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Background: The carcinogenesis mechanism of early-stage lung cancer (ESLC)

remains unclear. Microbial dysbiosis is closely related to tumor development.

This study aimed to analyze the relationship between microbiota dysbiosis

in ESLC.

Methods: We investigated a total of 108 surgical specimens of lung nodules,

including ground glass nodules (GGN) diagnosed as lung adenocarcinoma (n =

25), solid nodules (SN) diagnosed as lung adenocarcinoma (n = 27), lung

squamous carcinoma (LUSC) presenting as solid nodules (n = 26), and benign

pulmonary nodules (BPD) (n = 30) that were collected. 16S rDNA amplicon

sequencing and non-targeted metabolomics analysis were performed in all of

the specimens.

Results: We found a significantly lower microbiota richness in SN than in the

GGN and LUSC. Ralstoniamay be an important flora promoting the development

of early lung adenocarcinoma, while Feacalibacterium and Blautia play a

protective role in the progression of GGN to SN. Akkermansia, Escherichia-

shigella, and Klebsiella exhibited high abundance in early lung squamous

carcinoma. Compared with BPD, the differential metabolites of both early

adenocarcinomas (SN and GGN) are mainly involved in energy metabolic

pathways, while early LUSC is mainly involved in glutathione metabolism,

producing and maintaining high levels of intracellular redox homeostasis. A

correlation analysis revealed that different microbiota in GGN may function in

energy metabolism via N-acetyl-1-aspartylglutamic acid (NAAG) when

compared to BPD, while creatine and N-acetylmethionine were the main

relevant molecules for the function of differential microbiota in LUSC.
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Abbreviations: ESLC, early-stage lung cancer; GGN, gro

solid nodules; LUSC, lung squamous carcinoma; BP

nodules; NAAG, N-acetyl-1-aspartylglutamic acid; 16S

RNA; 16S rDNA, 16S ribosomal DNA; PFS, progression-f

survival; PCoA, principal co-ordinates analysis; AUC, are

receiver operating characteristic; OPLS-DA, orthogonal

discriminant analysis.
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Conclusion: Our study identified that early-stage lung adenocarcinoma and

squamous carcinoma differ in microbial composition and metabolic status.

Ralstonia may be an important flora promoting the development of early lung

adenocarcinoma, while Feacalibacterium and Blautia play a protective role in the

progression of GGN to SN. Conversely, Akkermansia, Escherichia-shigella, and

Klebsiella exhibited high abundance in early lung squamous carcinoma. The

metabolites of both early adenocarcinomas (SN and GGN) are mainly involved in

energy metabolic pathways, while early LUSC is mainly involved in glutathione

metabolism. Our study provides new insights into the carcinogenesis of ESLC.
KEYWORDS
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Introduction

Microbes are an important human body component,

accounting for 1%–3% of the body mass (1). A growing body of

research suggests that microbiota exerts an important role in

tumor development (2, 3). Microbes and their derivatives can

modulate and disrupt the body’s genes under specific conditions,

leading to the occurrence and development of disease (4). The

lung microbiota consists of bacteria, fungi, and viruses that live in

wonderful balance with the host (5, 6). In the case of microbial

dysbiosis in the lung, a high abundance of pathogenic bacteria

may increase the host’s susceptibility to carcinogenic events (5, 7,

8). In addition, bacterial metabolites and toxins of pathogenic

microbes can influence the activation of molecular pathways

associated with oncogenic signaling and thus promote tumor

progression (9, 10)—for example, Prevotella, Streptococcus, and

Veillonella can induce PI3K and ERK signaling pathways in airway

epithelial cells (11). Another recent study found that local

microbiota dysbiosis in the lung can activate lung-resident gd T

cells, produce IL-17 and other effector molecules, and influence

the immune status of the lung to promote lung adenocarcinoma

progression (12). So, microbial imbalance in the lung may be

associated with tumorigenesis and progression through

multiple pathways.

With the widespread use of high-resolution computed

tomography (CT) in lung cancer screening, pulmonary nodules’

diagnosis rate has significantly increased (13, 14). Benign nodules

account for 95% of pulmonary nodules and are most commonly

granulomas or intrapulmonary lymph nodes (15). In contrast, 85%
und glass nodules; SN,

D, benign pulmonary
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of malignant pulmonary nodules are ground glass nodules (GGNs),

which are less aggressive than solid nodules (SN) (16, 17). Although

these patients can undergo surgical resection, a high risk of relapse

still exists, leading to a greater impact on the survival and prognosis

of patients (18). However, the oncogenic mechanism of these early-

stage lung cancers (ESLC) and the mechanism leading to the

progression of GGNs to SN remain unclear.

Few studies have directly examined the association of microbial

dysbiosis in the lung with carcinogenesis of ESLC. So far, only one

study directly investigated lung microbiota dysbiosis with GGN and

SN occurrence by 16s rRNA sequencing using tumor tissue

specimens (19). However, the sample size of the pulmonary

nodules in that study was small; no further analysis of the

oncogenic effects of microbial-derived metabolites was performed.

Therefore, herein we used a large sample of lung nodule tissues to

investigate the molecular mechanisms of lung microbiota dysbiosis

in the development of ESLC with different characteristics by

microbiome, metabolome, and correlative analysis.
Methods

Participants

A total of 108 patients were included in this study. The

inclusion criteria were as follows: age >18 years, diagnosed with

pulmonary nodules using chest CT, and no treatment received prior

to surgery. The exclusion criteria were as follows: stage IV lung

cancer; use of antibiotics, probiotics, prebiotics, or synbiotics in the

previous 6 months; and chemotherapy, radiotherapy, or other

biological therapy prior to radical resection of lung cancer. The

clinical and pathological staging, respectively, was performed by

three pathologists affiliated with West China Hospital of Sichuan

University, in accordance with the 8th edition of the Union for

International Cancer Control (UICC) TNM staging system for lung

cancer (20).
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16S rDNA amplicon sequencing

The lung cancer tissue was isolated during surgery, and liquid

nitrogen was used for rapid preservation of lung cancer specimens.

Obtaining surgical specimens, genomic DNA was extracted.

Different regions of the 16S rDNA were amplified and purified.

Amplicon: 16S rDNA genes in distinct regions (16S V4/16S V3/16S

V3-V4/16S V4-V5) were amplified with a specific primer (e.g., 16S

V4: 515F- 806R) and barcodes. All PCR mixtures contained 15 µL

of Phusion® High-Fidelity PCR Master Mix (New England

Biolabs), 0.2 µM of each primer, and 10 ng target DNA, and the

cycling conditions consisted of a first denaturation step at 98°C for 1

min, followed by 30 cycles at 98°C (10 s), 50°C (30 s), and 72°C (30

s), and a final 5-min extension at 72°C. Purification: Mix an equal

volume of 1X loading buffer (contained SYB green) with PCR

products and perform electrophoresis on 2% agarose gel for DNA

detection. The PCR products were mixed in equal proportions, and

then Qiagen Gel Extraction Kit (Qiagen, Germany) was used to

purify the mixed PCR products. Different regions of the 16S rDNA

were amplified and purified. Observed_species (the number of

observed species) and the Shannon index were calculated in

QIIME. Principal coordinates analysis (PCoA) was carried out to

the differences in community structure between different groups. T-

test method using the R software (version 3.5.3) was used to test the

significance of the differences in the species composition and

community structure of the grouped samples (abundance >0.001,

P-value <0.05, adjusted P-value <0.05).
Tissue sample

Tissues (100 mg) were individually ground with liquid nitrogen,

and the homogenate was resuspended with prechilled 80%

methanol by well vortex. The samples were incubated on ice for 5

min and then were centrifuged at 15,000 g at 4°C for 20 min. Some

of the supernatant was diluted to a final concentration containing

53% methanol by LC-MS grade water. The samples were

subsequently transferred to a fresh Eppendorf tube and then were

centrifuged at 15,000 g at 4°C for 20 min. Finally, the supernatant

was injected into the LC–MS/MS system analysis.
UHPLC–MS/MS analysis

UHPLC–MS/MS analyses were performed using a Vanquish

UHPLC system (ThermoFisher, Germany) coupled with an

Orbitrap Q ExactiveTMHF-X mass spectrometer (Thermo Fisher,

Germany) by Novogene Co., Ltd. (Beijing, China). The samples

were injected onto a Hypesil Gold column (100 × 2.1 mm, 1.9 mm)

using a 17-min linear gradient at a flow rate of 0.2 mL/min. The

eluents for the positive polarity mode were eluent A (0.1% FA in

water) and eluent B (methanol). The eluents for the negative

polarity mode were eluent A (5 mM ammonium acetate, pH 9.0)

and eluent B (methanol). The solvent gradient was set as follows: 2%

B, 1.5 min; 2%–100% B, 3 min; 100% B, 10 min; 2%–100% B, 10.1
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min; 2% B, 12 min. Q ExactiveTM HF-X mass spectrometer was

operated in positive/negative polarity mode with a spray voltage of

3.5 kV, capillary temperature of 320°C, sheath gas flow rate of 35 psi

and aux gas flow rate of 10 L/min, S-lens RF level of 60, and aux gas

heater temperature of 350°C.
Data processing and
metabolite identification

The raw data files generated by UHPLC–MS/MS were

processed us ing Compound Discoverer 3 .1 (CD3.1 ,

ThermoFisher) to perform peak alignment, peak picking, and

quantitation for each metabolite. The main parameters were set

as follows: retention time tolerance, 0.2 min; actual mass tolerance,

5 ppm; signal intensity tolerance, 30%; signal/noise ratio, 3; and

minimum intensity, etc. After that, the peak intensities were

normalized to the total spectral intensity. The normalized data

was used to predict the molecular formula based on additive ions,

molecular ion peaks, and fragment ions. Then, the peaks were

matched with mzCloud (https://www.mzcloud.org/), mzVault, and

MassList database to obtain accurate qualitative and relative

quantitative results. Statistical analyses were performed using the

statistical software R (R version R-3.4.3), Python (Python 2.7.6

version), and CentOS (CentOS release 6.6). When data were not

normally distributed, normal transformations were attempted using

the area normalization method.
Data analysis

These metabolites were annotated using the KEGG database

(https://www.genome.jp/kegg/pathway.html), HMDB database

(https://hmdb.ca/metabolites), and LIPIDMaps database (http://

www.lipidmaps.org/). Principal component analysis (PCA) and

partial least squares—discriminant analysis (PLS-DA) were

performed at metaX (a flexible and comprehensive software for

processing metabolomics data). We applied univariate analysis (t-

test) to calculate the statistical significance (P-value). The

metabolites with VIP >1 and P-value <0.05 and fold change ≥2 or

FC ≤0.5 were considered to be differential metabolites. Volcano

plots were used to filter metabolites of interest which based on log2

(foldchange) and -log10(p-value) of metabolites by ggplot2 in

R language.

For clustering heat maps, the data were normalized using z-

scores of the intensity areas of differential metabolites and were

plotted by using Pheatmap package in R language. The correlation

between differential metabolites was analyzed by cor () in R

language (method=pearson). Statistically significant correlations

between differential metabolites were calculated by cor.mtest() in

R language. P-value <0.05 was considered as statistically significant,

and correlation plots were plotted by corrplot package in R

language. The functions of these metabolites and metabolic

pathways were studied using the KEGG database. The metabolic

pathways’ enrichment of differential metabolites was performed;

when the ratio was satisfied by x/n > y/N, metabolic pathway was
frontiersin.org
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considered as enrichment, and when the P-value of metabolic

pathway <0.05, metabolic pathways were considered to have

statistically significant enrichment.
Combined microbiome–
metabolome analysis

At the genus level, the different microbiota from 16S rDNA

analysis and the different metabolites from metabolomics analysis

were correlated based on Pearson correlation coefficients.
Random forest prediction model

A random forest model was built based on differential

microbiota and differential metabolites in different ESLC and

trained by performing five-fold cross-validation using the R

package. Model performance was evaluated using the area under

the ROC curve (AUC).
Results

Baseline clinical data and prognosis of
pulmonary nodules with different
pathological types

A total of 108 patients were included in this study. The

participants were divided into four major groups according to the

post-surgical pathological diagnosis: GGN patients diagnosed with

lung adenocarcinoma (n = 25), SN patients diagnosed as lung

adenocarcinoma (n = 27), lung squamous carcinoma (LUSC) group

with a solid nodule on imaging (n = 26), and benign pulmonary

nodule (BPD) group (n = 30). The mean age at diagnosis in the BPD

group (54.27 ± 10.39) was lower compared to the three groups

(GGN group, 64.36 ± 9.82, SN group, 59.40 ± 9.48; LUSC group,

60.00 ± 7.78), according to the clinical baseline data collected and

counted from the enrolled patients (Table 1). There were 58 males

and 50 females; the LUSC group included only male patients. There

was no difference in the male-to-female ratio in the other groups.

The progression-free survival (PFS) and overall survival (OS) in the

four groups with different pathological types of pulmonary nodules

(PFS and OS calculated from diagnosis to the last follow-up visit on

2022.12.31) revealed that the SN group with a diagnosis of lung

adenocarcinoma had the worst prognosis (Figure 1A).
The microbial diversity and composition of
GGN, SN, and LUSC are different

Shannon index was positively correlated with richness and

evenness of the microbiota of pulmonary nodules in each group.

The Shannon index of the GGN group and LUSC group were higher

than those of the SN group (P=0.0011, P=0.0002), while there was

no significant difference in the Shannon index between the SN
Frontiers in Oncology 04
TABLE 1 Clinicopathological characteristics of the patients.

Characteristics SN GGN LUSC BPD

Total number 27 25 26 30

Gender, number

Female 16 15 0 19

Male 11 10 26 11

Age (mean ± SD) 59.40
± 9.48

64.36
± 9.82

60.00
± 7.78

54.27
± 10.39

Smoking history, number

Present/ex-smoker 8 8 25 8

Non-smoker 19 17 1 22

Lesion location, number

Right upper lobe 8 12 8 12

Right middle lobe 3 1 2 3

Right lower lobe 6 4 9 6

Left upper lobe 5 5 7 3

Left lower lobe 5 3 0 6

pT stage, number

T1a 0 0 0 –

T1b 4 13 0 –

T1c 9 8 2 –

T2a 10 3 10 –

T2b 2 1 1 –

T3 2 0 8 –

T4 0 0 5 –

pN stage, number

N0 20 25 16 –

N1 3 0 4 –

N2 4 0 6 –

pTNM stage, number

IA1 0 0 0 –

IA2 4 13 0 –

IA3 7 8 0 –

IB 9 3 7 –

IIA 0 1 1 –

IIB 3 0 8 –

IIIA 1 0 6 –

IIIB 3 0 4 –

Tumor differentiation, number

Well differentiated 0 3 0 –

Moderately differentiated 8 15 12 –

Poorly differentiated 16 1 12 –

NA 3 6 2 –
fron
SN, solid nodule; GGN, ground glass nodule; LUSC, lung squamous cell carcinoma; BPD,
benign pulmonary disease.
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group and BPD group (P=0.6275) (Figure 1B). Next,

Observed_species was used to detect the number of species in

different pulmonary nodule group. The number of species

detected in the GGN group and LUSC group was significantly

higher than that in the SN group (P= 0.0001, P= 0.0001)

(Figure 1C). Significant clustering was detected for the Principal

Co-ordinates Analysis (PCoA) analysis among BPD, GGN, SN and

LUSC group. PCoA analysis aims to analyze the characteristics of

different ESLC microbiota composition (Figure 1D). At the phylum

level, we found that Proteobacteria, Firmicutes and Bacteroidota

were the dominant flora in four groups of pulmonary nodules
Frontiers in Oncology 05
(Figure 1E). However, at the genus level, we found that

Pseudomonas was dominant flora in GGN, SN, and BPD, while

Acinetobacter , Akkermansia , and Peptostreptococcus in

LUSC (Figure 1F).
Analysis of the differential microbiota of
GGN, SN, and LUSC

At the genus level, we found Ralstonia, Blautia, and

Faecalibacterium significantly increased in the GGN group
FIGURE 1

Comparison of the microbiome characteristics of GGN, SN, and LUSC. (A) Kaplan–Meier survival curves comparing the PFS and OS of GGN, SN, and
LUSC. (B, C) Shannon and Observed_species indices comparing the microbial diversity of GGN, SN, and LUSC. (D) Principal coordinates analysis
(PCoA) to compare the inter- and intra-group heterogeneity of GGN, SN, and LUSC and compare the relative microbial abundance of GGN, SN, and
LUSC at the phylum level (E) and at the genus level (F). GGN, patients with ground glass nodules with a pathological diagnosis of adenocarcinoma;
SN, patients with solid nodules with a pathological diagnosis of adenocarcinoma, LUSC, patients with a pathological diagnosis of squamous lung
cancer but with radiologically solid nodules; BPD, group of patients with benign pulmonary nodules (*P < 0.05; **P < 0.01; ***P < 0.001).
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compared to BPD group (Figure 2A). Ralstonia also exhibited higher

abundance in SN group than in BPD group (Figure 2B). Further, we

compared GGN and SN (two groups early adenocarcinoma) and

found thatFeacalibacterium, Serratia, andBlautiawere enriched in the

GGN and decreased in the SN group (Figure 2C). When compared

LUSCwithBPD(SupplementaryFigureS1A)or lungadenocarcinoma

(SN) (Supplementary Figure S1B), respectively, Akkermansia,

Escherichia-shigella and Klebsiella were found to be significantly

enriched in the LUSC group at the genus level. The above findings

suggest that the composition of the microbiota is highly variable in

different pathological types of pulmonary nodules.
Differential metabolites and differential
metabolic pathways of GGN, SN, and LUSC

Microbiota often function through their derived metabolites;

therefore, we further analyzed the differential metabolites in each

group of pulmonary nodules. We validated the metabolomic data
Frontiers in Oncology 06
using the OPLS-DA model and found that the metabolic data were

comparable between the lung nodule pairs (Figure 3A). When

compared with BPD, the top 3 up-regulated metabolites in GGN

were: 8(R)-Hydroxy-(5Z,9E,11Z,14Z)-eicosatetraenoic acid (fold

change=4),14,15- Leukotriene E4 (fold change=4) and

Thromoboxane B1 (fold change=4), while the top 3 up-regulated

metabolites in the SN group were D-a-hydroxyglutaric acid (fold

change=16), MMH (fold change=8), and glutaconic acid (fold

change=8) (Figure 3B). Thus, KEGG enrichment analysis showed

that the differential metabolites of GGN were mainly enriched in

phospholipase D (PLD) signaling pathway and arachidonic acid

metabolism, whereas the up-regulated metabolites of the SN group

were mainly enriched in the steroid hormone biosynthesis pathway

(Figure 3C).When compared LUSCwith BPD,we found the top 3 up-

regulated differential metabolites in LUSC were L-Glutathione

oxidized (fold change=256), L-Cysteine-glutathione disulfide (fold

change=64) and Glutathione (fold change=32) (Figure 4C), which

were mainly enriched in the glutathione metabol ism

pathway (Figure 3C).
FIGURE 2

Comparison of differential microflora between GGN, SN, and BPD, respectively. Volcano plot using T-test analysis at the genus level, showing the
differential flora (fold change > 2). Bar graph showing the mean abundance and P-value of GGN vs. BPD (A), SN vs. BPD (B), and GGN vs. SN (C).
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Microbiome and metabolome association
analysis results of GGN, SN, and LUSC

To measure the association between differential microbiota and

metabolites in different pulmonary nodules, we found that

differential microbes enriched in the GGN were positively

correlated with N-Acetyl-1-aspartylglutamic acid (NAAG) and N-

Acetyl-DL-glutamic acid compared to BPD (Figure 4A), while no

metabolites was positively associated with differential microbiota in

SN (Figure 4B). Furthermore, we compared the two groups of early

adenocarcinoma (GGN and SN) and found that the differential

microorganisms enriched in GGN were negatively correlated with

GNK, 3-Methylhistamine (Figure 4D).

At final, when compared to BPD, our results showed differential

microorganisms in LUSCwere positively correlated withCreatine and
Frontiers in Oncology 07
N-Acetylmethionine (Figure 4C). However, when compared to SN,

differential microorganisms in LUSC were positively correlated with

Creatine but negatively correlated with D-(+)-Galactose (Figure 4E).
Random forest model prediction of
biomarkers in GGN, SN, and LUSC

We constructed a five-fold cross-validated random forest

classification model using GGN, SN and LUSC microbiota and

metabolome features to find biomarkers for distinguishing

malignant nodules from benign pulmonary nodules. The results

of the model showed in the training set and the validation set the

AUC based on the differential metabolite model or the differential

microbial model, which was close to or equal to 1. Meanwhile, the
FIGURE 3

Differential metabolites and pathways of GGN, SN, and LUSC compared with BPD, respectively. (A) Partial least squares—discriminant analysis
(PLS-DA) score scatterplot of GGN, SN, and LUSC when compared to BPD, respectively. R2Y greater than Q2Y indicates goodmodel establishment. (B)
Volcano plot showing the differential metabolites of GGN, SN, and LUSC when compared to BPD, respectively. Set thresholds: variable importance in the
projection (VIP) >1.0, FC >1.5, or FC <0.667 and P-value <0.05. Red dots represent significant upregulation, and green dots represent significant
downregulation. FC, fold change. (C) Bubble plots of KEGG enrichment of GGN, SN, and LUSC when compared to BPD, respectively. The more significant
the P-value, the redder the color in the bubble. The larger the size of the dots, the more differential metabolites are present within this pathway.
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ROC of the mixed differential microbial and differential metabolite

model was close to or equal to 1. This suggested that the predictive

ability of this model was reliable. Therefore, we found that D-2-

aminoadipic acid, picolinic acid, and N6-Me-adenosine might

distinguish GGN from BPD (Figure 5A), while MMH and uracil

could distinguish SN from BPD (Figure 5B). Lastly, 3-

methylhistamine and gamma-glutamylcysteine might be able to

distinguish LUSC from BPD (Figure 5C).
Frontiers in Oncology 08
Discussion

To the best of our knowledge, this is the first study that explored

ESLC development mechanisms by directly using tumor tissues to

perform large-scale microbiome and metabolome sequencing. Our

study found that Ralstonia may be an important flora promoting

the development of early lung adenocarcinoma, while

Feacalibacterium and Blautia play a protective role in the
FIGURE 4

Association analysis between differential microbiota and metabolites of GGN, SN, and LUSC. Spearman’s correlation method was used to analyze the
correlation between the top 20 differential microorganisms and 20 differential metabolites at the microbial genus level when GGN vs. BPD (A), when
SN vs. BPD (B), when LUSC vs. BPD (C), when GGN vs. SN (D), and when SN vs. LUSC (E). Horizontal coordinates represent differential metabolites.
Vertical coordinates represent differential microorganisms. The red color represents a positive correlation between differential microorganisms and
differential metabolites. The blue color represents a negative correlation. The lower the P-value, the more significant the correlation (*P < 0.05; **P
< 0.01.
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progression of GGN to SN. The metabolites of both early

adenocarcinomas (SN and GGN) are mainly involved in energy

metabolic pathways, while early LUSC are mainly involved in

glutathione metabolism, producing and maintaining high levels of

intracellular redox homeostasis. Our study provides new insights

into the carcinogenesis of ESLC.

Decreased microbiome diversity and richness in lung cancer

tissues are associated with poor prognosis and poor survival of

patients (21, 22). Our study found that SN had the worst prognosis

as well as the lowest microbiome richness when compared with

other groups. This is consistent with previous findings that
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biodiversity is significantly lower in highly invasive SN

adenocarcinomas than in inert tumor GGN (19). However, we

also found no significant difference in biodiversity between the

poorly prognostic SN group and BPD group, which is not consistent

with some previous studies. Wang et al. analyzed the tissues of lung

cancer and healthy individuals and found that lung cancer patients

had decreased microbiota diversity compared to those with normal

tissue (23) Zeng et al. (24) found a significantly higher microbiome

diversity in lung cancer than in benign nodules; however, they did

not exclude patients with underlying lung diseases such as

pneumonia, chronic obstructive pulmonary disease (COPD), and
FIGURE 5

Random forest model predicts biomarkers for different pathological types of pulmonary nodules. (A) ROC curves of random forest models for GGN
and BPD. The solid line represents the test set ROC, while the dashed line represents the k-repeat cross-validation training set ROC. The area under
the curve is the AUC value. The closer the AUC value is to 1, the more accurate the model prediction is. Feature importance boxplot for GGN and
BPD. The vertical coordinate is the feature importance, which is used to determine the contribution of metabolites or microorganisms in the model.
The horizontal coordinate is the name of the metabolite or microorganism. (B) ROC plots of random forest models for SN and BPD. Feature
importance boxplot for SN and BPD. (C) ROC plots of random forest models for LUSC and BPD. Feature importance boxplot for LUSC and BPD.
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pulmonary fibrosis, which may have impacted the results.

Therefore, we thought that the reasons for these differences might

be closely related to the selection of controls and sample sources.

Microbial dysbiosis in the lung is strongly associated with the

development of lung cancer (25–27). Our data indicated that

Ralstonia significantly increased in the GGN and SN group

compared to the BPD group, which suggested that Ralstonia may

promote early lung adenocarcinoma (SN and GGN). Ralstonia, first

discovered by Yabuuchi in Japan in 1995, is a gram-negative

bacterium belonging to the Proteobacteria phylum (28). It was

identified as the core microbiota of lung tissue (29), which is

consistent with our findings. Ralstonia currently includes three

clinically relevant species: R. mannitolilytica, Ralstonia pickettii,

and Ralstonia insidiosa (30). Ralstonia mannitolilytica causes

COPD exacerbation (31). Ralstonia pickettii was found to

comprise mesothelioma-specific microbiota involved in tumor

progression (32). Furthermore, Yu et al. found that lung

adenocarcinoma (n = 6) had decreased relative abundance of

Ralstonia than tumor tissues with squamous cell carcinoma (n =

25) (29). Although the results of this study differ from our findings,

the main reason may be the different sample sizes as well as sample

subgroups (early-stage lung cancer vs. advanced lung cancer). Next,

we compared early adenocarcinoma GGN and SN and found that

Feacalibacterium, Serratia, and Blautia were elevated in GGN but

decreased in the SN group. From the perspective of clinical research,

the growth rate of lung adenocarcinoma in the GGN group is

comparatively slower and exhibits a more favorable prognosis when

compared to the SN group (33). Therefore, we hypothesized that

Feacalibacterium and Blautia may exert a protective role in the

progression of GGN to SN. As reported, Feacalibacterium has anti-

inflammatory properties and was reported to have a relatively

higher abundance in lung cancer, acting in synergy with anti-PD1

in cancer treatment (34). Blautia was also found to have a protective

effect against carcinogenic effects in intestinal cancer (35), but the

clues and ideas provided by these data necessitate further

experimental verification.

In addition, Akkermansia, Escherichia-shigella, and Klebsiella

were found to be significantly enriched in the LUSC group at the

genus level. In agreement with a previous study, one study also

detected an increase of Akkermansia in lung cancer (34). However,

one previous study reported a significant enrichment of Acidovorax

in lung squamous cell carcinomas carrying TP53 mutations with a

history of smoking, which is inconsistent with our results and may

be related to sequencing methods, manipulation, etc. (36). In

addition, Klebsiella also increased in LUSC. Klebsiella pneumoniae

is the dominant strain causing lung infection in lung cancer patients

and is often detected in LUSC tissue. In previous studies, Klebsiella

was also found to be increased in squamous lung carcinoma (37),

which is consistent with our findings.

Microbiota and its derived metabolite exert one of the main

functions of its carcinogenesis and tumor progression (38, 39).

Analysis of the function of differential metabolites can better

characterize the molecular mechanisms of ESLC development.

Compared with BPD, the differential metabolites of GGN were

mainly enriched in phospholipase D (PLD) signaling pathway and

arachidonic acid metabolism, whereas the upregulated metabolites
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of the SN group were mainly enriched in the steroid hormone

biosynthesis pathway. PLD molecular isoforms and their hydrolysis

product phosphatidic acid (PA) can activate the mTOR signaling

pathway in several ways, enhancing protein synthesis in cancer cells

and promoting cancer cell survival (40). In addition, arachidonic

acid metabolism acts as a bridge between inflammation and cancer

(41). Koundouros et al. demonstrated that arachidonic acid

metabolism and oncogenic PIK3CA gene-associated lipid

alterations are related (19). Thus, we speculate that lipid

metabolism may exert an important role in GGN. In contrast,

important products (e.g., estrogen) produced in the steroid

hormone biosynthesis pathway which was mainly enriched in SN

could stimulate epidermal growth factor receptor (EGFR) activity in

lung adenocarcinoma and promote cancer cell growth; high EGFR

mutation rates are associated with estrogen receptor ERb expression
(42). Therefore, the detection of ERb expression in SN may be a

predictor of the efficacy of targeted therapy in SN. Next, we found

that the citrate cycle (TCA cycle) and histidine metabolism pathway

were significantly up-regulated in the GGN group compared to the

SN group, suggesting that the energy production of cancer cells in

the GGN group was higher than that in the SN group. Enough

energy contributes GGN to progress to SN.

When comparing LUSC with BPD, oxidative glutathione and

reductiveglutathionewereheavilymultiplied inLUSC.Thedifferential

metabolites were mainly enriched in the glutathione metabolism

pathway. This is consistent with the study of Zhang et al., who

found that increased glutathione synthesis in LUSC can generate

and maintain high levels of intracellular redox homeostasis to

exacerbate LUSC carcinogenesis and progression (43). Therefore,

glutathione metabolism is important in squamous carcinoma and

targeting the glutathione pathway may inhibit squamous carcinoma.

In addition, when comparing the two groups of solid nodes (SN and

LUSC), we found that the metabolic pathways in LUSC were still

mainly enriched in the glutathione metabolism pathway, while the

pathways upregulated in the SN group mainly included steroid

hormone biosynthesis. This is consistent with the results above, and

it further confirms the reliability of our results.

The results of the association analysis suggested that differential

microbiota in the GGN may function through NAAG, a storage

form of glutamic acid (44). The NAAG–glutamic acid cycle is a

newly identified important metabolic reservoir present only in the

metabolic reprogramming process of cancer cells. It was reported

that glutamine production of NAAG was significantly increased in

oncogenic cells compared to non-oncogenic cells. Moreover,

plasma NAAG concentration was positively correlated with

tumor size, and its concentration changes preceded tumor size

changes, making plasma NAAG a potential biomarker for

noninvasive monitoring of tumor growth (45). Therefore, our

research team is collecting blood from GGN patients to analyze

the plasma NAAG levels in GGN patients. The results will be

presented in future research.

Next, we compared two types of adenocarcinomas (GGN and

SN) and found that differential microbes enriched in GGN were

negatively correlated with GNK and 3-methylhistamine. Considering

that GNK and 3-methylhistamine decreased in the GGN group, we

speculated that this might be related to the inertness of the GGN.
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Because GNK is GlcNAc kinase (46), the reduction of GNK may lead

to a lower level of energy metabolism in GGN (47). 3-

Methylhistamine is a degradation product of histamine. Some

studies have reported that histamine and histamine receptor H1

(HRH1) induce T cell dysfunction and immunotherapy resistance,

promoting tumor growth in mice and humans (48). Therefore, the

reduced level of 3-methylhistamine implies that the GGN is not

affected much by histamine pro-tumor growth and shows inertia.

Compared with BPD, the differential microbiota in LUSC was

mainly positively correlated with creatine and N-acetylmethionine.

These metabolites are all closely related to tumor promotion. In

colorectal cancers, creatine synthesis enhances cancer metastasis by

the upregulation of Snail and Slug expressions (49). N-

Acetylmethionine is a derivative of the essential amino acid

methionine (DL-methionine, Met). Methionine was utilized

massively by tumor cells, which affects T-cell function. It is an

immune evasion mechanism, and targeting cancer methionine

signaling may provide an immunotherapy approach (50). Next, we

compared LUSC with SN and confirmed again the important role of

creatine in LUSC. In addition, our results showed that D-(+)-galactose

was negatively correlated with differential microbiota in LUSC, which

is consistent with a previous study because the research demonstrated

that galactose has a protective effect on tumor growth (51).

This study utilized microbiomics and metabolomics data to

construct a random forest model to identify potential biomarkers

that can predict ESLC. We identified D-2-aminoadipic acid, N-[3-

(aminosulfonyl) phenyl]-2,3-dihydro-1,4-benzodioxine-2-

carboxamide, and 3-methylhistamine as potential markers for

distinguishing GGN, SN, and LUSC from BPD, respectively.

However, as all experimental samples in this study were tumor

tissues, their availability is limited. In subsequent research, we plan

to validate these predicted potential biomarkers using blood, sputum,

or bronchoalveolar lavage fluid or to further confirm the utility of

these biomarkers through studies involving cells, animals, and clinical

cohorts. It was worth noticing the higher prevalence of male smokers

among patients diagnosed with LUSC, potentially attributed to local

lifestyle habits. Lastly, compared to the samples commonly used in

previous microbiome studies on lung cancer, such as bronchial fluid,

airway brushings, and sputum, our study directly utilized surgical

specimens of pulmonary nodules to investigate the impact of lung

microbiota in tumorigenesis. This approach effectively avoids the

issue of cross-contamination between the upper and lower

respiratory tract, thus providing better reliability in investigating

the development mechanisms of ESLC.
Supplementary information

In order to evaluate the complexity of the community

composition and compare the differences between samples

(groups), beta diversity was calculated based on weighted and

unweighted unifrac distances in QIIME2.

Cluster analysis was performed with principal component

analysis (PCA), which was applied to reduce the dimension of the

original variables using the ade4 package and ggplot2 package in R

software (Version 3.5.3).
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Principal coordinate analysis (PCoA) was performed to obtain

principal coordinates and visualize differences of samples in complex

multi-dimensional data. A matrix of weighted or unweighted unifrac

distances among samples obtained previously was transformed into a

new set of orthogonal axes, where the maximum variation factor was

demonstrated by the first principal coordinate and the second

maximum variation factor was demonstrated by the second

principal coordinate, and so on. The three-dimensional PCoA

results were displayed using QIIME2 package, while the two-

dimensional PCoA results were displayed using ade4 package and

ggplot2 package in R software (Version 2.15.3).

To study the significance of the differences in community structure

between groups, the adonis and anosim functions in the QIIME2

software were used to perform an analysis. To find out the significantly

different species at each taxonomic level (phylum, class, order, family,

genus, and species), the R software (Version 3.5.3) was used to perform

a MetaStat and T-test analysis. The LEfSe software (Version 1.0) was

used to perform a LEfSe analysis (LDA score threshold: 4) so as to find

out the biomarkers. Furthermore, to study the functions of the

communities in the samples and find out the different functions of

the communities in the different groups, the PICRUSt2 software

(Version 2.1.2-b) was used for function annotation analysis.

The training set and validation set used in this study were derived

from a cohort of patients diagnosed with different types of pulmonary

nodules, including ground glass nodules (GGN), solid nodules (SN),

benign pulmonary disease (BPD), and lung squamous cell carcinoma

(LUSC). The data was collected from clinical records and included

various features such as metabolite levels and microbial abundance.

The entire dataset was initially split into two subsets: a training

set and a validation set, following an 80/20 split. The training set,

comprising 80% of the data, was used to train the Random Forest

models to identify patterns associated with different pathological

types. The remaining 20% of the data was set aside as the validation

set to evaluate the model’s performance and ensure generalizability.

Additionally, k-repeat cross-validation was used on the training set

to further validate the consistency and robustness of the model

during the training phase.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/,

BIOPROJECT PRJNA1012494.

Ethics statement

This study adhered to the Helsinki Declaration of the World

Medical Association. Biomedical Ethics Committee of West

China Hospital, Sichuan University officially approved the study

which can be extracted from the Chinese Clinical Trials Registry

(ChiCTR2100052715). The Informed written consent was obtained

from each patient before enrolment. The clinicopathological

information was collected, then patient identifiers were removed. The

studies were conducted in accordance with the local legislation and
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fonc.2024.1492571
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2024.1492571
institutional requirements. The participants provided their written

informed consent to participate in this study. Written informed

consent was obtained from the individual(s) for the publication of

any potentially identifiable images or data included in this article.
Author contributions

XQZ: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. DL: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft. YS: Data curation, Formal

analysis, Writing – original draft. NZ: Writing – review & editing.

FY: Writing – review & editing. JZ: Software, Writing – review &

editing. YL: Data curation, Formal analysis, Writing – review &

editing. QZ: Writing – review & editing. XZ: Conceptualization,

Data curation, Formal analysis, Funding acquisition, Investigation,

Methodology, Project administration, Resources, Software,

Supervision, Validation, Visualization, Writing – review &

editing. YW: Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This study

received partial financial support from the Sichuan Provincial Natural

Science Fund (2023NSFSC1890), the China Postdoctoral Science

Foundation (2023M742488), the Sichuan Provincial Natural Science

Fund (24NSFSC6690), the Postdoctoral Fund of West China Hospital
Frontiers in Oncology 12
(NO: 2023HXBH004), and the "From 0 to 1" Innovative Research

Project of Sichuan University (2023SCUH0031).

Acknowledgments

We would like to thank the Sichuan Provincial Natural Science

Fund (2023NSFSC1890), the China Postdoctoral Science Foundation

(2023M742488), the Sichuan Provincial Natural Science Fund

(24NSFSC6690), the Postdoctoral Fund of West China Hospital

(NO: 2023HXBH004), and the "From 0 to 1" Innovative Research

Project of Sichuan University (2023SCUH0031).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1492571/

full#supplementary-material
References
1. Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, et al.
Microbiome dysbiosis and epigenetic modulations in lung cancer: from pathogenesis to
therapy. Semin Cancer Biol. (2022) 86:732–42. doi: 10.1016/j.semcancer.2021.07.005

2. Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer
initiation, development and therapeutic efficacy. Signal Transduction Targeted Ther.
(2023) 8:35. doi: 10.1038/s41392-022-01304-4

3. Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of
cancer development. Neoplasia. (2022) 32:100829. doi: 10.1016/j.neo.2022.100829

4. Serino M. Molecular paths linking metabolic diseases, gut microbiota dysbiosis
and enterobacteria infections. J Mol Biol. (2018) 430:581–90. doi: 10.1016/
j.jmb.2018.01.010

5. Liu N-N, Ma Q, Ge Y, Yi C-X, Wei L-Q, Tan J-C, et al. Microbiome dysbiosis in
lung cancer: from composition to therapy. NPJ Precis Oncol. (2020) 4:33. doi: 10.1038/
s41698-020-00138-z

6. Chen J, Li T, Ye C, Zhong J, Huang JD, Ke Y, et al. The lung microbiome: A new
frontier for lung and brain disease. Int J Mol Sci. (2023) 24. doi: 10.3390/ijms24032170

7. Zhao Y, Liu Y, Li S, Peng Z, Liu X, Chen J, et al. Role of lung and gut microbiota
on lung cancer pathogenesis. J Cancer Res Clin Oncol. (2021) 147:2177–86.
doi: 10.1007/s00432-021-03644-0

8. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal
Immunol. (2019) 12:843–50. doi: 10.1038/s41385-019-0160-6

9. Wang F,MengW,Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation
and gastric cancer. Cancer Lett. (2014) 345:196–202. doi: 10.1016/j.canlet.2013.08.016
10. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic
commensal promotes colon tumorigenesis via activation of T helper type 17 T cell
responses. Nat Med. (2009) 15:1016–22. doi: 10.1038/nm.2015

11. Tsay JJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P, et al. Airway
microbiota is associated with upregulation of the pi3k pathway in lung cancer. Am J
Respir Crit Care Med. (2018) 198:1188–98. doi: 10.1164/rccm.201710-2118OC

12. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal
microbiota promote lung cancer development via Gd T cells. Cell. (2019) 176:998–
1013.e16. doi: 10.1016/j.cell.2018.12.040

13. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al.
Reduced lung-cancer mortality with low-dose computed tomographic screening. N
Engl J Med. (2011) 365:395–409. doi: 10.1056/NEJMoa1102873

14. Gould MK, Tang T, Liu IL, Lee J, Zheng C, Danforth KN, et al. Recent trends in
the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. (2015)
192:1208–14. doi: 10.1164/rccm.201505-0990OC

15. Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: A review.
Jama. (2022) 327:264–73. doi: 10.1001/jama.2021.24287

16. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al.
European position statement on lung cancer screening. Lancet Oncol. (2017) 18:e754–
e66. doi: 10.1016/s1470-2045(17)30861-6

17. Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British
thoracic society guidelines for the investigation and management of pulmonary
nodules. Thorax. (2015) 70 Suppl 2:ii1–ii54. doi: 10.1136/thoraxjnl-2015-207168
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1492571/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1492571/full#supplementary-material
https://doi.org/10.1016/j.semcancer.2021.07.005
https://doi.org/10.1038/s41392-022-01304-4
https://doi.org/10.1016/j.neo.2022.100829
https://doi.org/10.1016/j.jmb.2018.01.010
https://doi.org/10.1016/j.jmb.2018.01.010
https://doi.org/10.1038/s41698-020-00138-z
https://doi.org/10.1038/s41698-020-00138-z
https://doi.org/10.3390/ijms24032170
https://doi.org/10.1007/s00432-021-03644-0
https://doi.org/10.1038/s41385-019-0160-6
https://doi.org/10.1016/j.canlet.2013.08.016
https://doi.org/10.1038/nm.2015
https://doi.org/10.1164/rccm.201710-2118OC
https://doi.org/10.1016/j.cell.2018.12.040
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.1164/rccm.201505-0990OC
https://doi.org/10.1001/jama.2021.24287
https://doi.org/10.1016/s1470-2045(17)30861-6
https://doi.org/10.1136/thoraxjnl-2015-207168
https://doi.org/10.3389/fonc.2024.1492571
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2024.1492571
18. Isaacs J, Stinchcombe TE. Neoadjuvant and adjuvant systemic therapy for early-
stage non-small-cell lung cancer. Drugs. (2022) 82:855–63. doi: 10.1007/s40265-022-
01721-3

19. Ma Y, Qiu M, Wang S, Meng S, Yang F, Jiang G. Distinct tumor bacterial
microbiome in lung adenocarcinomas manifested as radiological subsolid nodules.
Transl Oncol. (2021) 14:101050. doi: 10.1016/j.tranon.2021.101050

20. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The 8th edition lung cancer stage
classification. Chest. (2016) 193.

21. Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, et al. The diversity of gut
microbiome is associated with favorable responses to anti-programmed death 1
immunotherapy in chinese patients with nsclc. J Thorac Oncol. (2019) 14:1378–89.
doi: 10.1016/j.jtho.2019.04.007

22. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor
microbiome diversity and composition influence pancreatic cancer outcomes. Cell.
(2019) 178:795–806.e12. doi: 10.1016/j.cell.2019.07.008

23. Wang K, Huang Y, Zhang Z, Liao J, Ding Y, Fang X, et al. A preliminary study of
microbiota diversity in saliva and bronchoalveolar lavage fluid from patients with
primary bronchogenic carcinoma. Med Sci Monit. (2019) 25:2819–34. doi: 10.12659/
msm.915332

24. Zeng W, Zhao C, Yu M, Chen H, Pan Y, Wang Y, et al. Alterations of lung
microbiota in patients with non-small cell lung cancer. Bioengineered. (2022) 13:6665–
77. doi: 10.1080/21655979.2022.2045843

25. Bagheri Z, Moeinzadeh L, Razmkhah M. Roles of microbiota in cancer: from
tumor development to treatment. J Oncol. (2022) 2022:3845104. doi: 10.1155/2022/
3845104

26. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and
colorectal cancer. Nat Rev Microbiol. (2014) 12:661–72. doi: 10.1038/nrmicro3344
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