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Colorectal cancer is one of the leading causes of cancer-related mortality in the

world. Incidence and mortality are predicted to rise globally during the next

several decades. When detected early, colorectal cancer is treatable with surgery

and medications. This leads to the requirement for prognostic and diagnostic

biomarker development. Our study integrates machine learning models and

protein network analysis to identify protein biomarkers for colorectal cancer. Our

methodology leverages an extensive collection of proteome profiles from both

healthy and colorectal cancer individuals. To identify a potential biomarker with

high predictive ability, we used three machine learning models. To enhance the

interpretability of our models, we quantify each protein’s contribution to the

model’s predictions using SHapley Additive exPlanations values. Three classifiers

—LASSO, XGBoost, and LightGBM were evaluated for predictive performance

along with hyperparameter tuning of each model using grid search, with LASSO

achieving the highest AUC of 75% in the UK Biobank dataset and the AUCs for

LightGBM and XGBoost are 69.61% and 71.42%, respectively. Using SHapley

Additive exPlanations values, TFF3, LCN2, and CEACAM5 were found to be key

biomarkers associated with cell adhesion and inflammation. Protein quantitative

trait loci analyze studies provided further evidence for the involvement of TFF1,

CEACAM5, and SELE in colorectal cancer, with possible connections to the PI3K/

Akt and MAPK signaling pathways. By offering insights into colorectal cancer

diagnostics and targeted therapeutics, our findings set the stage for further

biomarker validation.
KEYWORDS
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1 Introduction

Globally, colorectal cancer (CRC) is the fourth most common

cancer to be diagnosed and the third most common cause of death

from cancer (1, 2). Each year, around 250,000 cases of CRC are

identified in Europe, making up 9% of all malignancies. The

incidence is slightly greater in Western and Northern Europe

compared to Southern and Eastern Europe (3). Its causes are

complex and multifaceted, inherited in only 5% of cases (4). Non-

dietary risk factors for colorectal cancer include smoking and

prolonged use of drugs like non-steroidal anti-inflammatory drugs

(NSAIDs) and aspirin (5). Two screening methods are available, fecal

occult blood test (FOBT) and endoscopy. Randomized studies have

shown that FOBT can reduce the death rate of colorectal cancer by up

to 25% in those who attend at least one screening session (6). Surgery

is the primary therapy option for people with likely curable colorectal

cancer. This is usually accompanied by adjuvant therapy, a systemic

treatment that lowers the risk of recurrence and mortality.

Additionally, pathological staging can be used to predict the

recurrence rate (3). Activated oncogenes and inactivated tumor

suppressor genes play crucial roles in various phases of colorectal

cancer development (7). However, single-gene regulation systems

cannot account for all characteristics of malignant behavior or be

responsible for every cancer marker (8).

The discovery of altered proteins or metabolites during the

progression of colorectal cancer is crucial in identifying novel

potential biomarkers for early detection (9). Proteomics is a

comprehensive and advanced methodology characterized by its

ability to detect thousands of proteins simultaneously in various

sample types, including cells, tissues, and bodily fluids. Research

into specific biomarkers (10) and therapy pathways can greatly

improve patient outcomes (11). Deciphering the underlying

molecular processes and regulatory networks (12) of identified

biomarkers in colorectal cancer remains an important challenge

(13). For example, 5-aminovalerate interacts with the bacterial

species Adlercreutzia, as does cholesteryl ester with Blautia,

Roseburia, and Staphylococcus. Numerous genes have also been

implicated in processes specific to epithelial cells, notably with the

oxidative phosphorylation pathway and associated genes, which

indirectly control cholesterol esterification in colorectal cancer (14).

Understanding the biology of cancer requires a thorough

understanding of protein expression changes and interactions,

which proteomics (15) provides. It has been established that

proteins play a significant role in the development of biomarkers

and pharmaceutical targets (16) and may be used as a window into

human health (17). A comprehensive study identified 7526 proteins

by label-free quantitative proteomics of 64 colon cancer tissues and

31 rectum cancer tissues are among the most comprehensive to date

(18). Proteomic studies have made it easier to identify protein targets

and signaling pathways involved in the development of cancer. For

example, some of the proteins identified were involved in IL-17

signaling pathways in colorectal cancer progression (19).

Comprehensive combined proteomic and genomic studies of CRC

have been completed, leading to the discovery of treatment targets,

cancer antigens, CRC subtypes, and critical signaling pathways

associated with the progression of CRC (20). Even though there
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has been a substantial amount of research conducted on biomarkers

for primary colorectal cancer, clinical guidelines in both the USA and

Europe, such as those provided by the National Comprehensive

Cancer Network and European Society for Medical Oncology,

currently prioritize tumor-node-metastasis staging and the

identification of DNA mismatch repair deficiency or microsatellite

instability (21). These guidelines also consider traditional

clinicopathological factors when making a diagnosis (22).

Breakthroughs in omics technologies, such as RNA sequencing

(23) for transcriptome gene expression profiling, next-generation

sequencing (NGS) (24), and mass spectrometry (25) have facilitated

the use of molecular markers in diagnosing colorectal cancer (26). The

integration of healthcare characteristics like clinical data, gene

expression, and miRNA expression with machine learning and AI

(27) based methods can maximize the utilization of omics data (28).

Molecular interactions and biomarkers were discovered through

hierarchical clustering, protein-protein networks, and correlation

analyses (29). Proteomic signatures, which offer a tool for forecasting

CRC stages and identifying biomarkers, were constructed by selecting

differentially expressed proteins (DEPs) using Least Absolute Shrinkage

and Selection Operator (LASSO) and Support vector machine (SVM)

(30). Sensitive diagnostic tools to detect cancer were found using

machine learning algorithms like SVM, random forest, and decision

trees (31). Other non-omics methods have been used such as

nanotechnology (32) and imaging techniques to better understand

the disease (33). Despite the advancements made in understanding the

molecular characteristics, biological markers, and therapeutic targets of

colorectal cancer, the complexity of its biology, severe outcomes, and

extensive metastasis highlights the need for additional research in

identifying predictive and prognostic biomarkers (34).

Here, we present the comprehensive analysis of the Olink-based

quantitative proteomics in UK Biobank data. With the application

of Explainable artificial intelligence (XAI) models and validation of

models with the Bosch et al. dataset, our work aims to identify

protein biomarkers and their mechanisms that may be employed as

diagnostic markers across a range of proteomic datasets. Ultimately,

these discoveries might lead to improved cancer detection and the

emergence of greater accuracy models.
2 Materials and methods

2.1 Study design and participants

The study was carried out in two phases, initially using proteomics

data sourced from UK Biobank, with the cohort in Bosch et al. as a

validation dataset. The UK Biobank is a large-scale cohort research

project, consisting of 500,000 individuals recruited between 2006 and

2010 from various sites around the UK, aged 40 to 69.

Colorectal cancer patients were first identified using diagnosis

information from various sources of UK Biobank, with all details

and diagnosis codes detailed in Supplementary Table S1. Then

participants with age and sex were matched to participants with no

ICD-10 diagnosis in their inpatient data using the MatchIt package.

Participants with metabolite information (as of July 2021) and

proteomic data (as of July 2023) were followed up for analysis.
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We conducted our comprehensive proteomics data analysis

using two datasets which include one from the UK Biobank and

another from Bosch et al. UK Biobank is used as training and Bosch

et al. used as a validation dataset. The details of the datasets used in

this study are summarized in Table 1. In the first phase,159

significant proteins of UK Biobank were used to validate with

Bosch et al. data, and in the second phase we used 98 proteins

that were common among both datasets to validate (Figure 1). For

UK Biobank, proteomics data was generated using the antibody-

based Olink Explore 3072 PEA (35) and for Bosch et al. (36)

proteins were generated using liquid chromatography-mass

spectrometry (LC-MS).
2.2 UK Biobank data processing

All pre-processing steps are performed using R (v4.2.0).

Imputation of 20% missing value protein which has 1460 proteins

(37) was done.

We used several methods mean, median, Classification and

regression trees (CART), and K-Nearest Neighbors (KNN) for

imputation to compare the distribution before and after

imputation (Supplementary Figures S1A–E). The mean imputed

dataset had a close relation to the original dataset distribution.

Kolmogorov Smirnov Test (K-S test) is also performed to find the

statistical difference among different imputation methods.

Mahalanobis distance (38) has been used for outlier detection

based on the 99th percentile threshold using the mean and

covariance matrix of our data. It was determined that the

dataset’s threshold was 22.71. Six samples were found to be

outliers (Supplementary Figure S2) and discarded from the study.

For further statistical analysis and machine learning tasks, the pre-

processed dataset (1460 proteins and 512 samples) was used.
2.3 Machine learning model

In this study, we used three machine learning models, eXtreme

Gradient Boosting (XGBoost) (39). Light Gradient-Boosting

Machine (LightGBM) (40), and Least Absolute Shrinkage and

Selection Operator (LASSO). XGBoost and LightGBM make use

of an ensemble of classification trees and combine their prediction

from multiple individual decision trees to make more accurate and

robust predictions, LASSO on the other hand, it is a regularization
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algorithm that helps reduce the feature space, highlighting key

association. All machine learning analysis were carried out in

python (v3.9.13) “scikit learn” module (v1.0.2).

For this study, the selection of LASSO, XGBoost, and

LightGBM is based on several aspects. With strong feature

selection and regularization capabilities, LASSO regression is

especially well-suited for high-dimensional datasets, which are

frequently employed in biomedical research. By implementing a

penalty, LASSO reduces overfitting and efficiently selects the most

pertinent predictors by shrinking less significant coefficients to zero

(41). Research has shown that LASSO is useful for finding

important risk variables and biomarkers in cancer studies. The

interpretability and accuracy of predictive models were enhanced

when Ma et al. (42) effectively used LASSO to choose prognostic

characteristics in colorectal cancer. XGBoost is well-known for its

high Area Under the Curve (AUC) scores in classification tasks, its

ability to handle missing data and non-linear interactions (39), and

its successful application in predicting the survival of colorectal

cancer (43). LightGBM is perfect for large-scale datasets because it

is scalable and fast, manages high-dimensional, sparse data

effectively, and provides superior AUC (40). Recent research,

including Zhang et al. (44) and Onwuka et al. (27), supports the

application of these models by showing that they may accurately

and clinically meaningfully identify the relationships between

variables in colorectal cancer. The study utilized SHapley Additive

exPlanations (SHAP) to enhance the interpretability of the machine

learning models, addressing a key limitation of complex algorithms

like XGBoost and LightGBM—their “black-box” nature. Even

though these models are quite effective and precise, it is

important to comprehend their predictions in a clinically useful

way, particularly in colorectal cancer research where it is critical to

identify important risk variables and how they affect the result. By

quantifying each feature’s contribution to the model’s output,

SHAP offers a cohesive framework for explaining individual

predictions (45). By using SHAP, the study makes sure that the

high AUC scores achieved by the machine learning models are

accompanied by interpretability and transparency, which makes the

results useful for clinical decision-making. The study’s objective of

identifying important risk variables and their impact on the

outcomes of colorectal cancer is also in line with SHAP’s ability

to identify feature relevance at both the global (model-wide) and

local (individual prediction) levels. Each of the methods has

complementary properties. LASSO is a linear method and able to

perform sparse feature selection, by shrinking the coefficients of less

important features to exactly zero and hence captures the most

comfortable linear relationships. XGBoost and LightGBM, however,

are more versatile, and capable of capturing complex, non-linear

relationships in the data. LightGBM is able to capture model

building for categorical features. Together with SHAP for

interpretability, these three models—LASSO, XGBoost, and

LightGBM—complement one another by fusing their specific

strengths to provide a robust and clear analysis. LASSO helps by

regularizing the model, decreasing overfitting, and enhancing

interpretability by efficiently managing high-dimensional data.

This aids in the model’s simplification, making it easier to handle

and understand. In contrast, XGBoost (39) and LightGBM) (40),
TABLE 1 Datasets used in the study.

Proteomics
Dataset

Technology/
platform

Number of
samples, Proteins

UK Biobank
(Training)

Olink Case=269
Control=240
Proteins=2923

Bosch et.al.
(Validation)

LC-MS/MS * Case=13
Control=20
Proteins=521
*LC-MS/MS, Liquid Chromatography-Mass Spectrometry/Mass Spectrometry.
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are strong boosting algorithms that offer high predictive accuracy,

both of which are important for producing accurate predictions.

SHAP depicts how each feature affects the model’s predictions to

give an understanding of feature relevance.
2.4 Hyperparameter optimization

The proteomic dataset underwent an initial 80%-20% train and test

split (27). We employed the GridSearchCV (46) method to determine

the most effective values for each model’s hyperparameters.

GridSearchCV is a utility within the Scikit-learn library designed for

iterating through predetermined hyperparameters and training the

model on the provided dataset. Stratified k-fold cross-validation with 5-

fold was employed within grid search ensuring robust model

assessment and hyper-parameter tuning by assessing all possible

combinations of specified parameter values. The accuracy metrics

collected for each hyperparameter combination were used to decide

on top-performing models.
2.5 Machine learning model evaluation

The study utilized the UK Biobank dataset for training and

testing and the data from Bosch et al. for validation of the

performance of three distinct machine learning models (LASSO,

LightGBM, and XGBoost). Each model underwent evaluation using

various metrics including precision, recall (47), specificity (48), F1

score, and AUC-ROC (49). We incorporated a validation strategy to
Frontiers in Oncology 04
assess the quality of our findings and test the robustness of the

proteins found in our model. Our experimental methodology

utilized the k-fold cross-validation technique (k=5), a widely

accepted approach (50). The model’s effectiveness was assessed by

calculating the average performance metrics across 50 iterations

(Supplementary Figure S3).
2.6 Feature selection

We used SHapley Additive exPlanations (SHAP) for feature

selection. SHAP quantifies the significance of each characteristic by

utilizing ideas from cooperative game theory to explain how each

protein contributes to the model’s predictions. This method

improves the model’s interpretive skills while also offering

insights into the decision-making process, which raises the output

of the model’s transparency (51). This was visualized using a SHAP

global importance plot to identify the proteins that had the greatest

influence. Additionally, plots were used to show the relative

contributions of each top protein to the sample. Finally, the

common proteins of both datasets were visualized using a heatmap.
2.7 Statistical analyses

The present study used R (v4.3.0) for all pre-processing analyses

of the UK Biobank, while Python (v3.9.13) was used for machine

learning and interpretable XAI-based modeling. The Benjamini-

Hochberg principle (52) was used to adjust p-values for multiple
FIGURE 1

Workflow of the data analysis using UK Biobank and Bosch et al. dataset. *XGBoost, eXtreme Gradient Boosting; *LASSO, Least Absolute Shrinkage
and Selection Operator; *LightGBM, Light Gradient-Boosting; *WGCNA, Weighted gene co-expression network analysis.
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testing corrections, with values that fell below the critical false

discovery rate (FDR) of 0.05 deemed significant. When dividing the

datasets between sets for testing, training, and cross-fold validation

for the machine learning tasks, they were stratified according to the

target class. The mean AUC score across the folds together with the

95% confidence interval in Python provided a representation of

the models.
2.8 Knowledge integration using
STRING database

The protein–protein association network is one of the most

efficient, wide-ranging forms of networks, it includes every gene that

codes for a protein in a particular genome and depicts the functional

interactions between those genes (53). Protein-protein interactions that

are known or predicted are documented in the STRING (54) database.

We compiled the list of proteins from both phases and uploaded it to

STRING for analysis with a confidence interval of 0.4 classified as

‘medium confidence’ for predicted interactions and obtained a

comprehensive view of potential interactions.
2.9 Human protein atlas

To understand the dynamic expression of protein-coding genes

and to generate a map of the human proteome, the Human Protein

Atlas (HPA) project was initiated as a part of the Human Proteome

Project (HPP) focusing on antibody-based proteomics and

integrated omics (55). The objective of HPA is to identify the

expression and spatial distribution of each human protein in

various human organs, cancer types, and cell lines. We have

employed HPA to get more knowledge of the significant role that

proteins play in the many types of cancer cells.
2.10 Weighted gene co-expression
network analysis

We performed a Weighted Gene Co-expression Network

Analysis (WGCNA) (56) on both of our datasets to identify

modules of co-expressed genes and their association with clinical

traits, specifically focusing on cancer and non-cancer control

samples. The analysis began with the selection of an optimal soft-

thresholding power (b) to ensure the network’s scale-free topology.

Next, a module detection test was carried out via the

hierarchical clustering method to identify distinct modules with

co-expressed genes. After identifying distinct modules, we

performed a correlation matrix with cancerous and non-

cancerous samples to indicate genes that are upregulated or

downregulated in diseased cases. The list of upregulated or

downregulated genes was assessed for functional annotations

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) via
Frontiers in Oncology 05
pathway enrichment analysis to identify biological pathways that

can serve as potential therapeutic targets.
2.11 Protein quantitative trait loci analysis

Proteomic analysis was carried out for seven proteins (AHCY,

CEACAM5, LCN2, RETN, SELE, TFF1, and TFF3) in the UK Biobank

proteomics data against imputed SNP array data (57). The cohort was

split into controls without CRC, those who had CRC before the blood

sample was taken, and those who received a diagnosis afterward

(numbers depend on missingness of proteomics data but a

maximum of 51002, 332, and 884 respectively). Analysis was carried

out using regenie (58) v3.4.1, with covariates including sex, age, age2,

age x sex, age2 x sex, genetic principal components 1-10, and genetic

array used. Sex was coded as 1 for females and 2 for males. Gene

annotations were applied using biomaRt (59) v2.56.1, with the dataset

hsapiens_gene_ensembl for GRCh37.
2.12 Batch-effect correction

The common proteins between the UK Biobank and Bosch et al.

datasets were combined for ComBat analysis (60). Batch effects (61)

are expected to have an impact on the integrated dataset due to the

variations in cohort characteristics and data-collecting techniques.

Using the R package “sva,” (62) we implemented the ComBat batch-

effect correction method to resolve these disparities. This method

adjusted for systematic differences while maintaining significant

biological diversity, harmonizing the protein expression data across

datasets. This stage made sure that the source of the dataset wouldn’t

affect subsequent analysis. After batch-effect correction, batch

corrected dataset was split for testing (20%) and training (80%). We

used a 5-fold cross-validation technique in the training phase to

ensure a reliable and unbiased assessment of predicted performance.

Three models for prediction were used LASSO regression, LightGBM,

and XGBoost. To optimize performance, hyperparameter

optimization was done using grid search. Each model’s

performance metrics, such as accuracy, ROC-AUC, precision, recall,

and F1-score, were computed in order to thoroughly assess how well

it predicted the variable being studied. Further we analyzed the

potential biomarkers that were found to be particularly important

to the desired outcome, in addition to assessing the models on the

entire dataset, and the same performance measures were used to

evaluate each model’s predictive value. This provided us with

information about the relative significance and predictive ability of

these particular proteins by comparing the performance of the entire

dataset with those on individual biomarkers. To evaluate feature

importance and determine which feature had the most influence on

model predictions, potential proteins were then put through SHAP

analyses. A better comprehension of the variables influencing the

models’ outputs and their conformity to biological relevance was

made possible by the results of this study.
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3 Results

3.1 Dataset cohort

After extracting participants in UK Biobank with a colorectal

diagnosis (as defined in Supplementary Table S1), 9,890

participants were identified, with 6372 having a colorectal

diagnosis coming from more than 1 source and 3518 coming

from just a unique source. From those unique sources, death

registries identified 74 participants, cancer registries 325, hospital

inpatient data 2737, and self-reported information 382. These 9,890

participants were then age and sex-matched to controls (as defined

by having no ICD-10 diagnosis recorded in hospital inpatient data)

generating a dataset of 19784 participants. After filtering for those

with metabolite information (as of July 2021) and protein data (as of

July 2023), 509 participants had all information remaining,

corresponding to 269 cancer patients and 240 controls. 5

participants had extra protein follow-up information, yielding a

total of 518 samples with protein information used. Basic

demographic information can be found in Table 2.

Regarding our validation dataset, Bosch et al. had 33

participants (13 cancer patients and 20 controls) with a median

age of 67 among colorectal cancer participants which included 6

male participants (Table 2). For the downstream analysis, 518

samples and 2923 proteins were assessed for UK Biobank, and 33

samples with 521 proteins made up the validation dataset

Bosch et.al.
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3.2 Univariate analysis

Univariate comparisons between cases and controls found 159

significant proteins (FDR<0.05) in UK Biobank and 4 significant

proteins in Bosch et al., however, we were unable to identify any

significant proteins in common among the datasets. These are

represented in Figures 2A, B volcano plots, showing the

upregulated and downregulated proteins among the significant

proteins. Proteins found in the univariate analysis were used in

the phases of the following analysis, with the 159 from UK Biobank

used in the first phase and the 98 of those that were also found in

Bosch et al. used in the second phase, since these would be used in

the validation tests.
3.3 Performance evaluation

The performance of the classifiers was assessed in both phases

using eXtreme gradient boosting (XGBoost), light gradient boosting

machine (LGBM), and least absolute shrinkage and selection

operator (LASSO). Supplementary Tables S2 and S3 summarize

the hypertuning parameters used. Supplementary Tables S4 and S5

summarize the performance metrics for each classifier.

With the objective to boosting model accuracy, reducing

overfitting, and improving generalization on unseen data, each

model’s hyperparameters were defined in specific grids to allow

GridSearchCV to test a range of potential values. For XGBoost, the
TABLE 2 Baseline demographic characteristics.

Characteristics

UK Biobank dataset Bosch et.al.

Total (N=509) Colorectal
cancer (N=269)

Control (N=240) Colorectal
cancer (13)

Control (20)

Sex

Male 290 (57.0%) 163 (60.6%) 127 (52.9%) 6 (50) 14 (70)

Female 219 (43.0%) 106 (39.4%) 113 (47.1%) – –

Ethnicity

Asian 2 (0.4%) 0 (0%) 2 (0.8%) – –

Black 7 (1.4%) 3 (1.1%) 4 (1.7%) – –

Mixed 4 (0.8%) 2 (0.7%) 2 (0.8%) – –

Unknown 8 (1.6%) 3 (1.1%) 5 (2.1%) – –

White 488 (95.9%) 261 (97.0%) 227 (94.6%) – –

Age at diagnosis

Mean (SD) 63.7 (9.53) 63.7 (9.53) – – –

Median [Min, Max] 65.5 (28.3, 80.5) 65.5 (28.3, 80.5) – – –

Age at assessment

Mean (SD) 61.4 (6.40) 61.5 (6.61) 61.4 (6.16) –

Median [Min, Max] 63.0 (40.0,70.0) 64.0 (40.0,70.0) 62.5 (40.0,70.0) – –

Age (median [IQR]) 67 (60–71) 67 (62–75)
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parameters included n_estimators to control boosting rounds,

max_depth to set tree complexity, learning_rate to balance learning

speed and accuracy, and subsample and colsample_bytree to reduce

overfitting through data and feature sampling. Similar parameters

were used by LightGBM, but the complexity of each tree was

controlled by num_leaves rather than n_estimators. The

regularization strength affects feature selection by reducing

coefficients towards zero, hence we only defined the alpha

parameter for Lasso regression. So as to maximize AUC (Area

Under the ROC Curve), a metric that assesses the trade-off

between true positive rate (TPR) and false positive rate (FPR) and

is especially well-suited to binary classification, we analyzed each

model’s performance across these grids and identified the best

parameter combinations. GridSearchCV was set up with stratified

5-fold cross-validation using StratifiedKFold for every model. In

order to ensure stability and prevent overfitting to any specific data

split, this approach splits the data into five parts while preserving class

proportions in each fold. GridSearchCV evaluates every parameter

combination over all folds using AUC as the evaluation measure. It

then chooses the combination that has the greatest average AUC

score, hence determining the optimal model configuration. By

avoiding overfitting and offering an unbiased evaluation of the

model’s performance on the training set, this cross-validation

technique enhances the generalizability of the chosen parameters.

After determining the optimal parameters, we assessed each model’s

performance in the test set. AUC, specificity, sensitivity, precision,

and F1-score are among the metrics we calculated to give a thorough

evaluation of each model’s strengths and weaknesses. The confusion

metrics for each dataset of the two phases in shown in Supplementary

Tables S6 and S7.

The classifiers produced quite similar performance metrics for

the UK Biobank dataset. LASSO generated the highest AUC test

score of 0.75 (95% CI:0.65-0.84), whereas XGBoost scored 0.71

(95% CI:0.61-0.81) and LightGBM 0.70 (95% CI:0.59-0.79). With

an optimal grid alpha value for LASSO of 0.01, it was the most
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effective at detecting individuals with colorectal cancer. LASSO

further exhibited some balance between recall and precision with an

F1 score of 0.73. The model’s specificity score of 0.67 suggests that it

has the potential to accurately detect non-CRC cases. However, the

model exhibited more errors in accurately comprehending non-

CRC cases (Supplementary Figure S4A). In the second phase,

LASSO produced an AUC test score of 0.64 (95% CI:0.52-0.74),

again the best of the three classifiers, while XGBoost scored an AUC

of 0.63 (95% CI:0.52-0.73) and LightGBM with AUC of 0.60 (95%

CI:0.49-0.70). Lasso had an optimal grid value of 0.01 and an F1

score of 0.61. The specificity score of the model of 0.42 indicates that

it had little ability to accurately identify instances that were not

colorectal cancer (Supplementary Figure S4B).

Performance of the classifiers was markedly worse in the

validation dataset (Bosch et.al). When the classifier’s performance

was compared, XGBoost and LightGBM performed better with an

AUC test of 0.53 (95% CI:0.41-0.66) than LASSO (AUC test = 0.40

(95% CI:0.20-0.63). XGBoost and LightGBM detected all positive

instances (recall=1) but failed to find any negative predictions

(specificity=0) (Supplementary Figure S5A). In phase 2, XGBoost

was found to be performing moderately with an AUC test score of

0.61 (95%CI:0.40-0.82) compared to LightGBMAUC test 0.57 (95%

CI:0.36-0.77) and LASSO AUC test 0.55 (95% CI:0.35-0.74). The

optimal grid parameters of XGBoost were colsample_bytree:0.8,

learningrate:0.05, max_depth:5 , n_estimators:200, and

subsample:0.8. It produced an F1 score of 0.59, which reflects a

balance between recall and precision, demonstrating XGBoost was

successful in differentiating between colorectal cancer and non-

colorectal cancer (Supplementary Figure S5B).
3.4 Feature selection and interpretation

Analysis using SHAP identified 25 proteins (Figure 3A) that

were shared among the top 50 proteins in three models in the first
FIGURE 2

(A) Volcano plot for significant proteins(padj<0.05) in UK Biobank dataset (159 significant proteins). (B) Volcano plot for significant proteins
(padj<0.05) in Bosch et al. dataset (4 significant proteins).
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phase of UK Biobank data. Of these, two proteins were shared with

those found in Bosch et al. After extracting the 98 proteins of UK

Biobank in phase 2, 29 of the top 50 proteins of each model were

common among three classifiers (Figure 3B). These same 29

proteins were extracted from Bosch et al. and validated using the

three models. The 29 common proteins of both datasets were

visualized using a heatmap, as seen in Figure 4. One notable

difference is that CBLIF and DPEP1 were expressed less in cases

found in UK Biobank but higher in Bosch et al. cases.

In the first phase, the most important protein was discovered to

be the inflammation indicator (63) CEACAM5 in both datasets

followed by B4GAT1, MFAP3, and LRRN1 were the next most

highly ranked proteins in the UK Biobank data whereas MZB1, and

ACE2 were determined to be low ranked proteins. From examining

the local model impact plots, CEACAM5, B4GAT1, MFAP3, and

LRN1 were observed to influence the model’s prediction of the

predictive class CRC. On the other hand, MZB1and ACE2 appeared

to be predictive of a lower likelihood in the prediction of colorectal

cancer. PLA2G2A did not show up much expression in the Bosch

et al. data (Supplementary Figures S6A–D).

The most important proteins found in UK Biobank in phase 2

were discovered to be AHCY and HAGH. Also notable are

TMPRSS15 and MEP1B considered less important in Bosch et al.

There was higher expression of DPP4 and PLA2G2A in individuals

with CRC and the least important protein was TFF2. The proteins

AHCY, HAGH, DPP4, and PLA2G2A had elevated levels and were

chiefly responsible for the prediction of CRC. TMPRSS15, MEP1B,

and TFF2 lowered the prediction of CRC (Figures 5A–D).
3.5 Interaction networks using STRING and
the Human Protein Atlas

The proteins common in the two datasets were given as input

into the STRING database to identify interactions. The protein

CD163, one of the 25 proteins (Supplementary Figure S7A)

identified in the first phase, was shown to have a strong

correlation with other proteins, including IL2RA, HGF, LAG3,

SELE, and to be crucial for both cell adhesion and metastasis. The
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inflammatory protein CEACAM5 had a strong correlation with

TFF1 and LAG3 proteins. Analysis of 29 proteins (Supplementary

Figure S7B) in phase 2 revealed that AMY2A and AMY2B had

evidence of a strong interaction in pancreatic cancer, while our

study did not find a significant correlation between them.

Experimentally, it was discovered that TFF3 and TFF2 were

highly correlated.

Seven proteins, TFF3, LCN2, CEACAM5, TFF1, SELE, RETN,

and AHCY were found to be upregulated in other databases and

also in our UK Biobank where TFF3 and LCN2 were found to be the

most significant proteins and were highly expressed in colorectal

cancer. The comparison of seven proteins in the case and control

groups is illustrated (Supplementary Figures S8A–G).

The prediction of both dataset models was tested with SHAP

XAI, which also highlighted the key proteins influencing the

prediction of the models. The top proteins found in the UK

Biobank included CEACAM5, B4GAT1, and AHCY. However,

the model’s average AUC score of 0.69 implies that these proteins

are not effective in classifying colorectal cancer samples in UK

Biobank and cannot distinguish between CRC cases and controls.

However, given that the results are not as low as chance 0.50, it is

acceptable to make the assumption that the pathophysiology of

CRC is influenced by these important proteins, with findings

supported by the literature mentioned below. According to

previous studies CEACAM5 (64), B4GAT1 (65), and AHCY (66)

were discovered to be biomarkers of CRC due to their strong

involvement in the methylation and inflammatory processes of

tumor cells. These were discovered to be inverse biomarkers that

correspond with the CRC prediction made by our UK

Biobank models.

Seven proteins namely TFF3, LCN2, CEACAM5, TFF1, SELE,

RETN, and AHCY proteins of both phases were found to be

upregulated in colorectal cancer in human protein atlas database,

also were significant in our UK Biobank dataset and had an essential

function in CRC (Supplementary Table S8).

TFF3 and LCN2 were found to be the top most significant

proteins in the UK Biobank.TFF3 and LCN2 were found to be

highly expressed in other cancers like Myeloma, and lung cancer in

the human protein atlas database.TFF3 was the most significant
FIGURE 3

(A) Common protein (25) among top 50 proteins (3 models) of UK Biobank. (B) Common proteins (29) among top 50 proteins (3 models) of
UK Biobank.
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protein found in our study and played an important role in the

proliferation, migration, and invasiveness of HT29 cells in colorectal

cancer (67).TFF3 has a physical association with PCBD1, UBQLN2,

and SGTA which were considered to be transcription factors and

other protein classes in the human protein atlas database

(Supplementary Figure S9A). TFF3 plays an important role in the

apoptosis, and cell proliferation along with the promotion of

angiogenesis in colorectal cancer (68) (Supplementary Figure S9B).

It interacts with tyrosine kinase (src) protein and activates signal

transducer and activator of transcription 3 (STAT3) which is plays an

important role in the signaling pathway of cancer progression (69). A

genome-wide association study (GWAS) analysis revealed that

chromosome 21 is known to have the TFF3 protein. The

expression of TFF3 was found to be high in our CRC samples.

LCN2 appeared to be the 2nd most significant protein and

played an important role in the enzymatic activity of matrix

metalloprotease-9 causing metastasis of colorectal cancer cells

(70) It has a physical association with several other transcription

factors and other protein classes (Supplementary Figure S10A).

They played an important role in tumor cell growth, iron toxicity,

and methylation and served against the anti-cancer drugs (71)

(Supplementary Figure S10B). GWAS analysis revealed that

chromosome 9 is known to have the LCN2 protein.
3.6 Weighted gene co-expression network
analysis results

In our assessment of the UK Biobank dataset, we evaluated the

scale-free topology model fit and mean connectivity to determine its

suitability for WGCNA. Although the mean connectivity was not
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atypical, the consistently low signed R² values indicated a poor fit to

the scale-free topology model (Supplementary Figures S12A, B).

This suggested that the dataset did not fully exhibit the scale-free

network characteristics typically required for robust co-expression

analysis. As a result, the dataset was deemed unsuitable for further

WGCNA analysis and no modules were identified or additional

analyses, such as module-trait correlations or functional

enrichment were performed.

In the Bosch et al. dataset the chosen b value of 8 was supported

by a scale-free topology model fit (signed R²) consistently achieving

a value of 0.90 across tested b values, indicating a robust scale-free

network (Figure 6A). The mean connectivity plot showed a decline

with increasing b, suggesting a sparser network structure, with the

selected b ensuring a balance between scale-free topology and

network interpretability (Figure 6B).

Subsequently, module detection via hierarchical clustering on

the Bosch et al. dataset identified two distinct modules, MEBlue and

METurquoise, with the remaining genes assigned to the Gray

module, indicating no significant co-expression. The cluster

dendrogram visually confirmed these modules, with MEBlue and

METurquoise displayed prominently (Supplementary Figure S11).

To explore the functional relevance of the identified modules,

we correlated the module eigengenes (MEs) with the defined clinical

traits (Figure 6C). The MEBlue module exhibited a low negative

correlation with cancer (r = -0.022, p = 0.6) and a low positive

correlation with control (r = 0.022, p = 0.6), suggesting no

significant differential expression in relation to these traits. In

contrast, the METurquoise module showed a slightly positive

correlation with cancer (0.048, p = 0.3) and a slightly negative

correlation with control (r = -0.048, p = 0.3), indicating a marginal

trend of up-regulation in cancer samples.
FIGURE 4

Heat map of 29 proteins of UK Biobank and Bosch et al.
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Further functional annotation through KEGG pathway

enrichment analysis revealed that genes in the METurquoise

module were significantly associated with several biological

pathways, with the MAPK signaling pathway being the most

enriched. This suggests a potential involvement of these genes in

critical cellular processes such as proliferation and survival, which is

relevant to cancer pathology.

Overall, our WGCNA analysis has identified key gene modules

and potential functional pathways associated with cancer. While the

correlations with clinical traits were modest, the identification of the

signaling pathways highlighting potential biological mechanisms calls

for further investigation. This experiment provides a comprehensive

framework for understanding gene co-expression patterns and their

potential functional implications in colorectal cancer.
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3.7 Pathway-based interpretation

Figure 7 explains how each of the biomolecules is capable of

triggering colorectal cancer through various proteogenomic

pathways. Trefoil factor 3 (TFF3) has been found to promote cell

migration and increase proliferation of colorectal cancer cells.

Overexpression of TFF3 in colorectal cancer cells decreases the

levels of E-cadherin which results in increased epithelial-

mesenchymal transition, enhancing colon cell migration and

promoting the formation of secondary tumors, thereby

progressing cancer (67). Decreased levels of E-cadherin activate

the EGF receptor signaling cascade leading to phosphorylation of b-
catenin and activation, altering cell-cell interactions and leading to

cell migration (72). TFF3 has also been found to activate signaling
FIGURE 5

(A) UK Biobank - Local importance (LASSO-Phase 2). (B) UK Biobank - Global importance (LASSO-Phase 2). (C) Bosch et al. - Local importance
(XGBoost-Phase 2). (D) Bosch et al. -Global importance (XGBoost-Phase 2). The features displayed are the top 20 proteins of each model, as
determined by their SHAP values. The samples are shown as colored dots in the local importance summary plot for SHAP values, the color of each
dot corresponds to its value for that feature. Positive SHAP values have a positive effect on the model and direct the algorithm to predict the positive
class, and vice versa. In the global importance summary plot for mean absolute SHAP values higher rank features are associated with more samples
having SHAP values.
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pathways that promote cellular invasion including src/RhoA, PI3K/

Akt, and phospholipase C (PLC)/Protein kinase C (PKC) pathways.

By activating the PI3K/Akt signaling pathway, cell survival and

invasion are enhanced (73). Activation of this pathway also leads to

downstream effects such as inhibition of pro-apoptotic factors and

activation of proteins that promote protein synthesis and cell

growth. The PLC/PKC pathway is also involved in cellular

motility and invasion, which is an important step in the

metastatic spread of cancer cells (73). Compared to healthy cells,

in colorectal cancer cells levels of Lipocalin 2 (LCN2) are elevated

(74). In colorectal cancer cell lines LCN2 overexpression was linked

to increased invasion of cells and loss of cell-to-cell adhesion (74).

LCN2 has been shown to protect matrix metalloproteinase 9

(MMP9) from proteolytic degradation by forming an LCN2/

MMP9 complex (74). MMP9 plays an important role in the

resorption of the extracellular matrix and therefore in metastasis

and neoplastic invasion (75). By covalently bonding to MMP9,

LCN2 can decrease the degradation of MMP9 and therefore

increase tumor progression by enhancing the enzymatic activity

of MMP9 (75, 76). Carcinoembryonic antigen-related cell adhesion

molecule 5 (CEACAM-5) is a glycoprotein overexpressed in

colorectal cancer (77). CEACAM-5 inhibits anoikis, a type of

apoptosis that is triggered by the loss of extracellular matrix-cell

contacts, therefore disrupting colonic tissue architecture (77, 78).

CEACAM5 interacts with DR5, a member of the death receptor

family found on the plasma membrane of colorectal cancer cells

that have detached from the extracellular matrix. This leads to

reduced caspase-8 activation therefore leading to the inhibition of

caspase-3 (79). CEACAM-5 is clustered in lipid rafts and activates
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integrin-a5 which activates the PI3k/Akt signaling pathway which

promotes cell survival. Downstream effects of activating the PI3K/

Akt signaling pathway include inhibition of the release of

cytochrome-c from the mitochondria, resulting in the prevention

of apoptosis in detached cells and increasing migration of the cell

allowing the formation of a secondary tumor (78).

Trefoil factor 1 (TFF1) overexpression facilitates tumor growth

and invasiveness through various pathways including Rho-GTPases,

Rho-kinase, PI3-kinase, PLC, and COX-2 (73, 80).TFF1-induced

cellular invasion is dependent on the EGFR signaling pathway.TFF1

indirectly activates EGFR, through a mechanism involving the

transactivation of EGFR using G-protein coupled receptors (GPCRs)

(73)TFF1 can also increase invasiveness through Thromboxane A2

(TXA2) receptor/PLC - dependentmechanisms. TFF1 upregulates the

production of TXA2 which binds to the TXA2 receptor which is

coupled toG-proteins and goes on to activate PKC. PKC enhances cell

proliferation, survival, and invasion therefore progressing colorectal

cancer (73). Selectin-E (SELE) levels are significantly higher in

colorectal cancer cells in comparison to adjacent healthy cells (55).

SELE is induced by pro-inflammatory stimuli such as tumor necrosis

factor-a and IL-1b (81, 82). SELE is able tobinddeathreceptor 3 (DR3)
and activate it leading to the recruitment of src kinase. Src kinase

phosphorylates the tyrosine residues on DR3 leading to activation of

PI3K. PI3K activates Akt leading to a variety of downstream effects

including the activation of the NFkB pathway. The PI3K/Akt/NFkB
pathway is known to protect colorectal cancer cells from apoptosis by

reducing the activity of caspase-8 and caspase-3. These caspases are

important in the inductionof apoptosis, suggesting thatSELE increases

the survival of cells and resistance towards apoptosis, further
frontiersin.o
FIGURE 6

(A) Scale-free topology model fit and mean connectivity analysis of Bosch et.al., dataset: The horizontal line at a signed R² value of 0.90 indicates
that the network exhibits a good scale-free topology fit across the tested range of soft-thresholding power (b) values, suggesting that the network’s
degree distribution closely follows a power-law distribution. (B) The mean connectivity for different b values shows as b increases, the mean
connectivity decreases, indicating a reduction in the number of connections per node, which is consistent with a sparser network structure. The
selected optimal b value of 8 balances. (C) The heatmap illustrates the correlation between the identified module eigengenes (MEs) and the defined
traits, “Cancer” and “Control” (non-cancer). The rows represent the MEs (MEblue and MEturquoise), and the columns represent the traits. Each cell
contains the Pearson correlation coefficient, with the corresponding p-value provided in parentheses.
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progressing the tumor (82). Resistin (RETN) is overexpressed in

colorectal cancer (83). RETN binds to toll-like receptor 4 (TLR4) on

the surface of colorectal cancer cells, switching on ERK signaling (83,

84). Activated ERK can promote upregulation of the gene SOCS3

which leads to decreased phosphorylation of JAK2 and STAT3 (83).

Inhibition of the JAK2/STAT3 signaling pathway results in the growth

arrest of cells in the G1 phase of the cell cycle, therefore regulating cell

growth (83). S-adenosylhomocysteine hydrolase (AHCY) levels in

colorectal cancer are disrupted, leading to an imbalance in

methylation processes. AHCY is an enzyme that catalyzes the

hydrolysis of S-adenosylhomocysteine (SAH) into homocysteine.

Increased activity of AHCY leads to increased conversion of SAH

intohomocysteine. SAH inhibits the activity ofmethyltransferases and

as AHCY inhibits the accumulation of SAH, there is more DNA

methylation occurring leading to abnormal gene expression which

contributes to tumor progression (66).
3.8 Protein quantitative trait loci
analyses results

Significantly associated loci were identified in the groups with

prior CRC and that would go on to be diagnosed with CRC after

sampling. In those who had been previously diagnosed with CRC,

this included 57 SNPs associations with SELE levels and for those

who went on to be diagnosed, there were 67 SNPs associated with

CEACAM5, 136 with SELE, and 1 with TFF1. However, all of these
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points were more significantly associated by p-value in the control

group and in SNPs whereby significant association was found in a

CRC cohort, the Beta coefficient always had the same sign as in the

control cohort, indicating the SNP significantly associated had a

similar effect to the control group (Supplementary Figure S13,

Supplementary Table S9).
3.9 Impact of batch-effect correction on
model outcomes

A harmonized dataset of 98 common proteins from the UK

Biobank and Bosch et al. databases were used to evaluate the

performance of prediction models such as XGBoost, LightGBM,

and LASSO regression. AUC was 0.60, specificity was 0.58, recall

was 0.57, accuracy was 0.59, and F1 was 0.58 for LASSO regression.

The AUC score for both XGBoost and LightGBM was 0.57.

XGBoost’s specificity was 0.52, sensitivity was 0.62, precision was

0.58, and F1 score was 0.60. LightGBM’s specificity was 0.49, recall

was 0.66, precision was 0.57, and F1 score was 0.61.

LightGBM obtained an AUC score of 0.62, specificity of 0.52,

recall of 0.66, accuracy of 0.59, and F1 score of 0.62 for the seven

potential biomarkers. An AUC score of 0.60, specificity of 0.49, recall

of 0.62, accuracy of 0.56, and F1 score of 0.59 were all attained with

LASSO regression.With an F1 score of 0.59, recall of 0.60, accuracy of

0.57, specificity of 0.52, and AUC of 0.57, XGBoost performed well.

The proteins AHCY, LCN2, CEACAM5, TFF3, TFF1, SELE, and
FIGURE 7

Proteogenomic insights into the biological pathways of proteins associated with colorectal cancer. The red line denotes the upregulated actions,
and the blue dotted lines denote the downregulated actions.
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RETN were shown to be the most significant when the highest AUC

model LightGBMmodel was subjected to SHAP analysis to ascertain

feature importance, suggesting their possible applicability in

predictive modeling. The distribution of the seven proteins of the

ComBat-corrected dataset is depicted (Supplementary Figure S14).

3.9.1 Comparative validation of potential
biomarkers across CRC studies

The expression levels of TFF3 and TFF1 in colorectal cancer

tissues were examined in a study conducted by Yusufu et al. (67)

which revealed TFF3 and TFF1 expression levels are elevated in

colorectal cancer and promote the malignant behavior of colon

cancer by activating the EMT process. The mRNA expression levels

of these proteins were assessed by the researchers using quantitative

real-time PCR (qRT-PCR). They found that TFF3 and TFF1

expression was elevated with a fold change of 3.5 and 2.8,

respectively when compared to nearby normal tissues. These

results imply that increased TFF3 and TFF1 levels could be a

factor in colon cancer’s aggressive behavior, Li et al. (85)

analyzed the expression of the SELE gene using tissue samples

from normal tissues and colorectal cancer (CRC) tissues.

Quantitative reverse transcription polymerase chain reaction

(qRT-PCR) was the primary technique used to assess the levels of

expression. The results showed that, with a reported fold change of

roughly 2.5, SELE expression was considerably elevated in CRC

tissues relative to normal tissues. SELE may be a useful biomarker

for colorectal cancer prognosis, providing information about tumor

biology and possible treatment targets, according to these findings.

The Vande Voorde et al. (66) study on AHCY utilized tissue

samples from mutated mouse models of colorectal cancer (CRC).

The researchers used multimodal mass spectrometry-based

technology. They found that gene adenomatous polyposis coli-

deficient CRC tissues had 3.2 times higher levels of S-

adenosylhomocysteine and 2.5 times higher levels of S-

adenosylmethionine than normal tissues. To examine the role of

lipocalin2 (LCN2) in colorectal cancer (CRC), the study by Feng

et al. (86) used a variety of cutting-edge technologies. Real-time

PCR, Western blotting, and immunohistochemistry (IHC) on 400

CRC tissue samples were among the methods employed to evaluate

the amounts of mRNA and protein. The functional roles of LCN2 in

carcinogenesis and metastasis were investigated using mice

xenograft models in conjunction with other assays such as colony

formation, immunofluorescence, wound healing, migration,

invasion, and luciferase reporter assays. The researchers

discovered a substantial differential in LCN2 expression, with a

fold change above 20 (P < 0.01). The study by Gisina et al. (87) on

CEACAM5 overexpression, used 30 colorectal tumors in an effort to

find biomarkers of CD133-positive cases. Using label-free

quantification for comparative proteome profiling, researchers

used liquid chromatography-tandem mass spectrometry (LC-MS/

MS) to identify proteins that were differentially expressed.

CEACAM5 and other identified proteins were confirmed to

exhibit differential expression using flow cytometry and the

enzyme-linked immunosorbent assay (ELISA). Results indicated
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that CEACAM5 was consistently overexpressed in CD133-positive

cells across all samples, with fold differences average of 18 (ranging

from 3.4 to 32.6). This suggests that CEACAM5 is a reliable marker

for colorectal patients that are CD133-positive. The role of Resistin

in colorectal cancer has been researched in a study by Rompou et al.

(88), which compared the expression levels of Resistin (RETN) in

CRC tissues with those in normal tissues. They used the enzyme-

linked immunosorbent assay (ELISA) to evaluate the protein

concentrations and the quantitative real-time polymerase chain

reaction (qRT-PCR) to determine the levels of Resistin mRNA.

The results demonstrated that Resistin expression was much higher,

with a fold shift of about 2.5, and statistically significant (p < 0.01)

when compared to normal tissues in CRC samples. The fold change

value of each study is depicted (Supplementary Figure S15).
4 Discussion

4.1 Model performance

In this study, we compared three algorithm’s ability to

distinguish between individuals with CRC and controls, based on

proteomics data from two sources. However, LASSO surpassed the

other machine learning models used in the UK Biobank. This is

probably because the LASSO model, which automatically removes

strongly correlated variables, gave zero weights to a number of

potentially redundant features that were included in the models.

When integrating the results from the two phases, LASSO

consistently showed better performance in predicting colorectal

cancer compared to XGBoost and LightGBM with some variability

in specificity. With test AUC of 75.05% in phase 1 and 63.37% in

phase 2, LASSO achieves the highest test results overall, suggesting a

superior capacity to differentiate between cases of colorectal cancer

and non-colorectal cancer cases. The test AUC for XGBoost and

LightGBM, which are 71.42% and 69.61% in phase 1 and 62.25%

and 60.35% in phase 2 respectively are significantly lower than

LASSO. LASSO dominates with an F1 score of 73.87% in Phase 1

and 61.01% in Phase 2, which balances recall and precision. This

suggests that LASSO, as compared to XGBoost and LightGBM, is

more successful in accurately predicting cases of CRC while

minimizing false positives and false negatives. LASSO achieves

71.92% in Phase 1 and 56.25% in Phase 2, exhibiting high

precision. Although precision reduces in Phase 2, LASSO

outperforms Light GBM and XGBoost with recall values of

75.92% in Phase 1 and 66.66% in Phase 2. LASSO had a strong

ability to predict true positive classes, showing its superior capacity

to identify a larger proportion of actual cases of CRC. Variability is

shown in specificity, which reflects the ability of the model to

identify real negatives. In Phase 1, LASSO achieves 67.34%, but in

Phase 2, it falls to 42.85%. LASSO was surpassed in Phase 2 by

XGBoost and LightGBM, with specificity of 52.01% and 53.06,

respectively. This suggests that although LASSO is very good at

detecting actual positive instances, it could generate more false

positives than LightGBM and XGBoost, particularly in phase 2.
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On the other hand, models did not play well in the Bosch et al.

data. Comparatively, XGBoost performed better but with a

moderate accuracy rate in predicting CRC cases with some

variability in specificity. Phase one results show that LASSO falls

behind at 40%, while XGBoost and LightGBM have the greatest test

AUC of 53%. LASSO comes in at 55.38%, LightGBM at 57.30%, and

XGBoost at 60.76%, all of which continue to lead in Phase 2. By 57%

in Phase 1 and 59.99% in Phase 2, XGBoost also leads in the F1

score. The findings indicate that XGboost outperforms LASSO and

LightGBM in accurately predicting CRC while minimizing false

negatives and positives. LightGBM and XGBoost have the same F1

score in phase 1, however, in phase 2, LightGBM’s score drastically

decreases to 34.78%. Phase 1, LASSO F1 score is 57%, however,

phase 2 score is far lower at 23.5%. In Phase 2, XGBoost has the

highest precision of 52.94% among the predicted positives, whereas

both LASSO and LightGBM have the lowest precision. LightGBM

precision is 40% while LASSO increases to 50% in phase 2. All

models in Phase 1 exhibit 100% recall, a measure of their ability to

detect true positive CRC patients. In Phase 2, LightGBM comes in

second at 30.76%, LASSO at 15.38%, and XGBoost is leading once

more at 69.23%. With LASSO in phase 2, the ability of the model to

identify the true negative class is highest with specificity of 90%,

followed by LightGBM at 70% and XGBoost at 60%. Phase 1 results

demonstrate that all models have 0% specificity, meaning that none

of them can accurately identify true negative classes.

These results emphasize the significance of choosing a

prediction model that balances the trade-offs between precisely

identifying true positive and negative cases while retaining

high accuracy.

Finally, we compared the similarities and differences between our

study and the previous studies. A prior study (89) used mass

spectrometry profiling combined with machine learning techniques

to develop an understanding of the molecular mechanisms

underlying the progression of colorectal adenomas into colorectal

cancer. With elastic net regression and a set confidence range of 0.7–

0.95, it remarkably revealed a greater model accuracy of 90% while

maintaining a balance between specificity and sensitivity. The higher

performance could be related to many factors, such as the

comprehensive nature of the protein data examined and the use of

modern profiling technologies. The type and amount of data that

were available may have restricted our study, where we used three

separate models. Although our models had some degree of

effectiveness, they lacked the specific insights provided by

proteomics data. Despite the modest sample sizes in both

investigations, their research highlights the benefits of sophisticated

model approaches and advances in proteome profiling.

This study utilized the ComBat batch-effect correction method

to successfully harmonize protein expression data from separate

cohorts: Bosch et al. and the UK Biobank. This approach preserved

significant biological variability while successfully reducing batch

effects brought on by variations in cohort characteristics and data

collection methods. By ensuring that the model’s performance was
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not influenced by the data’s source, the harmonized dataset

provided a strong basis for subsequent predictive assessments.

Nevertheless, there was no discernible difference in the models’

overall predictability when compared to analyses carried out

without batch-effect correction, indicating that batch effects might

have had little effect on this particular dataset. LASSO regression,

LightGBM, and XGBoost are three machine learning models that

were employed to predict results based on data on protein

expression. These models’ AUC ratings, which ranged from 0.57

to 0.62, showed moderate prediction performance across the

harmonized dataset. While LASSO regression may not be able to

fully capture non-linear data correlations, it demonstrated steady

and balanced performance, obtaining an AUC of 0.60 for the whole

dataset and for selection of seven important biomarkers. The AUC

values of the gradient-boosting techniques LightGBM and XGBoost

were similar, but LightGBM outperformed XGBoost in terms of

sensitivity and F1 scores, especially when used on the biomarker

sample. The potential use of seven proteins as biomarkers was

emphasized by their identification as significant predictors: AHCY,

LCN2, CEACAM5, TFF3, TFF1, SELE, and RETN. Their relative

relevance was highlighted by SHAP analysis, which also shed light

on how they affect model predictions. By concentrating on these

biomarkers, LightGBM in particular showed enhanced performance

(AUC: 0.62, F1: 0.62), highlighting its capacity to give priority to

significant features in intricate datasets. Even though none of the

models produced very good prediction results, the results indicate

that batch-effect correction is still essential for guaranteeing the

accuracy and interpretability of results even though it may not

always result in appreciable gains in model performance. These

findings highlight the identified proteins’ potential as biomarkers

and call for more research to fully understand their biological

importance and predictive modeling capability.
4.2 Proteins identification and
clinical aspects

The predictions of both cohort models were well explained by

SHAP XAI, which also revealed the important features of both

datasets. CEACAM5 and AHCY were UK Biobank’s top proteins.

However, the average AUC score of 69.21 suggests that these

variables are not highly successful in classifying CRC patients

within the UK Biobank. The results are not as low as chance 0.50,

thus it is possible to assume that these top proteins are involved in the

pathophysiology of colorectal cancer. This finding is supported by

literature. An earlier study, for example, revealed that CEACAM5 is

implicated in hypomethylation, which results in enhanced expression

of carcinoembryonic antigen. This alters the importance of

progression in CRC and suggests that CEACAM5 is a good

biomarker (64). The accumulation of S-Adenosyl-L-homocysteine

(SAH) in CRC was also linked to AHCY, which inhibited

methylation and encouraged the formation of tumors (66).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1505675
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Radhakrishnan et al. 10.3389/fonc.2024.1505675
TFF3, LCN2, CEACAM5, TFF1, SELE, RETN, and AHCY—the

seven important proteins identified in this study were discovered to

be relevant and involved in another research. When TFF3 is

overexpressed in colorectal cancer cells, transcription factors such

Twist1, Snail, and Vimentin are expressed more often while E-

cadherin levels are concurrently decreased. Lower levels of E-

cadherin lead to an increase in the epithelial-mesenchymal

transition which promotes colorectal cancer cell migration and

metastases (67). Additionally, it has been discovered that TFF3

activates signaling pathways that support cellular invasion

including PI3K/Akt, phospholipase C (PLC)/protein kinase C

(PKC), and src/RhoA pathways (73). The architecture of colonic

tissue is disturbed by CEACAM-5 by inhibition of anoikis, a kind of

apoptosis that is brought on by the loss of extracellular matrix-cell

connections (77). Both the intrinsic and extrinsic mechanisms of

anoikis can be inhibited by CEACAM-5 which may result in the

emergence of a secondary tumor (78).

Overexpression of Trefoil factor 1 is involved in pathways,

including Rho-GTPases, Rho-kinase, PI3-kinase, PLC, and COX-2

and they interact with other receptor systems to activate epidermal

growth factor receptor EGFR indirectly causing progression of

cancer (73). SELE has the ability to bind and activate death

receptor 3 (DR3) which in turn activates src kinase PI3K and

NFkB pathway. By inhibiting the activities of caspase-8 and

caspase-3, the NFkB pathway is known to shield colorectal cancer

cells from apoptosis promoting cell survival and resistance to

apoptosis (82). Resistin (RETN) binds toll-like receptor 4 (TLR4),

activating ERK signaling triggers a variety of downstream signaling

events. The p38 MAPK pathway may be activated when RETN

attaches to TLR4 on colorectal cancer cells. This causes a variety of

genes that are involved in promoting inflammation, cell division,

and survival to get phosphorylated which promotes colorectal

cancer (83). AHCY prevents SAH from accumulating, and more

DNA methylation occurs, which results in aberrant gene expression

and aids in the development of tumors (66).
4.3 Mechanistic insights into TFF3 and
LCN2 in colorectal cancer progression

TFF3 is involved in CRC through its activation of the PI3K/Akt

signaling pathway, which is known for promoting cell survival and

invasion (90). When activated, PI3K/Akt leads to the inhibition of

pro-apoptotic factors, and stimulates mTOR (mammalian target of

rapamycin), promoting cell growth and protein synthesis—

processes essential for tumor development and metastatic

potential in CRC (90). TFF3 binds to CD147, enhancing its

interaction with CD44s, which subsequently activates SRC and

STAT3 signaling (69). This cascade results in the induction of

PTGS2, a gene that fosters cell migration, invasion, and

proliferation, all of which are integral to CRC progression (69).

LCN2 contributes to CRC progression by forming a complex with
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MMP9, an enzyme involved in degrading the extracellular matrix

(ECM), thus enhancing cancer cell invasion and metastasis (75). As

LCN2 inhibits the breakdown of MMP9, its enzymatic activity is

enhanced leading to increased invasion and metastasis (75). LCN2

also decreases E-cadherin mediated cell-cell adhesion therefore

increasing cell motility and invasiveness through the action of

Rac1 in CRC cells (75). LCN2 has also been found to have a role

in colitis-mediated colorectal cancer (CAC) (91). Colitis causes

there to be an inflammatory environment leading to IL-6 release

(91). Il-6 binds to STAT3 upregulating LCN2 in cancer cells (91).

NF-kB is also activated in inflamed tissues and also upregulates

LCN2 in cancer cells, leading to sustained inflammation (91). This

can then lead to PI3K/AKT/mTOR phosphorylation, which helps

cancer cells resist apoptosis, increasing cell survival so cancer can

progress (91). This multifaceted role of LCN2 in ECM degradation,

cell adhesion, and inflammation underscores its significance as both

a biomarker and therapeutic target in CRC.
4.4 Linking biomarkers to
therapeutic strategies

Therapeutically, LCN2 remains challenging to target due to its

nonenzymatic nature (70) therefore, current strategies to target LCN2

for therapeutic interventions involve gene editing of LCN2 (70). This

is currently observed in the treatment of cholangiocarcinoma (CCA)

cells (92). In another study, transfected LCN2-siRNAs were inserted

into CCA cells and observed significant decreases in cell invasion and

migration but no changes in cell proliferation (92). This suggests a

promising translational pathway for future CRC therapies,

particularly in patients with advanced Tumor Node Metastasis

(TNM) stages or metastasis who might benefit from targeted LCN2

suppression to limit cancer spread (92). CEACAM5-targeted CAR T-

cells7 have been developed to ComBat lung cancer (93). However,

they are not very effective in fighting solid tumors (93). Currently,

antibody drug conjugated (ADCs) immunotherapies are being

developed to target various cancers including colorectal and gastric

cancers (93). ADCs target receptors on the tumor surface, leading to

the elimination of the tumor cell (93). SAR408701 is a promising

candidate for treatments targeting CEACAM 5-positive cancers (94).

Decary et al., found that SAR408701 has antiproliferative activity and

significantly decreases tumor growth in cynomolgus monkeys (94). It

has also been found in mouse models to lead to sustained tumor-free

survival (94). Decary et al., suggested that the next step for this

treatment is human clinical trials and hence is aligned with higher

TNM stages where CEACAM5 expression is elevated. TFF3 has been

found to be notably overexpressed in the later stages of CRC (95).

AMPC, a small molecule inhibitor of TFF3 has emerged as a potential

therapeutic option for colorectal cancer (95). TFF3 is known to

activate ERK1/2, treatment using AMPC has decreased TFF3-

mediated activation of Erk1/2 leading to decreased proliferation

and decreased cell survival (95). Its synergistic effect with 5-
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fluorouracil further supports AMPC’s potential role in combination

therapies, particularly for patients with advanced TNM stages. (95).

TFF3 is overexpressed in colorectal cancer patients (96). TFF3

overexpression is more prominent in later-stage disease, therefore,

it would be a better biomarker for more advanced TNM stages (96).

Similarly to TFF3, CEACAM5 is overexpressed in later-stage disease

as in the earlier stages CEACAM5 levels are too similar to those in

healthy tissue (97) CEACAM5 has also been suggested to be more

useful for detecting liver metastasis in CRC, suggesting it would be

better at detecting cancers in more advanced TNM stages (98). In

terms of clinical frameworks, both TFF3 and CEACAM5 exhibit

overexpression primarily in later-stage disease, aligning them as

potential biomarkers for higher TNM stages. CEACAM5 is also

specifically associated with detecting liver metastasis in CRC (98),

reinforcing its value in assessing metastatic spread. This suggests a

dual role for these biomarkers, not only as therapeutic targets but also

as indicators of disease stage, thereby informing prognosis and

guiding treatment strategies in a stage-specific manner.

The validation results revealed the important roles of the

observed proteins in the development of colorectal cancer (CRC)

and offered good quantitative support for the prior findings. With a

fold change of 3.5, TFF3 was confirmed to be the most important

protein in the pathophysiology of colorectal cancer. Through

pathways including PI3K/Akt and Src, its increased expression

validates its function in increasing aggressive tumor behavior,

boosting cell migration, and inducing the epithelial-mesenchymal

transition (EMT). Similar to the previous findings, TFF1’s validation

with a fold change of 2.8 confirmed its role in tumor cell invasiveness

through EGFR signaling and G-protein-coupled receptor pathways.

SELE’s validated role in blocking apoptosis via the PI3K/Akt/NFkB
pathway was significantly consistent with its 2.5 fold change. This

validation shows its functional significance in apoptosis resistance

and tumor progression and confirms its potential as a biomarker of

prediction for colorectal cancer. In the validation trials, AHCY

displayed fold changes of 3.2 supporting its involvement in

methylation processes that aid in the advancement of colorectal

cancer. These results confirmed the previous evidence that it has a

role in controlling the amounts of S-adenosylhomocysteine and S-

adenosylmethionine, which are essential for epigenetic changes in

tumor cells. LCN2, which has been verified with an unusual fold

change of more than 20, offers compelling evidence of its function as

a metastasis driver by stabilizing matrix metalloproteinase-9

(MMP9). Its significance in CRC pathogenesis is further supported

by this remarkable confirmation, which emphasizes its role in

extracellular matrix remodeling and tumor cell invasion. With a

confirmed fold change of an average of 18, CEACAM5 is consistent

with previous research showing that it plays a role in anoikis

resistance and the activation of survival signaling pathways,

including PI3K/Akt. Its importance is further shown by the

validation results, which support its function in interfering with

extracellular matrix-cell adhesion and promoting the development

of secondary tumors. With a fold change of 2.5, Resistin (RETN) was
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confirmed to be associated with pro-inflammatory and carcinogenic

signaling pathways, such as toll-like receptor-mediated ERK

activation. Its role in tumor cell survival and advancement is

confirmed by the validation results. When taken as a whole, the

evidence of fold changes across these proteins not only demonstrates

their steady elevation in colorectal cancer (CRC), but it also reinforces

their biological significance in important pathways like metastasis,

methylation regulation, apoptosis resistance, and EMT. The reliability

and significance of these biomarkers in colorectal cancer (CRC) is

confirmed by the high agreement between the initial findings and the

validation results. TFF3, TFF1, SELE, AHCY, LCN2, CEACAM5, and

RETN are consistently upregulated across a variety of datasets and

analyzes, which supports their crucial roles in the underlying

mechanisms of colorectal cancer progression. Their biological

significance is confirmed by this congruence, which also

emphasizes their potential as reliable biomarkers for prognostic and

diagnostic applications. These proteins are useful in understanding

the pathophysiology of colorectal cancer (CRC) because of their

confirmed roles in important oncogenic processes, including

methylation dysregulation, apoptosis resistance, epithelial-

mesenchymal transition (EMT), and metastatic spread.

These biomarkers’ proven trustworthiness offers a strong

foundation for creating prognosis devices, diagnostic tests, and

individualized treatment plans. Additionally, incorporating them

into medical processes may help detect colorectal cancer (CRC)

earlier, increase the accuracy of treatment approaches, and benefit

patients in general. By highlighting the importance of these

indicators in furthering both research and clinical applications,

this agreement between initial discovery and validation creates a

crucial first step towards incorporating them into evidence-based

CRC care techniques.

Our study reveals how biomolecules TFF3, LCN2,

CEACAM5, SELE, RETN, TFF1, and AHCY are involved in

CRC progression through proteogenomic pathways such as

PI3k/Akt, EGFR, PLC/PKC. They promote invasion and

metastasis suggesting new therapeutic targets and diagnostic

markers. Understanding this molecular mechanism can

enhance early detection and pave the way for more effective

and personalized treatment approaches.

Further research is required to standardize the methodology in

order to assess the stability of these proteins. The development of

prediction models with benefits for clinical practice may be

improved by the biological significance of stable protein selection.

Some associations with colorectal cancer remain unexplored

because proteomic data are not available for validation, even

novel protein associations need to be found.

4.4.1 Limitations of the study
Nevertheless, there are several limitations to this study. Limited

datasets were available for validation. This affected the breadth of

our investigation and the potential for generalization of our

conclusions. Incompatibility of the discovery and validation
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datasets was seen. The mere recognition of patients with CRC,

without considering comorbidities, introduces confounding

variables that might have influenced the predicted accuracy of the

model, since these additional ailments may have significantly

changed the proteomic profile of certain samples. The substantial

size of the UK Biobank sample, although beneficial, would not have

completely mitigated the impact of these confounding

comorbidities. A further challenge emerges due to an imbalanced

distribution of samples in both the UK Biobank and Bosch et al.

datasets. This might introduce bias in the training and assessment

of the model, especially in the smaller Bosch et al. dataset, which had

a relatively small total number of samples. Since different

technologies like Olink and liquid chromatography coupled with

tandem mass spectrometry (LC-MS) were used in quantification,

the common proteins to validate were limited. There was also a lack

of comprehensive demographic details like ethnicity in the

validation dataset which restricts our ability to know how they

impact our results and to ensure these results should be both

representative and actionable across diverse populations. Also,

regarding identifying the cohort, we could have explored in our

analysis the time of diagnosis, as having received treatment would

make a key variable to acknowledge. Finally, these 240 controls are

not matched to the specific 269 as they come from the original

matching between 9,890 diseased vs 9,890 controls.

4.4.2 Future work
Given that our cohort counts with metabolite data, we plan to

incorporate it into future analysis too. Also, to further validate our

results, we want to focus on the experimental validation of the Fecal

Immunochemical Test (FIT test), incorporating gene knockdown,

biological pathways, and western blot analysis to assess the

reliability and practical utility. This can ensure a thorough

evaluation and understanding of our findings and their

underlying mechanisms. Additionally, data validation across

multiple datasets can be carried out with the integration of

proteomics with transcriptomics, metabolomics, and other non-

omics. Employing various machine learning models including

stacking and deep neural algorithms can strengthen robustness

and generalization can be possible.
5 Conclusion

The study has identified potential biomarkers that exhibit

stability across various cases of colorectal cancer. These results

offer valuable insight for identifying potential biomarkers in future

proteomic studies with the goal of creating therapeutic strategies for

patients with colorectal cancer. Nevertheless, further study is

needed to look into the relationships and mechanistic properties

of potential biomarkers.
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