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Harnessing machine learning
to predict prostate cancer
survival: a review
Sungun Bang, Young Jin Ahn and Kyo Chul Koo*

Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine,
Seoul, Republic of Korea
The prediction of survival outcomes is a key factor in making decisions for

prostate cancer (PCa) treatment. Advances in computer-based technologies

have increased the role of machine learning (ML) methods in predicting cancer

prognosis. Due to the various effective treatments available for each non-linear

landscape of PCa, the integration of ML can help offer tailored treatment

strategies and precision medicine approaches, thus improving survival in

patients with PCa. There has been an upsurge of studies utilizing ML to predict

the survival of these patients using complex datasets, including patient and tumor

features, radiographic data, and population-based databases. This review aims to

explore the evolving role of ML in predicting survival outcomes associated with

PCa. Specifically, we will focus on the applications of ML in forecasting

biochemical recurrence-free, progression to castration-resistance-free,

metastasis-free, and overall survivals. Additionally, we will suggest areas in

need of further research in the future to enhance the utility of ML for a more

clinically-utilizable PCa prognosis prediction and treatment optimization.
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1 Introduction

Prostate cancer (PCa) is a diverse disease for both patients and treatment providers.

Most PCa is indolent in nature; however, a subset of patients suffer from aggressive and

metastatic disease. In a single prostate, PCa is heterogeneous among lesions, and it also

varies between individuals in terms of genetic mutations (1). The treatment strategy is

primarily influenced by prognosis and survival predictions. Decisions are guided by

socioeconomic factors, such as age, overall health, and life expectancy, as well as clinical

factors, including the Gleason grade, TNM staging, and prostate-specific antigen (PSA)

levels (2, 3).

In the age of precision medicine, personalizing patient care is crucial for choosing the

most effective treatment option. Current PCa treatment guidelines rely on risk

stratifications derived from conventional linear models, including survival analysis and

the Cox-proportional hazard model. However, due to the complex, nonlinear interactions
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among various prognostic factors in PCa biology, using only these

linear methods may make predicting individual survival outcomes

challenging. Artificial intelligence (AI) and machine learning (ML)

methods are capable of processing large amounts of data in a

comparatively short amount of time and, therefore, are

increasingly being used in the medical field. ML could be used in

drug discovery, gene expression profile studies, biomarker studies in

multi-omics panel construction and analysis, and digital pathology

slide analysis (4, 5).

In the era of personalized management, there have been efforts

to predict PCa survival using ML algorithms developed based on

individual data. In this review, we present contemporary studies

that have investigated prognostic algorithms regarding biochemical

(BCR)-free survival, castration resistance-free survival,

complication-free survival, metastases-free survival, and overall

survival (OS) and how these study outputs may be translated into

optimal clinical practice. We also provide future outlooks based on

the clinical implications of these studies (Figure 1).
2 BCR-free survival

2.1 Comparison with traditional
regression models

BCR is defined as an elevation of PSA following primary definitive

therapy such as radical prostatectomy or radiation therapy, indicating

recurrence of PCa and, therefore, requires salvage radiotherapy (6). Efforts

to predict BCR-free survival using AI has started as early as in 2001.
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Tewari et al. described artificial neural networks (ANN) to

predict disease recurrence or BCR in clinically localized PCa after

radical prostatectomy. It shows probability estimates for recurrence

at a certain given follow-up time by using clinical available variables

instead of depicting survival curves. They analyzed 1,400 patients

who underwent standard pelvic lymphadenectomy and radical

prostatectomy, with follow-up for at least one year. By employing

ANN, they achieved more accurate predictions compared to

multivariate statistical models. The ANN demonstrated a

sensitivity of 55%, specificity of 90%, positive predictive value of

76%, negative predictive value of 82%, and an overall accuracy of

76%. For regression analysis, these values were 15%, 94%, 64%, 64%,

and 66%, respectively. It is noteworthy that the ANN model did not

provide survival curves but only estimated BCR recurrence rates at a

specific follow-up time after treatment, based on preoperative

variables such as age, race, serum PSA, biopsy Gleason score, and

systemic biopsy-based staging (7, 8).

Wong et al. analyzed 338 patients who had undergone radical

prostatectomy by a single surgeon. They adopted K-nearest

neighbor, logistic regression, and random forest classifier as ML

models and examined the predictability of BCR at one-year post

radical prostatectomy and compared it with that of traditional Cox

regression analysis. Despite the fact that the models were generated

from a relatively small population with limited follow-up and its

database, all three AI models (K-nearest neighbor (area under the

curve [AUC] = 0.903), random forest tree (AUC = 0.924) and

logistic regression (AUC = 0.940) outperformed the traditional

classic Cox regression analysis (AUC = 0.865), suggesting that AI

models predicting survival rates can outperform traditional models,
FIGURE 1

Harnessing machine learning to predict prostate cancer survival: a comprehensive review. ANN, Artificial Neural Networks; kNN, k-Nearest Neighbor;
RF, Random Forest Classifier; NBC, Naïve Bayes Classifier; SVM, Support Vector Machine; CNN, Convoluted Neural Network; XGBooost, Extreme
Gradient Boosting; GBM, Gradient Boosting Machine; DT, Decision Tree; MLP, Multilayer Perceptron; LSTM, Long Short-Term Memory.
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and thus, appropriate for a futuristic approach towards precision

medicine (9).

Tan et al. analyzed 1130 patients who underwent radical

prostatectomy with a median follow-up of 70.0 months. 176

(15.6%) patients developed BCR at a median time of 16.0 months

(interquartile range [IQR] = 11.0 – 26.0). Notably, for predicting a

5-year BCR, Naïve Bayes and random forest tree models achieved

AUC values of 0.894 and 0.888, respectively, outperforming all

three conventional models, which achieved AUC values of 0.799,

0.749, and 0.750 for KATTAN, CAPSURE, and JHH, respectively.

The support vector machine model, with an AUC of 0.855, showed

comparable performance to the three conventional models. Further

external validation with a separate demographic cohort would be

needed to confirm the generalizability of the findings (10).
2.2 BCR-free survival prediction from
pathology samples

The interpretation of pathological samples is a good candidate

for AI technology application since AI algorithms can be utilized to

identify and quantify cancer cells, Gleason score, tumor length,

tumor proportion, grade group, perineural invasion, cribriform

pattern, and intraductal features (4).

From a nested case-control study of 685 patients from Johns

Hopkins, Pinckaers et al. developed a novel deep-learning-based

biomarker developed by Convoluted Neural Network (CNN) and

ResNet50-D with tissue microarray hotspots of post-prostatectomy

pathology samples and validated in an independent cohort of 204

patients from New York Langone Medical Centre. An odds ratio of

3.32 (confidence interval [CI] 1.63 – 6.77; p = 0.001) per unit

increase was obtained from the nested case-control study, matched

on Gleason sum, age at surgery, race, and pathologic stage.

Additionally, a hazard ratio (HR) of 3.02 (CI 1.10–8.29; p =

0.030) per unit increase was obtained from the external validation

cohort, adjusted for International Society of Urological Pathology

grade, pathological stage, preoperative PSA level, and surgical

margins status. Thus, their deep learning-based marker provided

a continuous score according to the velocity of BCR. However, the

marker was based on tissue microarray, which is a limited sample of

the entire tumor lesion, and thus, more aggressive cancer patterns

could potentially be present outside of the sample. Future validation

would be needed on the entire prostatectomy sections and across

various cancer foci (11).

Sandeman et al. devised an AI algorithm that can predict post-

prostatectomy outcomes from biopsy samples. 516 slides from 331

patients were used in the training set, and 2,088 slides from 391

patients were used in the independent control set. Clinical

information from electronic surgical pathology reports such as

extracapsular extension, seminal vesicle invasion, nodal status,

and pathologic stage were collected, and hematoxylin and eosin

(H&E) biopsy slides were scanned with a Panoramic 250 Flash III

scanner. This information was trained by two independent

convolutional neural networks (CNNs) for multi-class semantic

segmentation of tissue (CNN-T) and Gleason grades. In the

validation cohort, the model detected cancer with a sensitivity
Frontiers in Oncology 03
and specificity of both 98%. Among them, Grade group 3–5 PCa

had an increased risk for BCR compared to Grade group 1–2 (HR =

5.91; 95% CI 1.96 – 17.83). Indeed, external validation is warranted,

taking into account that biopsy techniques and tissue preparation

methods may vary by institution (12).
2.3 BCR-free survival prediction from
magnetic resonance images

Prostate magnetic resonance imaging (MRI) provides data

regarding PCa, such as tumor size, extracapsular extension,

seminal vesicle invasion, and pelvic lymph node metastasis

(PLNM). Radiomics from prostate MRI can provide predictive

information regarding post-prostatectomy outcomes.

Hou et al. devised a deep survival network based on MRI

radiomics using clinical MRI and histopathologic data from 579

pathologically diagnosed PCa patients at a single tertiary center,

with 463 patients in the training set and 116 patients in the test set.

The primary endpoint was BCR-free survival probability utilizing

their novel MRI radiomics signature (RadS). Then, two AI-derived

predictions were measured to detect T3 and PLNM using two

predefined studies with clinicopathological variables (13, 14).

Finally, to predict BCR-free survival, a multimodal integrative

deep survival network known as iBCR-Net was developed by

combining RadS, AI-predicted T3 stage, and AI-predicted PLNM

with 17 indicators from clinical, radiological, and pathological data.

In comparison to traditional methods, such as the D’Amico score,

Cancer of the Prostate Risk Assessment (CAPRA) score, and

CAPRA post-surgical score, the iBCR-Net demonstrated up to

5.16-fold, 12.8-fold, and 2.09-fold improvements in prediction

accuracy, respectively (p < 0.05 with the log-rank test). Notably,

the study was retrospective, limited to a single institution with a

short-term follow-up, and patients with high recurrence rates might

have been excluded (15).

Lee et al. analyzed 437 patients who underwent post-radical

prostatectomy mpMRI with a median follow-up of 61 months. The

prostate MRI radiomics deep learning model, which included 17

layers of convolution, was combined with six clinical parameters

and showed superior performance compared to conventional

multiparametric MRI-based radiomics approaches. Bourbonne

et al. conducted a retrospective analysis of 195 patients at high

risk for PCa recurrence, with a median follow-up of 46.3 months.

They used a radiomics model based on MRI T2 and apparent

diffusion coefficient (ADC) maps to predict BCR-free survival after

radical prostatectomy (16). Their model’s performance was lower

(HR 6.8) compared to Lee’s model (HR 7.7) (17).

Similarly, Li et al. employed a radiomics approach with 198

patients and a median follow-up of 35 months, but their model

showed a lower prognostic performance (C-index = 0.77) compared

to Lee’s model (C-index = 0.89) (18). Further studies could

potentially incorporate prostate-specific membrane antigen

(PSMA) positron emission tomography (PET) radiomics into the

deep learning algorithms for more accurate predictions. The

aforementioned studies that have investigated BCR-free survival

using ML methods are summarized in Table 1.
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3 CRPC-free survival

The primary treatment modality for advanced PCa is androgen

deprivation therapy (ADT). Patients who exhibit a favorable response

to ADT are known as castration-sensitive PCa (CSPC). However, a

subset of these patients progresses to castration-resistance,

experiencing a decline in response to ADT and disease progression,

leading to a dismal prognosis (19). Therefore, it is crucial for clinicians

to detect CRPC in a timelymanner to administer second-line therapies

such as androgen receptor axis targeting agents (ARAT) or

chemotherapies, potentially increasing OS.

Nakata et al. examined 180 metastatic hormone naïve prostate

cancer (HNPC) patients who initially received combined androgen

blockade, and developed a deep learning algorithm (DLA) using

patients’ prostate needle biopsy H&E patch images. First, they

performed multivariate analysis and noted that time to CRPC was

the most significantly associated factor associated with OS (p <

0.001), even more strongly associated than having a Gleason score

≥8. Thereafter, they selected two groups by time to CRPC >24

months (n = 18) and <6 months (n = 6) and applied CNN to

construct an AI-based DLA. Sixteen other metastatic HNPC

patients were used as an external validation set (hormone-

sensitive group: n = 8, non-hormone-sensitive group: n = 8). The

ratio of hormone-sensitive patches to all patches was significantly

different between the two groups (p = 0.015; median 0.575 for

hormone-sensitive group vs 0.708 for non-hormone-sensitive
Frontiers in Oncology 04
group), thereby confirming the DLA with the external validation

set. Even though this study was based on a small number of cases

from a single institution with only a Japanese population, it is

notable that CSPC patients with time to CRPC > 24 months, 5-year

OS was 96.7%, thereby not requiring upfront treatment (20).

Zhou et al. formulated a joint model integrating prostate MRI,

prostate biopsy H&E slides, and ML using data from three medical

centers. The data of 140 eligible patients at center A was used for a

training set, and the data of 61 eligible patients from centers B and C

was used as an external validation set. Regions of Interest (ROI) was

annotated at T2-weighted imaging, diffusion-weighted imaging,

and ADC. The ResNet-50 was the most superior of all in

predicting CRPC progression, with an AUC of 0.887 and 0.768 in

training and test sets, respectively. This retrospective study had

incomplete clinical data for many patients and therefore excluded

key clinical prognostic factors, which was a limitation of the study.

Further large-scale studies utilizing multimodal ML would be

warranted to ensure the utility of the developed algorithm (21).

The aforementioned studies that have investigated CRPC-free

survival using ML methods are summarized in Table 2.
4 Complication-free survival

When choosing agents for advanced prostate cancer,

fundamental regimens include ADT, ARAT, docetaxel, poly
TABLE 1 BCR-free survival using ML methods.

Reference Year AI Model Patients Parameters Predicted Outcomes

Tewari et al. (7) 2004 ANN 1400 PCa patients
who underwent RP

Clinicopathological features AUROC = 0.83, sensitivity = 85%, specificity = 74%

Tewari et al. (8) 2001 ANN 1400 PCa patients
who underwent RP

Clinicopathological features ANN predicted BCR better than multivariate statistical
models. Overall accuracy, sensitivity, specificity = 76%, 55%,
90% vs 66%, 15%, 94%, respectively.

Wong et al. (9) 2019 kNN, RF,
logistic
regression

338 PCa patients who
underwent RP

Clinicopathological features ML models outperformed the Cox regression model,
showing better accuracy (AUC = 0.903-0.940 vs. 0.865).

Tan et al. (10) 2022 NBC,
RF, SVM

1130 PCa patients
who underwent RP

Clinicopathological features For predicting a 5-year BCR, NB and RF outperformed
conventional models (AUC = 0.894 and 0.888 vs.
0.749-0.799).

Pinckaers et al. (11) 2022 PyTorch 685 PCa patients who
underwent RP/
validation on 204
PCa patients

Clinicopathological features,
DLS biomarker from
TMA spots

Odds ratio of 3.32 (CI 1.63–6.77; p = 0.001) per unit
increase obtained from the nested case-control study,
matched on Gleason sum, age at surgery, race, and
pathologic stage.

Sandeman et al. (12) 2022 CNN-T
(tissue),
CNN-GG
(Gleason
Grade)

750 PCa patients (331
patients for training
set, 391 patients for
validation set)

Clinicopathological features In the validation cohort, the model detected cancer with a
sensitivity of 98% and specificity of 98%. Grade group 3–5
PCa had an increased risk for BCR compared to Grade
group 1–2 (HR = 5.91; 95% CI 1.96 – 17.83).

Hou et al. (15) 2021 iBCR-Net
using Cox-
GBM, Cox-
DL, N-MTLR

579 PCa patients (463
for training set, 116
for test set)

Clinicopathological features,
MRI radiomic features
(RadS), AI predicted ECE,
AI predicted PLNM

iBCR-Net showed 2.09-12.8 fold benefit (p < 0.05 with the
log-rank test), compared to conventional methods for BCR-
free survival prediction.

Lee et al. (17) 2023 EfficientNet-
B0, CNN

437 PCa patients who
underwent RP

MRI Radiomic features Better performance than previously suggested models, such
as Bourbonne’s model (16) and Li’s model (18).
ANN, Artificial Neural Networks; kNN, k-Nearest Neighbor; RF, Random Forest Classifier; NBC, Naïve Bayes Classifier; SVM, Support Vector Machine; CNN, Convoluted Neural Network;
GBM, Gradient Boosting Machine.
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(ADP-ribose) polymerase (PARP) inhibitors, and pembrolizumab.

Alternative regimens vary by stage and risk groups for the treatment

of PCa (19).

Deng et al. used data from three different cohorts, with a

combined total of 1,600 PCa patients in phase III clinical trials, to

evaluate the factors that can predict docetaxel discontinuation due

to adverse events (22). The investigators evaluated the prediction

performance of five base learners: linear regression, logistic

regression, Cox regression, bootstrap aggregation with

classification and regression trees (23), and random forest (24),

using adverse events as the study endpoint. Random forest achieved

the highest AUC score in both the full dataset and across the three

cohorts, with a median AUC of 0.627, leading the investigators to

select random forest as their base learner. The top ten important

features identified included albumin, sodium, total protein,

magnesium, testosterone, neutrophil count, white blood cell

count, phosphorus levels, and medical history related to vascular

disorders and social circumstances. Their algorithm, when tested in

the validation cohort, demonstrated an AUC of 0.190, significantly

higher than the random baseline of 0.104 (p = 0.003). This indicated

that within the total 1,000 metastatic CRPC patients, 104 patients

were wrongly assigned to docetaxel chemotherapy, and that the

utilization of the developed algorithm could have saved

approximately ten patients. This study highlights the potential for

personalized assessment in predicting treatment discontinuation.

However, missing values raised concerns regarding the integrity of

the data. Additionally, in recent years, Extreme Gradient Boosting

(XGBoost) and Light Gradient-Boosting Machine have become

more powerful tools for training tree-based models, and their use

could potentially outperform the RF model.
5 Metastasis-free survival

5.1 Lymph node metastasis-free survival

Pelvic lymph node dissection (PLND) or extended PLND

(ePLND) is recommended for intermediate-risk patients with an

estimated survival of more than ten years, as well as for high- and

very high-risk patients. PLND can provide accurate staging and risk

stratification and help determine the need for adjuvant treatment.

However, performing PLND requires additional operative time and

can subsequently lead to complications such as lymphocele
Frontiers in Oncology 05
formation (25). Therefore, predicting metastasis-free survival for

localized PCa is crucial in deciding the extent of treatment, such as

whether to treat LNs during radical prostatectomy or radiotherapy.

Nomograms have been suggested to predict preoperative LN

invasion (LNI) status, and the Memorial Sloan Kettering Cancer

Center (MSKCC) nomogram is one of the most widely used in

clinical practice. Hou et al. investigated whether traditional

nomograms could be improved with ML assistance. With the

data of 248 patients treated with radical prostatectomy with either

ePLND or PLND, their novel ML-assisted model was compared

with the MSKCC nomogram. The random forest-based model

exhibited highest AUC of 0.906 (95% CI 0.856 – 0.928) among

the developed ML-assisted models. Additionally, the developed

model with a 5-15% cutoff was superior to the MSKCC

nomogram, especially for a 10% cutoff which spared 47.2% of

ePLNDs while missing only 1.7% of LNIs. The authors concluded

that precisely defined MRI characteristics, such as ADC, D-max, PI-

RADS v2 score, MRI-reported T and N stages, were significant

predictors of LNI, contributing to the improved accuracy over the

MSKCC nomogram. Limitations were small sample size and

potential bias in patient selection.

Hou et al. also developed a novel pelvic LN metastasis risk

model by integrating radiomics of MRI images, deep transfer

learning representation, clinical data, biopsy findings, MRI

reports by radiologists, and compared with the MSKCC and

Briganti nomograms for predicting LN metastasis-free survival.

The PLNM-Risk calculator was developed using an open-source

AutoGluon platform. A total of 1,843 patients from two tertiary care

medical centers, and 401 patients were used after patient selection.

Center 1 data of 280 patients were used for the training set, and data

of 71 patients were used for the internal testing set. Center 2 data

from 50 patients were used for external testing. The pelvic LN

metastasis model could have spared 59.6% of ePLNDs at the cost of

missing only 1.7% of pelvic LN metastasis cases, outperforming the

current MKSCC and Briganti nomograms. The developed model

exhibited higher predictability for pelvic LN metastasis risk.

However, due to the small number of subjects, further validation

with a larger number of patients from a heterogeneous population

would be warranted before being replaced with contemporary

nomograms (26).

Wang et al. established a LN metastasis prediction model in

intermediate- and high-risk PCa patients. They analyzed 24,470

patients from the SEER database using ML algorithms. In a
TABLE 2 CRPC-free survival using ML methods.

Reference Year AI
Model

Patients Parameters Predicted Outcomes

Nakata et al. (20) 2022 VGG16
(a type
of CNN)

180 mCSPC patients
who initially received
CAB/16 patients for
external validation

Clinicopathological
features,
H&E images

Ratio of hormone-sensitive patches to all patches significantly different
between the two groups (p = 0.015; median 0.575 for hormone-sensitive
group vs 0.708 for non-hormone-sensitive group). For CSPC patients with
time to CRPC > 24 months, 5 year OS was 96.7%.

Zhou et al. (21) 2024 LR,
SVM,
ResNet-
50

140 PCa patients
(training set)/61
patients (test set)

Clinicopathological
features, MRI
radiomics
by PyRadiomics

ResNet-50 was the most superior of all in predicting CRPC progression,
with an AUC of 0.887 and 0.768 in training and test sets, respectively.
CNN, Convoluted Neural Network; LR, Logistic Regression; SVM, Support Vector Machine.
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multivariate logistic analysis, T stage, PSA level, Gleason score, and

the presence of bone metastasis were identified as independent

predictors of LN metastasis in these patients. The study then

assessed the prediction performance of six machine learning

algorithms–random forest, naive Bayesian classifier, XGBoost,

gradient boosting machine, logistic regression, and decision tree–

using both training and test sets. The gradient boosting machine

model demonstrated the highest prediction performance, with an

F1 score of 0.838 and an AUC of 0.804. This led to the development

of a preliminary regional LN metastasis risk calculator for

intermediate- and high-risk PCa patients (27).

Quantitative PSMA PET analysis can detect metastatic targets

that are undetected with conventional imaging such as MRI and

computed tomography scans. Cysouw et al. conducted a prospective

study involving 76 patients with intermediate- and high-risk PCa.

The patients underwent a preoperative [18F]DCFPyL PET-CT,

followed by robot-assisted radical prostatectomy with ePLND.

Radiomic features were extracted from the delineated tumors

from PSMA-PET images and the random forest ML was used to

generate the algorithm. The model predicted LN invasion (AUC

0.86 ± 0.15, p < 0.01), nodal or distant metastasis (AUC 0.86 ± 0.14,

p < 0.01), Gleason score (0.81 ± 0.16, p < 0.01), and ECE (0.76 ±

0.12, p < 0.01). AUCs were higher compared to standard PET

metrics. These findings indicate the association between PSMA

expression on PET and primary tumor histology, as well as

metastatic tendency. Limitations include a small dataset size and

the absence of external validation (28).
5.2 Bone metastasis-free survival

In an autopsy study, approximately 90% of men who died of

PCa metastases were diagnosed with metastases to the bone (29).

PCa has a tropism for metastasizing to bones, and therefore, most

PCa patients with BM experience skeletal-related events (SREs),

including pathologic fracture, spinal cord compression, and

hypercalcemia. SREs in PCa reduce quality of life and worsen

survival. Predicting candidates who are at a high risk of

developing BM allows for early intervention in order to

potentially delay or prevent SREs, such as treatment with the

RANK ligand inhibitor denosumab and the bisphosphonate

zoledronic acid (30).

Liu et al. retrospectively analyzed 207,137 PCa patients from the

SEER data, of whom 6,725 (3.2%) developed bone metastasis.

Gleason score, PSA level, T and N stage, and age were positively

associated with bone metastasis. They used six different ML

algorithms, including decision tree, random forest, logistic

regression, naïve Bayes classifier, XGBoost, and the Multilayer

Perceptron, to build prediction models. The XGBoost model had

the best predictive power (AUC = 0.962, accuracy = 0.884,

sensitivity (recall rate) = 0.906, and specificity = 0.879). An

XGBoost model-based web predictor was developed for bone

metastasis risk in PCa patients and was posted at: https://

share.streamlit.io/liuwencaincu/prostate-cancer/main/prostate.py.

Limitations included the inclusion of only initial diagnostic

information, without sequential therapeutic information, which
Frontiers in Oncology 06
could affect survival. A larger volume of external validation is also

needed (31).

Zhang et al. also developed an ML algorithm-based model to

predict bone metastasis in PCa patients. 211 patients diagnosed

with PCa were randomized into a training group (n = 169; 80.1%)

and a validation group (n = 42; 19.9%). 3D ROIs were cropped to

extract radiomics features using PyRadiomics and DTL features

using the ResNet 50. Pathognomonic features were extracted from

H&E stained pathology images. To determine the optimal set of

accuracy-based features, LASSO regression was employed. The

most effective predictive model, which integrated radiomic

features, DTL features, and pathognomonic features using a

support vector machine, achieved an AUC of 0.93 (95% CI, 0.854

– 1.000). Further studies incorporating a larger sample size and

whole slide images may potentially improve predictive accuracy

(32). The aforementioned studies that have investigated CRPC-free

survival using ML methods are summarized in Table 3.
6 Overall survival

6.1 Metastatic disease

Saito et al. used data from 340 metastatic PCa patients who

received ADT as the initial treatment. 207 (60.9%) patients were

used for the training set, and 103 (30.3%) patients were used for the

test set. Random survival forest was used for ML survival analysis

using the most important features, which included pretreatment

lactic acid dehydrogenase (LDH) and alkaline phosphatase (ALP)

levels four months following initial treatment. The model enabled

patient grouping into three groups according to OS and cancer-

specific survival prognoses. First, a very poor prognosis group with

high pretreatment LDH (≥248.5 IU/L), in which approximately

70% of patients would expire within five years. The group with LDH

<248.5 IU/L was further stratified into two groups based on post-

treatment ALP level. The group with a high ALP level (≥326.5 IU/L)

was an intermediate-risk group and had a 5-year survival rate of

approximately 70%. The group with a low LDH level (<248.5 IU/L)

prior to treatment and a low ALP level following treatment (<326.5

IU/L) had a very good prognosis, with a 5-year survival rate

exceeding 90%. The C-index was 0.85 for both OS and CSS. The

RSF model did not satisfactorily predict the prognosis of non-

metastatic PCa patients, and further large-scale data and analysis

focusing on clinical progression is warranted (33).

Anderson et al. examined 438 patients with mCRPC who

experienced SREs and required radiotherapy or surgery. They

developed six models using GBM techniques to estimate the

probability of survival at 1, 2, 3, 4, 5, and 10 years after SRE

treatment. The AUC values for these models ranged from 0.73 to

0.86, and the Brier scores were consistently below 0.20, indicating

strong predictive accuracy. Positive survival indicators included

younger age at metastasis diagnosis, PSA levels under ten ng/mL, a

slow or stable rise in ALP levels, radiotherapy, and hormonal or

chemotherapy treatments. Conversely, negative indicators were

older age at diagnosis, PSA levels over 10 ng/mL, rapid increases

in ALP levels, and being treatment-naïve. Decision curve analysis,
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which evaluates the net benefit of a clinical decision-making tool

across various threshold probabilities, demonstrated that using

these models can lead to optimal outcomes. Even though the

study was limited by missing data, the model has the potential to

be improved by the inclusion of additional demographic and

laboratory values and external validation (34).
6.2 According to treatment modalities

Koo et al. analyzed data from 7,267 patients diagnosed with PCa

and developed the SCaP (Severance Study Group of Prostate

Cancer) Survival Calculator, which predicted 5- and 10-year

survival rates of progression-free survival to CRPC, cancer-

specific survival, and OS according to various initial treatment

modalities including active surveillance, radical prostatectomy,

radiation therapy with and without ADT, and ADT alone. When

comparing the Cox regression model, multilayer perceptron,

Multilayer perceptron (MLP) for N-year survival prediction, and

long short-term memory (LSTM), the LSTM model showed the
Frontiers in Oncology 07
highest C-indices and AUC. Specifically, the C-index and AUC for

LSTM prediction 10-year CRPC progression were 0.914 (0.890 –

0.928) and 0.920 (0.899–0.936), respectively. A web-based decision-

making support system was developed, in which individual data

such as age, height, weight, PSA, prostate volume, positive core

numbers, maximal core percentage, Gleason score, Charlson

Comorbidity index, performance status, TNM stage, secondary

primary malignancy, and past medical history can be used to

automatically compare survival outcomes according to each

treatment modality. This simple yet accurate calculator can

support the best treatment modality for individual patients. The

limitation was the inclusion of patients from a single Asian ethnic

background (35).

Lim et al. performed an external validation for this model by

using data from 4,415 patients from three institutions. By using

SCaP, the AUCs of 5-year CRPC-free survival, cancer-specific

survival, and OS outcomes were AUCs of 0.962, 0.944, and 0.884,

respectively. For 10-year outcomes, AUCs were 0.959, 0.928, and

0.854, respectively. The results outperformed the developmental

model, validating the generalizability of the SCaP calculator. The
TABLE 3 Metastasis-free survival using ML methods.

Site Reference Year AI Model Patients Parameters Predicted Outcomes

Lymph
nodes

Hou et al. (26) 2021 RF 401 PCa patients
(280 training/
validation/71 test/50
external set)

Clinicopathological features, DTLR for
extracting MRI radiomic features,
radiologists’ interpretation

Pelvic LN metastasis model
could have spared 59.6% of
ePLNDs at the cost of missing
only 1.7% of pelvic LN
metastasis cases,
outperforming the current
MKSCC and
Briganti nomograms.

Wang et al. (27) 2023 RF, NBC, XGB,
GBM, LR, DT

24,470
intermediate- and
high-risk
PCa patients

Clinicopathological features Gradient boosting machine
model demonstrated the
highest prediction
performance, with an F1 score
of 0.838 and AUC of 0.804.

Cysouw et al. (28) 2021 RF 76 intermediate-
and high-risk PCa
patients who
underwent a
preoperative [18F]
DCFPyL PET-CT
and RARP c ePLND

Radiomic features of PET-CT extracted
with RaCaT software

The model predicted LNI
(AUC 0.86 ± 0.15, p < 0.01),
nodal or distant metastasis
(AUC 0.86 ± 0.14, p < 0.01),
Gleason score (0.81 ± 0.16, p
< 0.01), and ECE (0.76 ± 0.12,
p < 0.01). The AUCs were
higher compared to standard
PET metrics.

Bone Liu et al. (31) 2021 DT, RF, MLP, LR,
NBC, XGB

207,137 PCa
patients of
SEER database

Clinicopathological features XGB model had the best
predictive performance (AUC
= 0.962, accuracy = 0.884,
sensitivity = 0.906, and
specificity = 0.879).

Zhang et al. (32) 2024 LR, NBC, SVM,
kNN, ExtraTrees,
MLP, LightGBM,
AdaBoost,
XGBoost

211 PCa patients Clinicopathological features, MRI
radiomics features extracted with
PyRadiomics and DTL features
extracted with ResNet 50

The most effective predictive
model, combining radiomic
features, DTL features, and
pathognomonic features using
the SVM model, provided an
AUC value of 0.93 (95% CI,
0.854 – 1.000).
RF, Random Forest Classifier; NBC, Naïve Bayes Classifier; XGB, Extreme Gradient Boosting; GBM, Gradient Boosting Machine; LR, Logistic Regression; DT, Decision Tree; MLP, Multilayer
Perceptron; SVM, Support Vector Machine; kNN, k-Nearest Neighbor; AdaBoost, Adaptive Boosting.
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limitation was that the data included patients who were treated over

a long time span, during which treatment modalities and systemic

agents had considerably improved (36).
6.3 Utilization of PET-CT

Polymeri et al. suggested an AI-based PET-CT coefficient could

predict cancer-specific survival. They examined 285 patients who

had performed 18F-choline PET-CT for newly diagnosed high-risk

PCa, defined as PSA > 20ng/mL, and/or cT3, and/or Gleason score

8–10, with normal or inconclusive bone scans. The exclusion

criteria were hormone therapy prior to PET-CT or PSA ≥ 150

ng/mL. Patients with no evidence of metastasis (n = 219, 76.8%)

received curative treatment with either radical prostatectomy or

radiation therapy. Patients who had metastasis (n = 66, 23.2%)

received ADT based on PET-CT as a palliative setting. The AI-

based model suggested by Mortensen et al. was used to

automatically segment the prostate from PET and CT images

(37). The AI-based algorithm automatically produced three

volumetric measurements, including lesion volume, total lesion

uptake, and the fraction of abnormal standardized uptake value

(SUV) voxels to the total prostate volume, and was significantly

associated with cancer-specific survival for patients receiving

palliative treatment (p = 0.008, 0.02, and 0.005, respectively). The

volume-based measurements performed better predictability

compared to SUVmax. This automated AI-based model provided

reproducible information regarding the entire tumor, in contrast to

the Gleason score, in which grading is highly subjective with
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interobserver variability. The limitations of this study include

short-term follow-up, a small patient population, and the use of

conventional PET-CT scans (38). The aforementioned studies that

have investigated OS using MLmethods are summarized in Table 4.
7 Pitfalls of ML in the use of
patient data

ML holds immense promise in revolutionizing PCa survival

predictions and personalized treatment plans that go beyond

traditional approaches. At the same time, data security, patient

privacy, algorithmic bias, and the legal and ethical framework

governing the use of data present significant obstacles that need

to be addressed for successful integration into clinical practice (39).

Empirical studies and domain-specific guidelines do not prescribe a

strict rule for the optimal number of patients required to ensure

generalizability of results. Instead, the optimal sample size depends

on several factors, including model complexity, data variability,

feature dimensionality, and the specific task at hand. More

importantly, cross-validation techniques and external validation

using independent datasets are critical for evaluating a model’s

performance and generalizability, regardless of sample size. Caution

is advised when interpreting studies that lack external validation, as

they may not reliably reflect real-world scenarios. Additionally,

potential biases and inequalities in algorithms developed using PCa

populations characterized by heterogeneity and ethnic diversity

must be carefully addressed. To fully leverage the potential of

machine learning in healthcare, physicians and researchers must
TABLE 4 Overall survival using ML methods.

Author/
Reference

Year AI Model Patients Parameters Predicted Outcomes

Saito et al. (33) 2023 RSF 340 PCa
patients who
received ADT
as
initial treatment

Clinicopathological
features,
incorporating
lab results

Patients with LDH < 248.5 IU/L and a low LDH level (< 248.5 IU/L)
had a very good prognosis, with a 5-year survival rate exceeding 90%.
The C-index was 0.85 for both OS and CSS.

Anderson et al. (34) 2022 GBM 438 mCRPC
patients with
SREs
requiring
treatment

Clinicopathological
features

The models predicting 1-, 2-, 3-, 4-, 5-, and 10-year survival after
treatment exhibited acceptable calibration, accuracy (Brier scores <
0.20), and classification ability (AUCs > 0.73).

Koo et al. (35) 2020 MLP, MLP-N,
LSTM
ANN models

7,267
PCa patients

Clinicopathological
features, initial
treatment
modalities

LSTM model showed the highest C-indices and AUC. Specifically, the
C-index and AUC for LSTM prediction 10-year CRPC progression
were 0.914 (0.890 – 0.928) and 0.920 (0.899–0.936), respectively.

Lim et al. (36) 2021 LSTM ANN
calculator by Koo
et al. (35)

4,415
PCa patients

Clinicopathological
features, initial
treatment
modalities

By using SCaP, the AUCs of 5-year CRPC-free survival, cancer-
specific survival, and OS outcomes were AUCs of 0.962, 0.944, and
0.884, respectively.

Polymeri et al. (38) 2021 AI-based PET-
CT automated
analysis by
Mortensen
et al. (37)

145 PCa
patients
(training)/285
PCa
patients (test)

Clinicopathological
features, AI-based
PET-CT
automated analysis

Three volumetric measurements (lesion volume, total lesion uptake,
and the fraction of abnormal standardized uptake value voxels to the
total prostate volume) were associated with cancer-specific survival (p
= 0.008, 0.02, and 0.005, respectively).
RSF, Random Survival Forest; GBM, Gradient Boosting Machine; MLP, Multilayer Perceptron; LSTM, Long Short-Term Memory; ANN, Artificial Neural Network.
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strike a balance between embracing technological advancements

and exercising caution, fostering the development of an equitable

and innovative healthcare system.
8 Summary and outlook

Survival prediction of PCa can be assessed from various aspects,

each carrying significant clinical importance. The advent and

improvement of AI are enabling the development of newer

prediction models and nomograms that are non-inferior to or

even superior to conventional traditional statistical-based

methods. With advancements in ML techniques, alongside the

growth of AI-focused companies and computational techniques,

more precise and efficient ML models are being developed. This is

reflected in the increasing number of articles published regarding

the scope of this review – of the 20 key references shown in the

tables, three (15.0%) were published before 2020 and 17 (85.0%)

after 2020. These trends underscore the expanding role of ML in

predicting PCa survival, thereby advancing personalized medicine.

Regarding PCa survival, AI can be applied across pathology,

radiology, and electronic medical records. From a physician’s point

of view, the prediction of LNmetastasis can assist in the decision for

lymphadenectomy and its extent. Metastasis-free survival

prediction can be informative when deciding whether to provide

adjuvant therapies. Specifically for bone metastasis-free survival, the

identification of high-risk patients can allow for the implementation

of preventive measures against the development of SREs. Regarding

BCR prediction, data from prostate biopsy samples and prostate

MRIs can be utilized to decide and communicate with patients to

ensure the optimal treatment timepoint and modality.

To develop a more precise ML-based algorithm, several key

strategies should be employed, including 1) enhancing the quality of

data preparation, 2) selecting an optimal algorithm aligned with the

study objective, 3) optimizing hyperparameters, 4) refining model

architecture, 5) addressing overfitting and underfitting issues, and 6)

improving computational power. Combining these essential strategies

may systematically refine the model and improve its predictive power.

When applyingML-based algorithms to real-world practice, it is crucial

to address potential biases and inequalities, particularly those arising in

algorithms trained on heterogeneous and ethnically diverse PCa

populations. External validation across diverse countries, ethnicities,

and medical centers can bolster the reliability and generalizability of

thesemodels, facilitating their inclusion in clinical guidelines androutine

practice. Achieving this requires collaboration with industries such as

health insurance providers and innovative startups, which can support

the widespread adoption of these advanced tools.
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Future studies could explore the prediction of treatment

discontinuation and complications, which would aid in choosing

treatment modalities for metastatic PCa patients. In addition, future

AI models could consider the incorporation of newer imaging

modalities, such as PSMA PET-CT, in the prediction of survival,

which could potentially change the armamentarium of PCa

treatment. Lastly, studies that predict genetic mutation status

using AI and ML could be anticipated.
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