variables, including sex, age, tumor

location, histology, tumor diameter, GTV, PTV, Eastern

Cooperative Oncology Group performance status (ECOG PS),

chronic obstructive pulmonary disease (COPD), V5, V20, MLD,

and tumor BED. The clinical and DVH metrics for modeling were

evaluated using univariate and multivariate analyses.
2.4 Regions of interest definition and
data preprocessing

The planning CT series of average image set from the 4DCT, along

with corresponding RT structure delineations, were extracted fromTPS

in the standard Digital Imaging and Communications in Medicine

(DICOM) format. Subsequently, the initial bilateral lung outlines, both

manually and automatically generated, underwent meticulous scrutiny

by a seasoned radiation oncologist. Following this, two additional

radiation oncologists independently evaluated the lung organ

segmentation. Any disparities were resolved through direct

consultation involving all three authors. The GTV and PTV, as

previously delineated in the treatment planning section, denote the

ROIs. Specifically, PTV-GTV represents the discrepancy between the

PTV and GTV, while Lungs signifies the bilateral lung excluding the

GTV. Additionally, D5 and D20 designate the volumes of normal lung

tissue receiving doses of 5 Gy and 20 Gy, respectively. B70 denotes the

volume of normal lung tissue encompassed by a biologically effective
Frontiers in Oncology 04
dose of 70 Gy with an a/b ratio of 3. To further validate whether

increasing the dimensions of ROIs can enhance the performance of

radiomic models, this study combined ROIs across three dimensions,

which were named as follows: anatomical dimension, designated as RA,

comprising GTV, PTV, PTV-GTV, and Lungs; anatomical dimension

combined with physical dosimetric dimension, termed RAP, including

GTV, PTV, PTV-GTV, Lungs, D5, and D20; anatomical dimension

combined with physical dosimetric and biological equivalent dose

dimension, labeled as RAPB, encompassing GTV, PTV, PTV-GTV,

Lungs, D5, D20, and B70 (Figure 2).

Volumes of interest (VOIs) often exhibit variability in voxel

spacing, a phenomenon attributed to the use of diverse scanners or

acquisition protocols. Voxel spacing is defined as the physical

distance between adjacent pixels in an image. To mitigate this

variability, our study implemented spatial normalization, adopting

a standardized resampling approach with a fixed resolution of 1

mm×1 mm×1 mm. This method was consistently applied across all

experiments to ensure uniformity in voxel spacing.
2.5 Feature extraction and selection

In this research, we used the PyRadiomics tool (version 3.0.1) to

extract radiomic features (Supplementary Materials A) from ten

different regions: GTV, PTV, PTV-GTV, Lungs, D5, D20, B70, RA,

RAP, and RAPB. The details of the tool can be found at http://

pyradiomics.readthedocs.io.

To achieve standardization and a normal distribution, all features

were normalized using the Z score method. The significance of each

imaging feature was determined using the t test, with only those

features exhibiting a p value less than 0.05 considered for further

analysis. High-repeatability features were rigorously analyzed using

Pearson’s correlation coefficient, as depicted in Figure 1. This process
FIGURE 2

Illustration of the multiregional segmentation. The upper row shows representative coronal CT images of 7 ROIs spanning 3 dimensions, with the
corresponding VOIs below from left to right: Lungs, GTV, PTV, PTV-GTV, D5, D20, B70. BED, biologically effective dose; GTV, gross tumor volume;
PTV, planning target volume; RA, regions of anatomical dimension; RAP, regions of anatomical dimension combined with physical dosimetric
dimension; RAPB, regions of anatomical dimension combined with physical dosimetric and biologically effective dose dimension.
frontiersin.org

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
https://doi.org/10.3389/fonc.2024.1489217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiao et al. 10.3389/fonc.2024.1489217
aimed to identify features that demonstrated a high degree of

correlation. When the correlation coefficient between any two

features exceeded 0.9, only one feature was retained to avoid

redundancy. A greedy recursive deletion strategy was implemented

to optimize the feature representation, systematically removing the

most redundant feature in each iteration. Additionally, we utilized the

minimum redundancy maximum relevance (mRMR) model to further

refine the feature set, limiting it to ten (one-tenth of the sample size),

thereby reducing the feature count and preventing overfitting.

The final feature selection for the radiomics model construction

was performed using the least absolute shrinkage and selection

operator (LASSO) regression model, which was tailored to address

three distinct tasks. LASSO effectively minimizes regression

coefficients, rendering many irrelevant feature coefficients as zero,

dependent on the regularization weight l. The optimal l value was

determined through 10-fold cross-validation, following the

minimum criterion, which involves selecting the l associated with

the lowest mean standard error.
2.6 Model building and calibration

This study established three models in total: a radiomic model, a

clinical model, and a combined model integrating both. For the

radiomics model, after feature selection using LASSO, we utilized

various machine learning models to construct the risk model. These

included linear models, support vector machines (SVMs), and tree-

based models, such as random forest (RF) and LightGBM. We

conducted thorough comparisons of each model’s performance. To

assess the efficacy of the multiregional model, we performed feature

fusion on the features extracted from each single region, resulting in a

set of fused features. These features were then applied to the

multiregional model to compare the performance differences

between multiregional fusion and single-regional approaches. With

respect to the dosimetric model, we established the model by

numerically mapping all clinical and dosimetric parameters

(mentioned in Section 2.4) and selecting the most significant ones.

Finally, to enhance the clinical applicability, we integrated the

radiomic and dosimetric models, resulting in a combined model.

The diagnostic effectiveness of our proposed method was evaluated in

the test cohort by constructing receiver operating characteristic

(ROC) curves. Calibration curves were also generated to assess the

calibration performance of the radiomic model. The Hosmer‒

Lemeshow (HL) goodness-of-fit test was applied to evaluate its

calibration ability. In addition, decision curve analysis (DCA) was

utilized to determine the clinical utility of the predictive models.
2.7 Statistical analysis

The 144 datasets in the primary cohort were randomly divided,

with 70% of the samples allocated to the training group and the

remaining 30% to the internal validation group. Additionally, 45

datasets from an external center were used as a test set. To compare

the clinical and dosimetric characteristics of patients, various

statistical tests were conducted, including the independent sample
Frontiers in Oncology 05
t test, Mann‒Whitney U test, and chi‒squared test, each tailored to

the type of variable analyzed. The chi‒squared test was used for

categorical variables. To identify significant clinical and dosimetric

features, both univariate and stepwise multiple regression analyses

were performed for feature selection. Statistical analyses were

conducted using Python version 3.7.12 and SPSS version 19.0.

Additionally, the development of machine learning models was

conducted using the scikit-learn version 1.0.2 interface. Variables

with p < 0.05 were considered to indicate statistical significance.
3 Results

3.1 Patient baseline characteristics

Table 1 summarizes the characteristics of the study participants

from the two institutions. The median follow-up time for the patients

in our study was 15.3 months. During the follow-up, in the training

and validation cohorts, 21 instances of SRP following SBRT was

documented, yielding an incidence proportion of 14.6%. In the

external validation cohort, 14 cases of SRP were recorded,

corresponding to an incidence proportion of 26.7%. No grade 4 or 5

RP was observed. Univariate analysis revealed that none of the baseline

clinical characteristics demonstrated statistical significance in relation

to the risk of SRP (Supplementary Materials B Table S1). Among the

tumor-related and dosimetric factors, diameter, PTV, fractions, MLD,

V5, V20, and VBED10−200 exhibited significant correlations with SRP (p <

0.01), leading to their inclusion in the subsequent multivariate analysis,

while GTV, dose per fraction, total dose, and tumor BED did not show

significant associations. The subsequent multivariate analysis identified

VBED70 as the sole significant factor, consistent with previous report

(OR=4.84, p < 0.001) (13).
3.2 Feature selection

A comprehensive set of 1,834 handcrafted radiomic features was

extracted from each plan CT image for each region, resulting in the

cumulative acquisition of 18,340 features by combining the radiomic

features from 10 different regions. These features were divided into

three primary categories: shape, first-order, and texture. Specifically,

the dataset included 14 shape features and 360 first-order features,

along with a diverse array of texture features. The distribution of these

handcrafted features across different categories was visually

represented in Supplementary Materials B Figure S1. In the final

stage of feature analysis, features with nonzero coefficients were

selected using a LASSO logistic regression model, resulting in 12,

10, 16, 13, 10, 8, 9 features for GTV, PTV, PTV-GTV, Lungs, D5, D20,

B70, and 24, 27, 9 features for RA, RAP, and RAPB, ensuring that only

the most relevant features were included in our model

(Supplementary Materials A Figures S2–S10). The coefficients

derived from this process, along with the MSE from 10-fold

validation for the multiregional radiomic signatures of RAPB, are

displayed as an example in Figure 3. These figures provide a detailed

overview of the model’s performance and the significance of each

feature within the model.
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3.3 Construction and validation of machine
learning models

During the training phase of this study, specific machine

learning models were strategically selected for each region,

catering to three clinical tasks. This deliberate model selection

aimed to enhance the predictive accuracy for each modality,

showcasing our focused approach to optimizing model efficacy.

We employed 5-fold cross-validation and utilized the Grid Search
Frontiers in Oncology 06
algorithm to optimize the hyperparameters of the model. The

optimal model parameters were selected based on their

performance metrics in the test set. After establishing these

hyperparameters, we trained the model using the entire training

dataset to enhance its robustness and accuracy. The specific

hyperparameters of the final model are detailed in Supplementary

Materials A. For comparative analysis, we selected the most

proficient machine learning model for each region in the test set.

The chosen models include ExtraTrees for B70, GTV, and Lungs; RF
TABLE 1 Demographic and disease characteristics of the enrolled patients.

Characteristics
Overall (n=144)

Counts (%) or Mean
± SD

Training (n=100)
Counts (%) or Mean

± SD

Validation (n=44)
Counts (%) or Mean

± SD

P
value

Testing (n=45)
Counts (%) or Mean

± SD

Age 75.5 (39–94) 76 (41–94) 71 (39–88) 0.070 64 (33–78)

Gender 0.082

Male 86 (59.7) 64 (64.0) 22 (50.0) 12 (26.7)

Female 58 (40.3) 36 (36.0) 22 (50.0) 33 (73.3)

ECOG PS 0.154

0 26 (18.1) 14 (14.0) 12 (27.3) 6 (13.3)

1 73 (50.7) 54 (54.0) 19 (43.2) 30 (66.7)

2 45 (31.3) 32 (32.0) 13 (29.5) 9 (20.0)

COPD 0.328

No 97 (67.4) 69 (69.0) 28 (63.6) 24 (53.3)

Yes 47 (32.6) 31 (31.0) 16 (36.4) 21 (46.67)

Histology 0.696

Adenocarcinoma 38 (26.4) 27 (27.0) 11 (25.0) 16 (35.6)

Squamous
carcinoma

85 (59.0) 57 (57.0) 28 (64.6) 25 (55.6)

Others 21 (14.6) 16 (16.0) 5 (11.4) 4 (8.8)

Tumor Location 0.942

RUL 39 (27.1) 29 (29.0) 10 (22.7) 10 (22.2)

RML 14 (9.7) 10 (10.0) 4 (9.1) 6 (13.3)

RLL 25 (17.4) 17 (17.0) 8 (18.2) 3 (6.7)

LUL 46 (31.9) 31 (31.0) 15 (34.1) 19 (42.2)

LLL 20 (13.9) 13 (13.0) 7 (15.9) 7 (15.6)

Diameter (mm) 30.5 ± 13.5 30.9 ± 13.3 29.4 ± 13.9 0.520 30.6 ± 12.1

GTV (cm3) 11.1 ± 15.6 11.5 ± 16.7 10.3 ± 12.9 0.680 6.9 ± 7.5

PTV (cm3) 25.8 ± 25.3 26.1 ± 24.7 25.0 ± 26.9 0.811 26.5 ± 18.2

Dose per
fraction (Gy)

6.0 (6.0-12.0) 6.0 (6.0-12.0) 6.0 (6.0-10.0) 0.196 10.0 (7.5-12.5)

Fractions (Fx) 10.0 (4.0-12.0) 10.0 (4.0-10.0) 10.0 (5.0-12.0) 0.130 5.0 (4.0-8.0)

Total dose (Gy) 59.8 ± 3.8 59.9 ± 3.4 59.7 ± 4.5 0.750 51.8 ± 3.9

Tumor BED (Gy) 100.7 ± 6.5 101.0 ± 6.6 100.0 ± 6.5 0.401 102.6 ± 4.4

MLD (cGy) 323.6 ± 158.8 322.7 ± 145.9 325.7 ± 186.8 0.917 301.12 ± 114.9
BED, biologically effective dose; COPD, chronic obstructive pulmonary disease; ECOG PS, Eastern Cooperative Oncology Group performance status; GTV, gross tumor volume; LLL, left lower
lobe; LUL, left upper lobe; MLD, mean lung dose; PTV, planning target volume; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; SD, standard deviation.
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for D5, PTV, RA and RAPB; LightGBM for D20 and RAP; and SVM

for PTV-GTV. Detailed performance metrics of these models can be

found in Supplementary Material A Figures S2–S11 and

Supplementary Tables S2–S11.
3.4 Comparison of radiomic models

The radiomics features extracted from different ROIs showed

different performances, with AUC values ranging from 0.553 to

0.998 in all cohorts. In terms of single regions, B70 exhibited better

predictive value than the others for predicting SRP [AUC: 0.802

(95% CI: 0.668-0.936)]. Compared with the single-regional models,

combination models of different dimensional regions had higher

AUC values. Specifically, the RA model outperformed the

individual anatomical region models, and the RAP model

outperformed the individual physical dosimetry models. In

particular, the addition of B70 to the RAPB model improved its

prediction ability compared to that of RAP alone, suggesting that

multiregional fusion radiomic models prevailed any single or other

combined regional radiomic models in terms of performance. The

effectiveness of the single- and multiregional radiomics models is

comprehensively illustrated in Figure 4 and Table 2. The radar chart

can be found in Supplementary Material A Figures S12 (20).
Frontiers in Oncology 07
3.5 Model comparison, calibration,
and DCA

The predictive performance of combined dosimetric-radiomic

features was evaluated in an independent validation cohort. For

predicting SRP, models based solely on dosimetric factors (VBED70)

exhibited reduced performance compared with RAPB radiomic

model (dosimetric: AUC = 0.799, 95% CI: 0.661–0.938; RAPB:

AUC = 0.816, 95% CI: 0.694–0.938). Based on the training and

testing sets, the combined model, which incorporated both

dosimetric and RAPB results, demonstrated superior model

performance (AUC = 0.828, 95% CI: 0.701–0.956). The ROC

curves for each model in the three cohorts are shown in Figure 5

and Table 3 (Supplementary Materials A Figures S13).

In the calibration curve analysis, the HL test measured the

discrepancy between the predicted probabilities and the actual

outcomes. The lower HL test values were preferred, denoting a

closer match between the model’s predictions and the observed

results. In this context, the combined model demonstrated

remarkable calibration effectiveness. This was reflected in the HL

test statistics, which was 0.923 for the training cohort, 0.544 for the

validation cohort, and 0.374 for the test cohort (Figure 5). These

figures, especially the lower values in the validation and test cohorts,

suggested a high degree of alignment between the predicted
FIGURE 3

The process of feature selection for RAPB model using the LASSO regression model. (A) LASSO coefficients for a range of l values, with vertical
dashed lines indicating the features number at the optimal l value of 0.0146. (B) Optimal l values are chosen based on 10-fold cross-validation and
MSE. (C) The selected radiomics features and their coefficients. MSE, mean standard error.
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TABLE 2 Prediction performance of different radiomics models for predicting SRP in the training, validation and testing cohorts.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

D5 0.790 0.922 0.868 - 0.977 0.753 1.000 1.000 0.417 Train

D20 0.830 0.927 0.878 - 0.976 0.800 1.000 1.000 0.469 Train

B70 0.890 0.947 0.900 - 0.995 0.894 0.867 0.974 0.591 Train

GTV 0.770 0.885 0.790 - 0.980 0.741 0.933 0.984 0.389 Train

PTV 0.810 0.889 0.815 - 0.964 0.812 0.800 0.958 0.429 Train

Lungs 0.900 0.909 0.818 - 0.989 0.918 0.800 0.963 0.632 Train

PTV-GTV 0.950 0.978 0.951 - 0.998 0.941 1.000 1.000 0.750 Train

RA 0.960 0.998 0.992 - 0.998 0.953 1.000 1.000 0.789 Train

RAP 0.950 0.979 0.955 - 1.000 0.941 1.000 1.000 0.750 Train

RAPB 0.880 0.979 0.953 - 1.000 0.859 1.000 1.000 0.556 Train

D5 0.841 0.829 0.663 - 0.995 0.842 0.833 0.970 0.455 Val

D20 0.727 0.844 0.716 - 0.972 0.711 0.833 0.964 0.312 Val

B70 0.636 0.855 0.712 - 0.998 0.579 1.000 1.000 0.273 Val

GTV 0.636 0.704 0.491 - 0.917 0.632 0.667 0.923 0.222 Val

PTV 0.568 0.673 0.466 - 0.881 0.526 0.833 0.952 0.217 Val

Lungs 0.636 0.717 0.491 - 0.944 0.605 0.833 0.958 0.250 Val

PTV-GTV 0.818 0.864 0.723 - 1.000 0.816 0.833 0.969 0.417 Val

RA 0.614 0.838 0.674 - 1.000 0.553 1.000 1.000 0.261 Val

RAP 0.750 0.910 0.805 - 1.000 0.711 1.000 1.000 0.353 Val

RAPB 0.705 0.838 0.715 - 0.960 0.658 1.000 1.000 0.316 Val

D5 0.578 0.703 0.552 - 0.855 0.424 1.000 1.000 0.387 Test

D20 0.622 0.775 0.641 - 0.909 0.515 0.917 0.944 0.407 Test

B70 0.778 0.802 0.668 - 0.936 0.758 0.833 0.926 0.556 Test

GTV 0.644 0.553 0.339 - 0.768 0.697 0.500 0.793 0.375 Test

PTV 0.489 0.614 0.431 - 0.796 0.333 0.917 0.917 0.333 Test

Lungs 0.622 0.528 0.317 - 0.739 0.667 0.500 0.786 0.353 Test

(Continued)
F
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FIGURE 4

The comparison of the single- and multiregional radiomics models in three cohorts. (A-C) The ROC curves of different radiomics models in the
training (A), validation (B), and testing (C) cohorts, and RAPB model achieved the highest AUC value.
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FIGURE 5

The results and evaluation of SRP prediction models in three cohorts. (A-C) ROC curves of the dosimetric model, RAPB model, and Combined
model for evaluating SRP differentiation in the training (A), validation (B), and testing (C) cohorts. (D-F) The calibration curves of three models for
evaluating SRP differentiation in the training (D), validation (E), and testing (F) cohorts. (G-I) The DCA curves of the different models for evaluating
SRP differentiation in the training (G), validation (H), and testing (I) cohorts.
TABLE 2 Continued

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

PTV-GTV 0.711 0.725 0.548 - 0.902 0.697 0.750 0.885 0.474 Test

RA 0.822 0.763 0.579 - 0.946 0.909 0.583 0.857 0.700 Test

RAP 0.756 0.784 0.640 - 0.929 0.788 0.667 0.867 0.533 Test

RAPB 0.733 0.816 0.694 - 0.938 0.636 1.000 1.000 0.500 Test
F
rontiers in Oncolo
gy
 09
SRP, symptomatic radiation pneumonitis; AUC, areas under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; GTV, gross tumor volume; PTV,
planning target volume; RA, regions of anatomical dimension; RAP, regions of anatomical dimension combined with physical dosimetric dimension; RAPB, regions of anatomical dimension
combined with physical dosimetric and biologically effective dose.
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probabilities and the actual outcomes, underscoring the

model’s reliability.
4 Discussion

Accurate assessment of SRP occurrence risk and identification

of high-risk patients are imperative to proactively prevent SRP,

thereby ensuring the efficacy and safety of SBRT. The incidence of

SRP (around 14.6%) at our institution was similar to that reported

in previous studies (9.4-29%) (8, 21, 22). This study confirmed our

previous findings that the VBED70 of the nontarget lung volume was

an independent clinical risk factor, and further revealed that the

model integrating multiregional radiomic signatures and dosimetric

factors based on VBED70 was highly reliable for SRP predicting with

better performance than conventional clinical indicators and DVH

parameters derived from physical doses. Furthermore,

multiregional radiomic models outperformed their single-regional

counterparts, notably with the incorporation of the B70 area,

thereby improving the predictive accuracy of SRP. To the best of

our knowledge, this study represents the first utilization of

multidimensional and multiregional radiomic features extracted

from the BED distribution of the nontarget lung volume,

empowered by diverse machine learning algorithms, to predict

the risk of SRP following lung SBRT with heterogeneous

fractionations in the clinical scenarios.

Various dosimetrics, such as the volume of nontarget lung

tissue receiving specific radiation doses (Vx) and the MLD, have

been extensively studied for their association with SRP (8, 23, 24).

However, the findings have been inconclusive. Liu et al. (8) and

Barriger et al. (23) identified MLD and V20 as significant risk factors

for SRP, while Matsuo et al. (24) suggested that only the PTV, V20,

and V25 were indicative of RP, with other factors such as MLD and

various Vx values showing no association. In terms of normal tissue

complication probability (NTCP), the lung, as a late-responding

tissue (a/b = 3), is highly sensitive to dose fraction variation,

characterized by BEDs. Previous studies have demonstrated that
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the fractionation dose is a significant factor related to the

occurrence of RP (14, 25). However, the majority of previous

studies used the physical doses applied to lung tissue in the DVH,

considering none or few of the variations in the biological effects on

normal lung tissue from different SBRT fractionation schemes.

Therefore, in this study, in addition to actual physical dose, we

incorporated lung BED for dose-risk analysis. In the univariate

analysis, an evident association between BED-derived dosimetric

variables and SRP was observed in SBRT-treated patients. Further

multivariate analysis showed that lung VBED70 was an independent

risk factor for SRP, whereas previously reported risk factors such as

V5, V20, and MLD did not significantly differ between SRP and SRP-

free patients in our study. This is in line with findings in the

literature (26).

In radiomic researches, the accuracy of prediction models is

largely subjected to the selection of ROIs and feature handling. In

our study, the comparative evaluation of single radiomic models

using different ROI dimensions revealed that the radiomic model

based on the biologically equivalent dose dimension of lung tissue

(B70 model) had the best performance, with the accuracy improving

as the ROI dimensions increased (RAPB > RAP > RA). The results

are concordant with those of previous multiregional radiomics

investigations (9, 27). In the anatomical dimension, the radiomic

features of GTV had the lowest predictive value (AUC: 0.553, 95%

CI: 0.339-0.768) without significant correlation with SRP risk in the

multiregional radiomic model RAPB, while features from PTV-

GTV demonstrated superior performance (AUC: 0.725, 95% CI:

0.548-0.902), in agreement with previous studies (9). The expansion

of GTV to PTV to compensate respiratory motion and uncertainties

from patient setup, planning and dose delivery inevitably includes a

portion of normal lung tissue into the treatment field, contributing

to the occurrence of SRP. This highlights the greater

representativeness and indicative nature of PTV-GTV features,

emphasizing that only the radiomic characteristics of lung tissue

itself, rather than those of the tumor, can quantify the spatial

microstructure of lung tissues and thus more accurately reflect

the sensitivity of normal lung tissue to radiation. Our
TABLE 3 Prediction performance of Dosimetric model, RAPB model, and Combined model for predicting SRP in the training, validation and
testing cohorts.

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Dosimetric 0.970 0.945 0.860 - 1.000 0.800 1.000 1.000 0.966 Train

RAPB 0.880 0.979 0.953 - 1.000 0.933 0.871 0.560 0.987 Train

Combined 0.960 0.987 0.966 - 1.000 0.867 0.976 0.867 0.976 Train

Dosimetric 0.886 0.851 0.624 - 1.000 0.667 0.921 0.571 0.946 Val

RAPB 0.705 0.838 0.715 - 0.960 0.833 0.684 0.294 0.963 Val

Combined 0.909 0.930 0.816 - 1.000 0.667 0.947 0.667 0.947 Val

Dosimetric 0.600 0.799 0.661 - 0.938 0.917 0.485 0.393 0.941 Test

RAPB 0.733 0.816 0.694 - 0.938 0.917 0.667 0.500 0.957 Test

Combined 0.644 0.828 0.701 - 0.956 0.917 0.545 0.423 0.947 Test
SRP, symptomatic radiation pneumonitis; RAPB, regions of anatomical dimension combined with physical dosimetric and biologically effective dose; AUC, areas under the curve; CI, confidence
interval; PPV, positive predictive value; NPV, negative predictive value.
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multidimensional multiregional radiomic approach, which

incorporates intrinsic lung tissue characteristics alongside

information on physical and biologically equivalent dose

distributions, enhances the predictive capability of SRP through

complementary advantages, demonstrating the superiority of

this method.

The comparative analysis of the dosimetric, RAPB, and combined

models across the training, validation, and test cohorts demonstrated

certain noteworthy trends. In the training cohort, the combined

model of dosimetric and RAPB features performed better than the

RAPBmodel alone, highlighting the benefit of data integration, while

during validation, the dosimetric model’s performance significantly

decreased, particularly in sensitivity and specificity, whereas the

RAPB model remained resilient. Additionally, compared with other

models, the DCA curves (Figure 5) showed that our combined model

yields noticeable benefits. These findings are consistent with previous

reports (28, 29). Kong et al. found that the optimal predictive

performance (AUC: 0.88) was attained when dosimetric parameters

were incorporated into the predictive model using features from

lung-PTV (28). Our results demonstrated the advantages of the

combined model, which effectively leverages the strengths of both

dosimetric and radiomic features to synergistically improve

predictive performance. This highlighted the necessity of

integrating the features of multiple ROIs and the lung BED dose

distribution in predicting the risk of SRP during the process of

formulating treatment plans, optimizing personalized dose

distribution and closely monitoring for high-risk populations.

To develop specialized machine learning-based radiomic

models presents formidable challenges. Notably, to address

concerns regarding overfitting and multicollinearity stemming

from the vast array of features, we systematically employed

Spearman rank correlation, LASSO, and mRMR techniques to

reduce dimensionality and identify optimal features, in

compliance with the established guidelines for radiomics research

(30). For robustly testing the medical hypotheses regarding the

comparative predictive values of different feature sets, we conducted

a comparative analysis of multiple machine learning algorithms to

determine the algorithm most suitable to our dataset. It was proved

that the AUC values of the machine learning algorithms in the

RAPB model were notably higher than those of the other models

(SVM, ExtraTrees, XGBoost, and LightGBM) in their

corresponding cohorts, suggesting the strong predictive capability

and reliability of the RF model. Therefore, based on the AUC and CI

values, the RF model was employed for the consecutive analysis. All

of the prediction models underwent simultaneous training and

testing using identical technical principles in an external cohort,

ensuring optimal comparability and clinical applicability. This

approach significantly improved the performance in predicting

the occurrence of SRP.

Nonetheless, this study has certain limitations. Firstly, the

sample size is relatively small and all data used for model

development were retrospective, which inevitably compromises

the reliability to some extent due to susceptibility to biases,

including patient selection, clinical and radiological information,

and other confounding factors. To address these issues, we

meticulously utilized objective records and quantitative indicators
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as analytic variables. Furthermore, stratified analysis and

multivariate logistic regression analysis were employed to mitigate

confounding bias. Moreover, an external validation set using the

same inclusion and exclusion criteria was assembled to validate the

established model. Certainly, future well-designed prospective

multicenter studies are anticipated to generate unbiased dataset to

further validate and optimize the model. Secondly, this study

included only clinical factors, dosimetric parameters, and imaging

features, without considering other factors affecting SRP, for

instance inflammatory biomarkers and pulmonary function

parameters. Additionally, although previous studies indicated that

reduced cardiopulmonary function exacerbates radiation-induced

lung toxicity, this study did not analyze the relationship between

cardiac dose and radiation pneumonitis in terms of dosimetric

risk factors.
5 Conclusion

This study employs various machine learning methods to

establish and validate a predictive model for SRP following

various SBRT fractionation schemes. The results demonstrate that

the combined model integrating multiregional radiomic signatures

and lung tissue BED-based dosimetric parameters may be

promising for SRP prediction. Specifically, the inclusion of region

B70, which is derived from the area of lung biologically equivalent

dose, significantly enhances the predictive performance of the

multiregional radiomic model. For performance robustness and

reliability, the combined model needs further validation and

optimization using larger-scale retrospective data and in

prospective trials.
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