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PULSAR (personalized, ultra-fractionated stereotactic adaptive radiotherapy) is

the adaptation of stereotactic ablative radiotherapy towards personalized cancer

management. It has potential to harness the synergy between radiation therapy

and immunotherapy, such as immune checkpoint inhibitors to amplify the anti-

tumor immune response. For the first time, we applied a transformer-based

attention mechanism to investigate the underlying interactions between

combined PULSAR and PD-L1 blockade immunotherapy, based on the

preliminary experimental results of a murine cancer model (Lewis Lung

Carcinoma, LLC). The radiation and administration of a-PD-L1 were viewed as

two external stimulation signals occurring in a temporal sequence. Our study

demonstrates the utility of a transformer model in 1) predicting tumor changes in

response to specific treatment schemes, and 2) generating self-attention and

cross-attention maps. The cross-attention maps serve as a biological

representation of the semantic similarity between source and target sentences

in neural translation, offering insights into the causal relationships of the PULSAR

effect. Our model offers a unique perspective with the potential to enhance the

understanding of the temporal dependencies of the PULSAR effect on time, dose,

and T cell dynamics. In a broader context, our proposed framework offers the

potential to explore varying intervals and doses for subsequent treatments while

monitoring the biological parameters impacted by these perturbations. This

approach can lead to more personalized and rational radiation or

drug interactions.
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1 Introduction

The field of combining radiotherapy and immunotherapy is

rapidly evolving. The two can be synergized through various

mechanisms, including immunogenic cell death, enhanced tumor

antigen presentation, tumor microenvironment modulation, and

abscopal effect (1–5). For example, radiation therapy can trigger cell

death within tumor cells, which release damage-associated

molecular patterns and tumor-specific antigens. These released

molecules are to be recognized by antigen-presenting cells and act

as signals to alert the immune system, initiating an adaptive

immune response against the tumor. Concurrently, immune

checkpoint inhibitors (ICI), can enhance this immune response

by activating T cells to recognize and attack tumor cells presenting

these antigens. One of the most well-known immune checkpoints

targeted by these inhibitors is the programmed cell death protein 1

(PD-1) receptor and its ligands PD-L1 and PD-L2. By blocking the

interaction between PD-1 and its ligands, ICI drugs such as a-PD-
L1, prevent T cell exhaustion and enhance their ability to kill

tumor cells.

Despite promising progress, combination of the two treatments

has yielded lackluster results in both clinical and preclinical studies

(6–15). One clinical trial studied the outcome of multisite, more

conventionally delivered Stereotactic Body Radiation Therapy

(SBRT) followed by pembrolizumab, reporting an overall

response rate of 13.2% in advanced solid tumors (11). Another

PEMBRO-RT phase 2 clinical trial in non-small cell lung cancer

demonstrated a doubling in overall response when patients were

treated with SBRT (3×8 Gy) followed by pembrolizumab (12). The

synergistic impact has been extensively explored in preclinical

models as well. One study delivered 10 to 24 Gy in 1 to 3 daily,

or every other day fractions and began PD1/PD-L1 checkpoint

blockade therapy within a day of radiation (10). Another preclinical

study included 3 daily SBRT fractions of 8 Gy, followed by a-
CTLA4 treatment, beginning on the day of the last fraction (13).

Both studies demonstrated additive benefits when immune

checkpoint inhibitor (ICI) blockade is given concomitantly with

radiation. Moreover, there are conflicting reports regarding the

optimal timing of PD-L1 therapy in relation to radiation (10, 13).

While some studies showed no additive benefit when PD-L1

therapy was administered 6 days after a single dose of radiation

(14), others suggested clear benefits of PD-L1 therapy given every

21 days after radiation (15). Defining the ideal combination

continues to pose a considerable challenge.

Our team at UT Southwestern Medical Center (UTSW) is

exploring PULSAR (personalized, ultra-fractionated stereotactic

adaptive radiotherapy), which aims to deliver tumoricidal doses

in a pulsed mode with long intervals (16). Longer intervals spanning

weeks or months not only allow for greater recovery of normal

tissue following an injury but may also help maximize potential

synergies resulting from concomitant immune-oncology

approaches. As adaptive immune response typically takes time to

develop and reach its full effectiveness, exploring its temporal

interaction with pulsed, more independent radiation doses

(henceforth referred to as the PULSAR effect), presents an

intriguing opportunity.
Frontiers in Oncology 02
Optimizing treatment timing is crucial for maximizing the

synergy between radiation and ICI therapy. Modeling synergy is

challenging due to the complexities of both physical and biological

processes involved. Recently, we used a recurrent neural network

(RNN) to predict volume trajectories more accurately than

conventional methods (17). Building on this, we propose

employing a transformer model with attention mechanisms to

further explore the temporal interactions between two treatment

sequences. Inspired by neural machine translation, where a model

translates sentences from one language to another, each “word” in

our study corresponds to either radiation pulse or a-PD-L1 dose.

Transformers are powerful and flexible architectures that have

revolutionized natural language processing and beyond (18, 19).

Their capability to handle long-range dependencies and parallelize

tasks makes them suitable for processing sequential signals. In

addition, the attention mechanisms enable the model to identify

interactions between various parts of the sequence. We speculate

that the cross-attention maps in our study may serve as a biological

equivalent representation of the interaction, such as semantic

similarity, observed between source and target sentences in

neural translation.

In our study, the radiation and administration of a-PD-L1 are

viewed as two external stimulation signals occurring in a temporal

sequence. We developed the transformer model to accomplish two

objectives: 1) predict tumor changes for a given treatment scheme,

and 2) provide self-attention and cross-attention maps. From our

perspective, we consider the second objective to be of greater

significance than the first, as it has the potential to provide deeper

insights into the causal relationships underlying the PULSAR effect,

as well as more personalized and rational radiation or

drug interactions.
2 Methods and materials

2.1 Problem formulation

Given the complexities of interactions involved in

radioimmunotherapy, it is challenging to model the response of

individual components such as tumor growth, radiation damage, T-

cell infiltration, and signaling pathways. To understand this better,

several characteristics of involved physical and biological processes are

summarized below. For instance, tumor growth with neither radiation

nor PD-L1 inhibitor follows an exponential model. The killing effect of

a single radiation pulse is commonly modeled through a linear-

quadratic (LQ) model or a universal survival model (20). After the

radiation is delivered on a given day, the repopulation of tumor cells is

time dependent and follows an exponential model, dependent on the

half-time of repopulation (from less than a day to several weeks) and

lag time (21). The interplay between radiation and checkpoint

inhibitors such as PD-L1 antibody is even more complicated. On

one hand, high dose radiation promotes both local and systemic

immune responses and recruits CD8+ cytotoxic T cells to tumor

sites by mechanism, such as the c-GAS-STING cytosolic DNA-

sensing pathway (22). The recruitment process is time-dependent

and takes up to several days. On the other hand, interferon gamma
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released by CD8+ T cells, leads to compensatory PD-L1 expression on

tumor as a mechanism to prevent autoimmunity. Meanwhile, Treg cells

inhibit immune response by elevating the expression of CTLA4 to

inhibit the activities of antigen-presenting cells, and releasing cytokines

such as TGF-b and IL10 to suppress the functions of effector T cells

(23–25). As a result, the net tumoricidal effect of combined therapy

depends on radiation dose, a-PD-L1 dose, time, T cell dynamics and

tumor microenvironment. Furthermore, as radiation pulses are applied

and T cells are continuously recruited to tumor sites, radiations kill

both tumor and T cells. However, there might be a difference between

tumor-resident T cells and newly arrived T cells from lymph nodes in

terms of radiosensitivity (26).
2.2 Small animal experiments

In this study, the impact of radiation schedules on tumor

growth within an immune-resistant mouse model was studied

(Figure 1B). Recognized as a “cold” tumor with low infiltration of

T cells but high infiltration of myeloid-derived suppressor cells

(MDSCs), Lewis lung carcinoma (LLC) offers valuable insights into

the temporal behaviors of the adaptive immune response, as it takes

a longer time to develop and reach its full effectiveness (27). In

addition, differing frommost preclinical models using radiation and

with either daily or every other day fractions (10, 13–15), we tested

radiation pulses with a longer spacing. The experimental protocols

in this manuscript were approved by the Institutional Animal Care

and Use Committee (IACUC) at UT Southwestern Medical Center

(UTSW). The authors confirm that all animal procedures were

performed in accordance with the animal experimental guidelines

set by the IACUC at UTSW. UTSW uses the “Guide for the Care

and Use of Laboratory Animals” when establishing animal research
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standards. The authors also confirm that the study was reported in

accordance with ARRIVE guidelines (https://arriveguidelines.org).

More details about the PULSAR study design can be found in our

previous studies (16, 17). C57BL/6J mice were used, and LLC was

derived from lung cancer of the C57BL/6 line. Tumor cells were

injected subcutaneously on the right leg of mice. 10F.9G2 was used

as an isotype control for a-PD-L1. Mice were administered (i.p) 200

mg a-PD-L1 or 200 mg isotype control according to different

schedules (Supplementary Table S1). Local irradiations were

conducted on a dedicated x-ray irradiator (X-RAD 32, Precision

X-ray, Inc.) (Supplementary Figure S1). The tumor volumes were

measured by length (x), width (y), and height (z), and calculated as

tumor volume = xyz/2. If each length, width, or height of tumor was

larger than 2 cm, the tumor volume was larger than 1500 mm3, or

the mouse had significant ulceration in the tumor (see supporting

materials), this indicated that the mouse reached the survival

endpoint and so was euthanized by exposure to CO2. As a result,

the data collection and volume measurement towards the end of the

study showed an increased degree of variance, which was one of our

study’s limitations. As noted in the study by Moore et al. (16), most

experiments demonstrated no improvement in growth control with

the addition of a-PD-L1 therapy compared to controls. This

unexpected synergy pattern constitutes the PULSAR effect.
2.3 Data pre-processing

For each treatment group, seven or eight animals were

studied, and the measurement of tumor volume exhibited large

variance. From a machine learning perspective, this weakens the

one-to-one relationship between an input and output sequence.

Consequently, data augmentation was necessary for enhancing
FIGURE 1

(A) The transformer model comprises an encoder (left box) and a decoder (right box). For a given external stimulus at a specific time, the attention
score indicates the strength of its interaction to those inputs in the past. An attention score (also known as alignment scores, based on the query
and key vectors) would stay between zero to one, and multiplying it with the value vector yields the context vector to be connected to the
feedforward block for predicting tumor volume change. (B) The timing diagram of the combined therapy in our study. For immunotherapy, either a-
PD-L1 or isotype control was administered. For radiation, different doses were delivered (10, 15, 20, 40 Gy). The first pulse of radiation was delivered
14 days after the implantation. Tumor volume measurements were conducted sequentially on selected days (not every day).
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sample diversity. The details of data processing and feature

extraction are summarized below. Although the measurement was

performed up to 40 days for some animals, an increased percentage

of animals had missing data towards the survival endpoint due to

severe ulceration. Therefore, the total time course was set to be 28

days (four weeks) for all samples to ensure data consistency. In total,

we selected 24 treatment groups. For each group, the mean was

computed at each measurement time point and fifty samples were

randomly generated by uniformly sampling within a range of either

15% or 2% levels of the mean (e.g., two noise levels). For each group

(with the same input), a higher noise level would lead to greater

variance in the predicted output. As reflected in Figure 2, we

acknowledge that synthesizing data in this manner does not

address intra-animal variability and may obscure the overall

trend. In this preliminary study, its primary purpose is to help

prevent overfitting and improve generalization capability. 1200

samples were used for training (50 samples per group, 24

groups), and each sequence consisted of 28 steps (days), with two

inputs and one output. The two inputs corresponded to radiation

and a-PD-L1, respectively. The output sequence represented the

tumor volume change, and if no input or output was available at a

step, the values were set to zero.
2.4 Transformer model and
attention mechanism

The concept was adopted from machine translation, where a

model translates a sentence from a source language to a sentence in

a target language. In simpler terms, the transformer model focuses

attention on specific input words, and the attention acts as a link

connecting the encoder and decoder. Each word in an input

sentence is assigned its own query, key, and value vectors. These
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vectors are made by multiplying the encoder’s representation of the

word with three distinct weight matrices developed during training.

In this study, each word in a sentence corresponds to an input,

representing either a radiation pulse or an a-PD-L1 dose. The

execution of an attention layer involves five steps: 1) preparing

hidden states and deriving a score for the encoder hidden state, 2)

passing all scores through a softmax layer to generate attention

distribution, 3) multiplying each encoder hidden state by its

softmax score to acquire the alignment vector or annotation

vector, 4) summing the alignment vectors to obtain the

aggregated information from the previous step, and 5) inputting

the context vector into the decoder. Due to the small size of the

dataset, the transformer model was kept at a basic form with only

536 parameters. Every “word” represented a five-bit vector, with one

bit indicating the physical input (based on the presence of a-PD-L1
or radiation dose) and four bits for positional embedding. A causal

mask was applied to prevent the attention mechanism from sharing

information about tokens at future positions (“don’t look ahead”),

enforcing the autoregressive property during both training and

inference. The decoder was constructed similarly, differing only in

the output stage where a full connection was employed to predict

tumor volume. We developed the transformer model using the

Keras package (https://github.com/keras-team/keras).

To facilitate a better understanding of our approach, several

points should be emphasized. Firstly, the transformer model focuses

on the mean output of each group to identify differences in

temporal response, neglecting inter-animal variation (e.g., noise

level: 2%). Secondly, the tumor volume change at a specific time

point is interconnected with all preceding inputs. The cumulative

effect is implicitly considered by the transformer model. Thirdly,

our current goal is to identify the PULSAR effect and potential

synergy only in a qualitative manner. Quantitative analysis, if

possible, needs to be postponed until additional biological
FIGURE 2

Illustration of tumor volume change under different delivery schemes for four pairs (A–D). More details can be found in Supplementary Table S1 and our
previous publication (17). To increase sample diversity, each measurement’s distribution is represented by uniform sampling within ±10% of the mean.
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correlates become available, such as the change of T cells. Fourthly,

the attention maps in our model, reflecting the link between two

treatment sequences, are more abstract compared to the semantics

in neural translation.

Attention  Weigths = softmax(
Q   ·  KT

ffiffiffiffiffi
dk

p ) (1)

Volume  Output   = linear   (Attention  Weigths ·  V)

A plausible explanation of the link between the cross-attention

map and the PULSAR effect is presented below. Inside the

transformer model (Figure 1A), Q (queries), K (keys), and V

(values) are vectors derived from the input data for calculating

attention weights, as shown in Equation 1. Q represents the current

token in the decoder’s input sequence for which we want to

compute the attention weights. K represents all tokens in the in

the encoder’s input sequence. V represents the actual values of the

encoder’s input sequence to be used to generate the predicted

output. The attention weight represents the importance of one

token to another in a sequence, which is calculated using the dot

product of the query (Q) and key (K) vectors, scaled by the square

root of the key vectors’ dimension. In simple terms, it tells how

much focus should be given to each token in the sequence. In

machine translation, this reflects semantic similarity. In our study, it

represents the temporal interaction between radiation and ICI

drugs. These weights are then used to compute a weighted sum of

the values V to get the final output, which is the volume change at

selected time points in our investigation (Figure 1B). Both self-

attention in the encoder (radiation) and cross-attention between the

encoder and decoder were investigated. The latter helped in

studying the relationship between radiation and immunotherapy

concerning elapsed days.
2.5 Model training

The loss function was calculated based on the non-zero points

(e.g. with measurements performed) only. The AdamW algorithm

with default settings was used for optimization (learning rate =

0.0001, weight decay = 0.0001, beta1 = 0.9, beta2 = 0.999, epsilon =

1×10−8) (28). The batch size was 32 and the total epoch iteration

was 5000. In total, 1200 samples (24 groups, 50 samples in each

group) were generated from model training (80%) and testing

(20%). To ease the learning task, the volume change between two

adjacent measurement points was used as output. The L2 loss was

used, representing the discrepancy between the predicted volume

change (VC) (represented by Y in Equation 2) and experimentally

measured VC. The VC difference (DVC) assumed either positive or

negative values. If tumor volume was measured on 6 different days,

we would have five DVC values. To assess the generalization

capability and mitigate potential overfitting, holdout cross-

validation was conducted. This involved testing the transformer

model on 100 randomly sampled samples (out of 1200) that were

not included in the training dataset. Note that summing five outputs

would yield the total tumor volume at the endpoint (Figure 1B).
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However, assessing changes at multiple time points is preferable to a

single-point assessment due to the additional information it

provides. In other words, it allows us to identify the temporal

evolution of synergy with greater granularity.

VCi = Volumei+1 − Volumei          

DVCi = Yi − VCi   (2)
3 Results

3.1 Prediction of tumor volume change

Here we briefly present four examples shown in Figure 2 (noise

level: 10%), to aid in understanding the AI modeling. In the absence

of radiation (Figure 2A), there is no significant difference observed

between the control group (group 1) and the a-PD-L1 antibody

group (group 2). In the case of a single pulse of 20 Gy, there is a

noticeable benefit in tumor control for group 4 (a-PD-L1)

compared to group 3 (without a-PD-L1), which becomes more

pronounced over time (Figure 2B). To clarify, the first measurement

occurs three days before the initial radiation, the second on the day

of the first radiation, and the third four days after the first radiation

pulse. The overall trend in Figure 2C (a single pulse of 40 Gy, group

5: without a-PD-L1, group 6: with a-PD-L1) and Figure 2D (two

pulses of 20 Gy with a 10-day interval, group 7: without a-PD-L1,
group 8: with a-PD-L1) is like Figure 2B, while the PULSAR effect is

observed toward the end of the trajectory and is less discernible due

to the presence of large error bars. For additional cross-group

comparisons in terms of PULSAR effect, please refer to our

previous publication (17).

The training and validation loss converged after around 5000

epochs, showing no noticeable overfitting (Figure 3). In Figures 4

and 5, the prediction of tumor volume is presented for the noise

level of 2% and 10%, respectively. In Figure 4, each bar represents

the change between two adjacent measurements (only the mean is

shown). For all groups, good agreement between predicted and

experimental outcomes is observed. The discrepancy of a single bar

falls within the range of -57 cm3 to 61 cm3 (e.g., the 5th bar in group

9, the 1st bar in group 21, etc.).

In Figure 5, each bar represents the mean and standard

deviation of the prediction error based on a randomly selected

pool of 20 samples from 50. For most bars, the overall prediction

accuracy remains within +/- 25 cm3 (e.g., good overall accuracy for

each group), but a few exhibits large values over 50 cm3 (e.g., the 1st

and 2nd bars in group 15, the 1st bar in group 16, etc.). The 10%

noise level results in larger error bars and reduced accuracy

compared to the 2% noise level, highlighting the adverse impact

of data augmentation through uniform sampling for our task (i.e.,

one input, multiple outputs). From a machine learning perspective,

the added noise obscures the overall trend of each volume trajectory

and “confuses” the AI model. For this reason, we only selected

the noise level of 2% for the subsequent analysis of the

attention mechanism.
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FIGURE 4

Predicted tumor volume change (mean value) for each group (noise level=2%). Refer to Supplementary Table S1 in supporting materials for the
detailed schedule of each group. Vertical axis: Volume change in cm3. Horizontal axis: Index of Measurement.
FIGURE 3

Training-loss and validation-loss curves in terms of mean-squared error as a function of epochs (batch size=32, noise level=10%).
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3.2 Self-attention maps

Figure 6 presents the self-attention maps (radiation vs.

radiation). For both group 6 (“40Gyd1”, a single radiation of 40

Gy on day 1, with a-PD-L1) and group 4 (“20Gyd1”, with a-PD-
L1), the impact of radiation is observable and the attention persists

for an extended period of up to 20 days, with the former exhibiting a

higher attention score due to a higher dose. The comparison

between group 4 and group 8 (“20Gyd1 + 20Gyd10”, with a-PD-
L1) shows that the second radiation pulse shifts the attention by 10

days and mitigates the attention score of the first radiation pulse

after day 10. Similarly, between group 10 (“10Gyd1 + 10Gyd2”, with

a-PD-L1) and group 12 (“10Gyd1 + 10Gyd10”, with a-PD-L1), the
attention is shifted by 10 days when the two radiation pulses are

spaced by 10 days. The cause of such an attention shift is not clear

and may be attributed to the direct killing of both tumor cells and T

cells by the second radiation, “resetting” the system to a new state.
3.3 Cross-attention maps

In Figure 7, the cross-attention plots reveal the temporal

dynamics of the interaction between two treatments (radiation vs.

a-PD-L1). To understand the respective contributions, the

difference map between the two groups identifies the exclusive

effect of either radiation or a-PD-L1 through straightforward

arithmetic subtraction. For instance, both group 1 (no radiation)
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and group 3 (“20Gyd1”), were administered the isotype control, but

only group 3 experienced a single 20 Gy radiation pulse on day 1.

The difference in the attention score (“Group 3- Group 1”) is thus

solely attributed to radiation, which peaks on the 4th row and

diminishes gradually over time. It is important to note that the

relationship is not one-to-one, but rather one-to-many, indicating

that the synergy (in the context of tumor volume change as output)

persists for a finite period, gradually diminishing in strength.

Another interesting pattern arises in the comparison between

group 4 (“20Gyd1”, matching group 3 but with a-PD-L1) and

group 2 (no radiation, matching group 1 but with a-PD-L1). The
impact of radiation is found to peak on the 10th row and the 13th

column, where the maximum synergy occurs. Such a “lagging”

pattern also emerges in the comparison between group 4 and group

3, where the difference is ascribed solely to a-PD-L1 with the

presence of a single radiation dose at the onset. These results imply

that the PULSAR effect is not instantaneous but takes time to

build up.

Three additional vignettes below further illustrate how the

PULSAR effect depends on radiation dose and scheduling.

Between group 6 (“40 Gyd1”, with a-PD-L1) and group 4 (“20

Gyd1”, with a-PD-L1), the former one displays higher attention

(positive difference) in most pixels, except for a few pixels where

there is a negative difference (e.g., on the 4th and 10th rows). This

suggests that although a dose of 40 Gy has a more pronounced

killing effect, it may not necessarily lead to optimal synergy at other

time points.
FIGURE 5

Predicted tumor volume change of 50 generated samples for each group (noise level=10%). The bars represent the average value and standard
deviation of the prediction error. Refer to Supplementary Table S1 for the detailed schedule of each group. Vertical axis: Volume change in cm3.
Horizontal axis: Index of Measurement.
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FIGURE 7

Visual representation of cross-attention maps for selected groups group (noise level=2%). The horizontal axis represents the sequence of a-PD-L1
sequence, while the vertical axis represents the sequence of radiation. The triangular pattern emerges from the application of a causal mask, which
ensures that each location only has access to the locations that come before it. Refer to Supplementary Table S1 for the detailed schedule of
each group.
FIGURE 6

Visual representation of self-attention maps for selected groups group (noise level=2%). Both horizontal and vertical axes are associated with the
sequence of radiation. The triangular pattern emerges from the application of a causal mask, which ensures that each location only has access to
the locations that come before it. Pixels with higher values indicate greater attention and stronger interaction. Refer to Supplementary Table S1 for
the detailed schedule of each group.
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In the comparison between group 6 (“40 Gyd1”, with a-PD-L1)
and group 8 (“20Gyd1 + 20Gyd10”, with a-PD-L1), the left half of
the attention map exhibits the same pattern as in Group 6 - Group 4

(note the different scale of the color bar). One pattern emerges in

the region corresponding to the second 20 Gy pulse (day 10 on the

axis of radiation): the attention score flips its sign for multiple

pixels, indicative of the change of attention (interaction) triggered

by the second pulse of 20 Gy. Another comparison is shown

between group 7 (“20Gyd1 + 20Gyd10”, without a-PD-L1) and

group 8 (“20Gyd1 + 20Gyd10”, with a-PD-L1), illustrating the

dependence of interaction and PULSAR effect on whether a-PD-L1
is used. It differs from the pattern of “Group 4-Group 3” (note the

different scale of the color bar) after 10 days, due to the second 20

Gy pulse.
4 Discussion

Modeling interaction and synergy between concurrent radiation

and ICI therapy is a challenging task. In this preliminary study, we

attempted to tackle that challenge by employing an AI approach.

The transformer model, coupled with the attention mechanism,

leverages its unique capacity to process sequential information and

capture underlying correlations (18, 19). As illustrated in Figures 4

and 5, it can predict the overall trend of tumor volume change for

up to three weeks. The patterns depicted in Figures 6, 7 further shed

light on the temporal interplay between the two. We would like to

emphasize that for the time being, many of our conclusions are

highly speculative and we do not yet fully understand the

interpretation of attention maps. Our work lays the foundation

for exploring the PULSAR effect, however at this point several

interpretations are speculative and further research with more

comprehensive data is needed.

Three important implications related to the use of a transformer in

Equation 1 should be highlighted. Firstly, the analysis of cross-attention

represents the temporal evolution of interaction and synergy, reflecting

the lasting effects once a treatment is administered. For instance, if

radiation is delivered on day 1, its impact would persist over a finite

period, rather than being instantaneous. Secondly, the attention map

does not indicate a direct correlation with volume change (e.g., not

including V in Equation 1), and the analysis of attention remains only

qualitative rather than quantitative. Thirdly, a novel aspect of our study

is that by maintaining consistency among other variables and altering

one variable at a time through arithmetic operation, such as comparing

with or without radiation, or with or without PD-L1, changes in

attention can be attributed to radiation and a-PD-L1 separately. As a

result, this proposed framework can enable us to explore how the

PULSAR effect shifts when radiation is administered at precise

time points.

Ordinary Differential Equation (ODE)-based mathematical models

have been extensively used for analyzing complex biological systems,

such as utilizing discrete-time equations to model tumor control under

radiation and the interplay between immunotherapy and radiotherapy

(29, 30). The two may complement each other and enhance their

interpretation. In our view, the transformermodel offers several distinct

advantages for investigating the PULSAR effect, particularly in terms of
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“causal relationship.” To elaborate, predicting the tumor volume

trajectory is a curve fitting task. With a limited number of

parameters and compartment models, an ODE-based approach may

not be able to achieve good fitting results, given the complexity of the

biological processes involved in combined RT and ICI treatment.

Moreover, although other AI models such as RNN can identify the

underlying correlation in sequential signals and predict volume change

(17), RNN cannot provide information about temporal interaction.

One unique advantage of the transformer is that the arithmetic

operation in attention maps helps pinpoint the respective

contribution from each treatment as a function of days. When a

more continuous measurement of tumor volume or biological markers

(e.g., cytotoxic T cells and regulatory T cells), we expect the cross-

attention maps like Figure 7 to become smoother and easier to

interpret. An even broader question arises regarding the level of

personalization in combined PULSAR and immunotherapy.

Eventually, by leveraging the temporal interactions at different time

points for each animal, we may identify optimal target-specific

treatment strategies through reinforcement learning, as demonstrated

in previous studies (31, 32).

Whatever modeling tools selected, we posit that a deeper

understanding of synergy in concurrent RT and ICI therapy can

be gained through the examination of the PULSAR effect, an

immunomodulatory impact that can be either inhibitory,

stimulatory, or neutral. From a mechanistic perspective, it helps

gauge the binding between PD-1 and PD-L1 in our study,

contingent on multiple factors such as timing, dose, tumor

microenvironment, and T cell dynamics. The practical application

of our proposed framework is two-fold.

On one hand, it can be used as an in-silico tool to explore new

combinations that maximize synergy and therapeutic efficacy, out of

many treatment permutations. A PULSAR trial including concomitant

ICI blockade can thus be designed and conducted more cost-effectively.

It may also help interpret result discrepancy in published studies

examining the synergy between radiation therapy (whether daily

fractionation or PULSAR) and immunotherapy regarding timing and

dose (6–15). If the interval between two pulses is too brief, the second

radiation may eliminate newly recruited T cells entering the tumor

microenvironment. Conversely, excessively long intervals may hinder

the optimal realization of therapeutic benefits from each treatment.

Overly close intervals between the two pulses may even stimulate

tumor growth. For instance, a study using similar preclinical models

demonstrated accelerated tumor growth and decreased survival when 3

Gy doses were administered daily (33, 34). Likewise, the timing of

administering a-PD-L1 needs to be optimized, given the time-

dependence of the PULSAR effect and tumor microenvironment. In

our previous study (16), the “cold” LLC tumor model exhibited the

maximum synergy when radiation pulses were spaced 10 days apart,

concurrently with the administration of the second a-PD-L1 dose. By
contrast, “hot” tumor models like colon carcinoma (MC38 cells)

exhibited maximum synergy immediately after the first radiation

dose due to pre-existing immunity (16, 35).

On the other hand, it can be combined with biomarker

identification to better investigate causal relationships relevant to

the PULSAR effect. In the next phase of our study, we plan to

integrate information on two aspects: 1) attention maps that
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identify the influence of each treatment, and 2) experimental

measurements of biomarkers related to adaptive immune

response (e.g. CD8+ T cells and Treg cells). By overlaying these

data along the same time axis, we can better understand causal

relationships and rethink answers to several pertinent questions.

For example, is the PULSAR effect instantaneous, or does it take

time to build up? How does the first radiation pulse recruit CD8+ T

cells over time? Does the second radiation pulse kill both tumor

cells and T cells, “resetting” the system to a new state? How does

each treatment alter the number and function of CD8+ T cells, Treg

cells, and other lymphocytes? For instance, one study reported that

T cells (mostly Treg cells) residing in the tumor during radiation

display increased resistance to radiation, playing a critical role in

overall tumor control (26). By contrast, T cells in other body

compartments exhibit less resistance to radiation. Although the

authors did not administer a second dose of radiation after the

initial one, it raises the possibility that a subpopulation of newly

recruited T cells may infiltrate and develop into intratumoral T cells

of different radiosensitivity. If that is the case, maximizing the

PULSAR effect may demand a boost of either radiation dose or a-
PD-L1 dose when repetitive radiation is applied. In addition, several

in-vitro studies have demonstrated the combined effect of Treg

regulation and radiation therapy (23–25). In a study involving

mice irradiated with 10 Gy to the right leg (prostate C1 cells)

(25), Treg cells significantly increased in the spleen, lymph nodes,

blood, and lung within two days after exposure, returning to normal

levels by 10 days. Conjoining the temporal behavior of these

biomarkers with the AI modeling will further validate the

interpretation of the attention mechanisms.

The tasks outlined in this manuscript mark merely the

beginning, with numerous limitations requiring further

investigation. Firstly, the role of transformer-based AI modeling

necessitates scrutiny, and the interpretation of attention mechanism

needs to be validated. Secondly, the small number of groups results

in insufficient sample diversity. The impact of data augmentation,

either through uniform sampling or other methods, on the model’s

performance remains a topic for future exploration. Our current

goal is to discern the overall trend of each volume trajectory. The

current approach with uniform sampling was not statistically

rigorous and has inadvertently introduced some spurious noise

(e.g., 10% noise level). Thirdly, the large error bars depicted in

Figure 2 indicate significant variability in measured tumor volumes

within each group, resulting from both differing responses of

animals and human measurement errors. To enhance precision in

volume measurements, future studies should consider employing

advanced contouring techniques using cone beam CT instead of

manual measurements. Fourthly, the presence of numerous zeros in

the output sequence is due to tumor volumes not being measured

on multiple days. A continuous measurement of tumor volume

would be more advantageous.
5 Conclusion

Combined radiotherapy and immunotherapy are a vast and

intricate field, and AI represents just a small piece of the puzzle in
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unraveling its complexities. We developed a transformer-based AI

model to study the temporal interaction between the two. While the

synergy between them is supported by a growing body of evidence,

this combination is not universally effective for all patients or all

types of cancer. PULSAR presents a unique opportunity to

personalize treatment and harness synergy more effectively. Our

work has potential to enhance our understanding of how the

PULSAR effect depends on time, dose and T cell dynamics. It can

be used for in-silico modeling, facilitating the exploration of

innovative treatment permutations. In a broader context, our

proposed framework allows for the exploration of various

intervals and doses for subsequent treatments while tracking the

biological parameters influenced by these changes. This approach

could result in more personalized and rational strategies for

radiation or drug interactions and support the development of

digital twins for cancer treatment.
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