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Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered

significant attention due to its diverse pharmacological effects, including

antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic

activities. Studies have shown that glabridin exhibits substantial antitumor activity

by modulating the proliferation, apoptosis, metastasis, and invasion of cancer

cells through the targeting of various signaling pathways, thus indicating its

potential as a therapeutic agent for malignant tumors. To enhance its solubility,

stability, and bioavailability, several drug delivery systems have been developed,

including liposomes, cyclodextrin inclusion complexes, nanoparticles, and

polymeric micelles. These de.livery systems have shown promise in preclinical

studies but face challenges in clinical translation, such as issues with

biocompatibility, delivery efficiency, and long-term stability. A comprehensive

analysis of the antitumor mechanism of glabridin and its novel drug delivery

system is still lacking. Therefore, the authors performed a comprehensive review

of recent literature on the antitumor effects of glabridin and its novel drug

delivery systems, covering the antitumor mechanism, action targets, and novel

drug delivery systems, offering new theoretical insights and development

directions for its further advancement and clinical application.
KEYWORDS
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1 Introduction

The incidence of malignant tumors is increasing worldwide due to aging populations,

environmental degradation, and lifestyle changes. There were close to 20 million new cases

of cancer in the year 2022 alongside 9.7 million deaths from cancer. The estimates suggest

that approximately one in five men or women develop cancer in a lifetime, whereas around
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one in nine men and one in 12 women die from it (1). Malignant

tumors pose a severe threat to physical and mental health, as well as

life safety, and are a leading cause of death (2). Surgery,

radiotherapy, chemotherapy, immunotherapy, and gene-targeted

therapies are commonly used to treat malignant tumors (3). Despite

improvements in survival rates with these treatments, challenges

such as recurrence, radiotherapy-related toxicity, and drug

resistance remain. Therefore, identifying new, effective antitumor

drugs and exploring their mechanisms is crucial for progress.

In recent years, Traditional Chinese Medicine (TCM) has

gained recognition for its role in cancer treatment, with several

anti-tumor compounds identified in traditional remedies (4–6).

This underscores the substantial potential of TCM for anti-cancer

development, warranting further investigation. Glabridin, a

flavonoid extracted from the medicinal plant Glycyrrhiza glabra,

pharmacological studies have demonstrated that, beyond its

antioxidant (7), anti-inflammatory (8), osteoprotective (9),

hypoglycemic (10), and neuroprotective effects (11, 12), glabridin

also exhibits notable antitumor activity (13).

Compared with other anti-tumor compounds derived from

Chinese herbal medicine, glabridin shows significant advantages.

First, glabridin has a broad spectrum of pharmacological effects and

is widely used in the food (14) and cosmetics (15) industries, in

addition to the medical field, demonstrating considerable

development potential. Second, from a pharmacokinetic

perspective, some common anti-tumor compounds derived from

traditional Chinese medicine, such as curcumin (16), baicalin (17),

and quercetin (18), have poor water solubility, low absorption, low

bioavailability, rapid metabolism, and high systemic clearance,

which limits their therapeutic efficacy. Research has shown that

glabridin undergoes primary metabolism via glucuronidation (19),

with intestinal microsomes exhibiting only 1/15 to 1/20 of the
Abbreviat ions: TCM, tradi t ional Chinese medicine; P13K/Akt ,

phosphatidylinositol 3-kinase/protein kinase B; ROS, reactive oxygen species;

mTOR, mammalian target of rapamycin; MMP-9, matrix metalloproteinase-9;

MMP-2, matrix metalloproteinase-2; Bcl-2, B cell lymphoma-2; JNK, c-Jun N-

terminal kinase; MAPK, mitogen-activated protein kinase; P38 MAPK, P38

mitogen-activated protein kinase; AML, acute myelogenous leukemia; miRNAs,

MicroRNAs; microRNA-148a, miR-148a; TGF-b, Transforming growth factor-b;

SMAD, Small mothers against decapentaplegic; EMT, Epithelial-mesenchymal

transition; N-cadherin, neural calreticulin; E-cadherin, epithelial calreticulin;

Zeb1, zinc-finger protein 1; Src, Sarcoma receptor coactivator; MMPs, Matrix

metalloproteinases; ECM, extracellular matrix; CREB-AP1, cyclic adenosine

monophosphate response element-binding protein-associated protein 1; NF-

kB, nuclear factor-kB; ATP, adenosine triphosphate; HK-2, Hexokinase-2;

G-6-P, glucose-6-phosphatase; LDH, Lactate dehydrogenase; LDHA, lactate

dehydrogenase A; LDHB, lactate dehydrogenase B; LDHC, lactate

dehydrogenase C; PA, pyruvic acid; GLUT-1, glucose transporter protein-1;

EGFR, Epidermal growth factor receptor; CDK, cyclin-dependent kinases; CDK2,

cyclin-dependent kinase 2; CDK4, cyclin-dependent kinase 4; LC3-II, light chain

3-II; VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth

factor; P-gp, p-glycoprotein; UVB, Ultraviolet B; IARC, International Agency for

Research on Cancer; LFO, Licorice flavonoid oil; CRS, Confocal Raman

Spectroscopy; HP-b-CD, Hydroxypropyl-b-cyclodextrin; PMCP, Partially

myristoylated chitosan pyrrolidone carboxylate; MOF, Metal-organic framework.

Frontiers in Oncology 02
metabolic capacity of liver microsomes, and circulates in the

bloodstream primarily as glycoside conjugates, indicating a higher

bioavailability compared to other flavonoids, such as quercetin (20).

In addition, glabridin is broadly distributed across various tissues

and is detectable in all tissues except the brain (21), suggesting its

potential for therapeutic effects across multiple tissues. Studies have

shown that glabridin’s binding affinity for the human estrogen

receptor is comparable to genistein ’s (the best-known

phytoestrogen) (22) and that abnormally high estrogen levels are

associated with an increased incidence of certain cancers (23),

particularly breast cancer (24) and endometrial cancer (25). This

suggests that glabridin has significant potential as a therapeutic

agent for breast and endometrial cancer. In summary, the distinct

characteristics and therapeutic advantages of glabridin suggest

promising applications in anti-tumor therapies.

In recent years, several reviews have examined the pharmacological

effects of glabridin and its derivatives (22, 26), with a primary focus on

the common pharmacological mechanisms of glabridin’s action.

However, reviews specifically addressing the unique molecular

targets of glabridin in various cancer types and its integration with

novel drug delivery systems are still lacking. Therefore, this review aims

to examine the anticancer mechanisms, molecular targets, and novel

drug delivery systems of glabridin, providing the latest advancements

and comprehensive insights in the field of anti-malignant tumors and

drug delivery, with the goal of offering a scientific basis for its further

development and clinical application. For information on the types of

cancers treated by glabridin, please refer to Figure 1.
2 Chemical properties of glabridin

Glabridin is a flavonoid primarily extracted from the root of

Glycyrrhiza glabra, commonly known as licorice. It has a molecular

formula of C20H20O4 and a molecular weight of 324.37 g/mol.

Glabridin appears as a pale yellow powder, insoluble in water but

soluble in organic solvents such as ethanol, methanol, and acetone

(27). Its structure features a flavone backbone with hydroxyl groups

at the 7 and 4’ positions. The chemical structure of glabridin

underpins its biological activities, including antioxidant and

antitumor properties. Light exposure is the primary factor

affecting the stability of glabridin. Additionally, interactions

between temperature and pH, temperature and humidity, and

light exposure and pH can further accelerate the degradation of

glabridin (28). The chemical formula of glabridin is shown in

Figure 2.
3 Pharmacokinetics of glabridin

Glabridin has poor water solubility, and low bioavailability, and is

prone to isomerization under light, temperature, and humidity. Its

pharmacological mechanism is not yet fully understood.

Pharmacokinetic analysis of human oral metabolism experiments

indicated that glabridin reached a maximum concentration of

approximately 4 hours post-administration in blood, with a half-life

(T1/2) of about 10 hours (29). In vivo studies show glabridin peaks at
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87 nmol/L 1-hour post-administration, with a half-life (T1/2) of 8.2

hours and bioavailability (AUCinf) of 0.825 mM·h (20). Animal

experiments have shown that glabridin has an oral bioavailability

of 6.63% and a first-pass effect in the liver of 62.12% (21).

Additionally, studies have identified several metabolic pathways for

glabridin, including glucuronidation, demethylation, hydroxylation,

and sulfation. Glabridin metabolites have been detected in various

biological fluids and tissues, including plasma from the abdominal

aorta and hepatic portal vein, as well as in the brain, liver, heart, lung,

spleen, kidney, bile, urine, and feces (30). The high first-pass effect in
Frontiers in Oncology 03
the liver and extensive metabolism may account for the low oral

bioavailability of glabridin. Therefore, enhancing the bioavailability of

glabridin remains a pressing challenge.
4 Safety evaluation of glabridin

As research progresses, the safety of glabridin has increasingly

become a focal point of investigation. There are no in vivo toxicity

data on glabridin, but safety assessments exist for Licorice flavonoid
FIGURE 1

Glabridin treats different cancers.
FIGURE 2

(A) The ball-and-stick model of the molecular structure of glabridin. The gray, red, and white balls represent carbon, oxygen, and hydrogen atoms,
respectively. (B) The chemical structure of glabridin.
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oil (LFO), where glabridin is a major marker compound. LFO is

marketed as Glavonoid and approved by the European Food Safety

Authority as a novel food ingredient (13).

Fumiki Aoki et al. evaluated the clinical safety of LFO.

Hematological and related biochemical indicators showed that

LFO doses up to 1200 mg/day were safe and well tolerated over a

4-week period. Subsequent pharmacokinetic studies showed that

LFO exhibited linear pharmacokinetics across doses ranging from

300 to 1200 mg per person (29).

Animal studies also demonstrate that LFO is highly safe. In an 8-

week study involving LFO intervention in obese mice, there were no

significant differences in the liver, kidney, and spleen weights between the

treated and control groups, suggesting that glabridin is non-toxic (31).

Nakagawa et al. (32) conducted a 90-day oral toxicity study in rats

using an LFO concentrate containing 2.9% glabridin. The results

showed that the no-observed-adverse-effect level (NOAEL) was 800

mg/kg/day for female rats and 400 mg/kg/day for male rats. In

addition, Nakagawa et al. (33) used three different methods to study

the genotoxicity of LFO in another experiment. In the bacterial reverse

mutation assay, using four strains of Salmonella typhimurium and

Escherichia coli, LFO did not increase the number of colonies in any of

the test strains. In the Chinese hamster lung (CHL/IU) cell

chromosome aberration assay, only LFO at concentrations

exceeding 0.6 mg/mL induced structural chromosomal aberrations

in the short-term test, while LFO at lower concentrations did not cause

chromosomal aberrations in mice. In the bone marrow micronucleus

assay conducted on male F344 rats, doses up to 5000 mg/kg/day did

not significantly increase the frequency of micronucleated

polychromatic erythrocytes (MNPCE). Therefore, LFO demonstrates

good tolerance and safety, with a low incidence of adverse reactions,

making it suitable for long-term disease treatment.

It is important to note that, while glabridin is the primary marker

compound of LFO, the current safety evaluation studies of LFO do

not fully establish the safety of glabridin. Therefore, further animal

studies are needed to clarify the metabolic pathway of glabridin and
Frontiers in Oncology 04
evaluate its safety in vivo. In preclinical studies, glabridin

demonstrated good tolerability within a specific dose range, with

no significant weight loss or organ toxicity. In a mouse model, doses

of 10-20 mg/kg did not produce significant toxic effects and remained

unchanged in liver and kidney function or hematological indicators

(34–38). However, the potential chronic toxicity of glabridin with

long-term use has not been fully assessed. In vitro experiments have

shown that glabridin has significant inhibitory effects on cancer cells

at concentrations of 10-100 mM and effectively induces apoptosis.

Additionally, the IC50 values of glabridin vary across different cancer

cell lines, indicating that its inhibitory effect is dose- and cell-type

dependent. Future studies should further assess the long-term toxicity

of glabridin, determine its maximum tolerated dose, and establish its

safety margin through additional in vitro and in vivo experiments.

Furthermore, potential interactions between glabridin and other

drugs need to be thoroughly evaluated at the preclinical stage to

prevent increased toxicity from drug interactions in

combination therapies.
5 Glabridin anti-tumor mechanisms

5.1 Inhibition of tumor cell invasion
and metastasis

Invasion and metastasis refer to the spread of tumor cells from

the primary site to distant tissues or organs via lymph or blood

circulation and are the leading causes of cancer-related deaths (39).

The first-line treatment for metastatic tumors is systemic

chemotherapy, which often causes severe side effects, such as

organ failure and high infection rates (40). Therefore, discovering

new methods to inhibit the invasion and metastasis of malignant

tumor cells is of paramount importance in the fight against cancer.

The mechanism of glabridin inhibition of tumor cell metastasis and

invasion is shown in Figure 3.
FIGURE 3

Mechanism of glabridin inhibition of tumor cell metastasis and invasion.
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5.1.1 Promotion of microRNA-148a
signaling pathway

MicroRNAs (miRNAs) are small non-coding RNAs that

regulate gene expression and serve as cancer biomarkers. Studies

show that miR-148a suppression is linked to metastasis in various

tumors and upregulation of metastasis-related genes (41).

Transforming growth factor-b (TGF-b) plays an important role

in tissue and organ development, as well as cell proliferation,

differentiation, and apoptosis. It can affect epithelial and

endothelial cell differentiation, increase immune cell recruitment,

and is an important cytokine involved in the activation of cancerous

mesenchyme (42). Small mothers against decapentaplegic (SMAD)

proteins are key proteins that conduct TGF-b signaling from cell

surface receptors to the nucleus (43).

Jiang et al. found that glabridin significantly inhibited the

adhesion-dependent growth and sphere formation of HepG2 and

MHCC97H hepatocellular carcinoma cells (44). It increased miR-

148a expression in a dose- and time-dependent manner, targeting

TGF-b and SMAD protein activation, and reducing tumor cell

invasion and metastasis. Another study showed that glabridin

reduced miR-148a methylation and upregulated its expression in

breast cancer cells, inhibiting the TGF-b/SMAD pathway and

suppressing metastasis (34).

miR-148a significantly inhibits tumor cell invasion and

metastasis by targeting the TGF-b/SMAD signaling pathway.

However, the mechanisms of action of miR-148a across different

cancer types have not been fully elucidated. miR-148a not only

exerts its effects within cancer cells, but may also influence

immune escape mechanisms by modulating immune responses

in the tumor microenvironment (45). Whether glabridin can

alter the tumor microenvironment by regulating miR-148a and

thereby provide a new target for immunotherapy requires

further investigation.

5.1.2 Blocking the epithelial-mesenchymal
transition process

EMT is a crucial process involving the transformation of

epithelial cells, which alters intercellular adhesion patterns and

affects cell proliferation and differentiation. EMT is closely

associated with embryonic development, tissue repair, and cancer

progression (46). Aberrant activation of EMT is linked to malignant

properties of tumor cells during cancer progression and metastasis,

such as increased tumor cell migration and invasiveness, enhanced

tumor stemness, and greater resistance to chemotherapy and

immunotherapy (47). Therefore, targeting and blocking the EMT

process is crucial for controlling tumor invasion and metastasis.

Glabridin inhibited the proliferation, migration, and invasion of

lung adenocarcinoma cells A549 (35). Further studies revealed that

glabridin decreased the expression of neural cadherin (N-cadherin)

and vimentin, and upregulated the expression of epithelial cadherin

(E-cadherin) in tumor cells. N-cadherin and vimentin are positively

correlated with EMT and are considered its markers (48, 49),

whereas E-cadherin acts as a tumor suppressor protein (50).

Another study found that glabridin inhibited EMT in breast

cancer cells by upregulating E-cadherin and occludin, while

downregulating vimentin, E-box-binding zinc finger protein 1
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(Zeb1), and other critical EMT markers, thereby exerting a

controlling effect on tumor invasion and metastasis (36).

5.1.3 Inhibition of focal adhesion kinase/sarcoma
receptor coactivator signaling pathway

FAK is a key signaling molecule involved in cell adhesion,

migration, proliferation, and survival. Its overactivation in various

cancers makes it an important target for developing new anti-cancer

therapies (51). Src is a non-receptor tyrosine kinase that

phosphorylates tyrosine residues on proteins. Unlike receptor

tyrosine kinases, Src is not membrane-bound and acts at various

intracellular sites, affecting many cellular processes. Src is often

overactive in cancers, leading to uncontrolled cell proliferation,

increased invasion and metastasis, and resistance to apoptosis (52).

FAK typically forms a complex with Src, jointly regulating cell

growth, survival, and motility. Aberrant activation of FAK/Src

signaling is frequently observed in aggressive tumors (53).

Glabridin was found to inhibit the invasion and metastasis of

human non-small cell lung cancer A549 cells (54). Studies have

shown that glabridin inhibits lung cancer cell invasion and

metastasis by reducing FAK and Src activities, leading to FAK/Src

complex inactivation. Additionally, glabridin can suppress the

invasion, metastasis, and angiogenesis of breast cancer cells

through the FAK/Src pathway (55), the specific mechanism is

that glabridin inhibits the migration and invasion of cancer cells

by reducing the phosphorylation of key proteins. It also regulates

cytoskeleton reorganization to prevent cell movement by inhibiting

the Ras homolog family member A(RhoA)/Rho-associated coiled-

coil containing protein kinase (ROCK) signaling pathway and

reducing the phosphorylation of myosin light chain (MLC). In

addition, glabridin directly inhibits the migration and tube

formation of vascular endothelial cells, thereby effectively

inhibiting angiogenesis. These multi-pathway effects suggest that

glabridin has a strong potential to inhibit breast cancer invasion

and metastasis.

The FAK/Src signaling pathway plays a crucial role in tumor

cell migration, invasion, and metastasis. Glabridin exerts anti-

metastatic effects in various tumors by inhibiting the activation of

the FAK/Src complex. Since FAK/Src also plays a key role in tumor

angiogenesis (56), future research should focus on the inhibition of

tumor angiogenesis by glabridin through its effect on FAK/Src, to

assess its novel potential as a therapeutic strategy.

5.1.4 Inhibition of matrix metalloproteinases
family proteases

MMPs have been shown to play an important role in the

abnormal proliferation, local invasion, and metastasis of tumor

cells (57). They can degrade almost all protein components in the

extracellular matrix (ECM), destroy the histological barrier to

tumor cell invasion, and act as proteases that remodel the

extracellular matrix, driving the cell invasion process (58).

Jie et al. (59) found that glabridin inhibits the invasion and

migration of osteosarcoma cells. The specific mechanism involves

down-regulating p38 mitogen-activated protein kinase (p38

MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation,

which affects the binding of cyclic adenosine monophosphate
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response element-binding protein-associated protein 1 (CREB-

AP1) to the promoters of matrix metalloproteinase-2 (MMP-2)

and matrix metalloproteinase-9 (MMP-9), thereby inhibiting tumor

cell migration and invasion. Another study found that glabridin

inhibits melanoma cell proliferation and migration by reducing

MMP-2 activity and expression (60). In a study involving glabridin

intervention in liver cancer cells Huh7 and Sk-Hep-1, the

relationship between glabridin’s regulation of MMPs and the

inhibition of tumor cell invasion and migration was further

verified (61). The results showed that glabridin downregulated

MMP-9 by interfering with nuclear factor-kB (NF-kB) and AP-1

binding activity, ultimately inhibiting tumor cell invasion and

metastasis. For detailed information, please refer to Table 1.
5.2 Induction of tumor cell apoptosis

Apoptosis is a mechanism that maintains tissue homeostasis by

removing damaged cells through programmed cell death (62).

Dysregulation of the apoptosis mechanism is a significant

hallmark of cancer. Apoptosis affects tumor initiation,
Frontiers in Oncology 06
progression, and the development of drug resistance during

cancer treatment. Therefore, inducing apoptosis is a crucial

component in anti-tumor strategies (63). The mechanism of

glabridin-induced tumor cell apoptosis is shown in Figure 4.

5.2.1 Inhibition of glycolysis
Energy metabolism disorders are regarded as one of the

hallmarks of cancer (64). In tumor tissues, glycolysis is the main

metabolic pathway for adenosine triphosphate (ATP) production.

Cancer cells depend on metabolic reprogramming and transition to

a “glycolytic” metabolic phenotype to sustain the energy necessary

for proliferation (65, 66). Hexokinase-2 (HK-2) is the primary rate-

limiting enzyme in glycolysis and a key regulator in the glucose

metabolic pathway. HK-2 catalyzes the phosphorylation of glucose

to produce glucose-6-phosphate (G-6-P) (67). Lactate

dehydrogenase (LDH) is a crucial enzyme in glycolysis. LDH

exists in three isoforms: Lactate dehydrogenase A (LDHA),

Lactate dehydrogenase B (LDHB), and Lactate dehydrogenase C

(LDHC). Among these, LDHA is the predominant isoform in

various malignant tumors, including colon cancer, ovarian cancer,

gastric cancer, and lung cancer (68). LDH catalyzes the conversion
TABLE 1 Mechanism of glabridin inhibition of tumor cell invasion and metastasis.

Cancers Effective
concentrations

Cell type/
Animal model

Possible mechanisms Reference

Liver cancer 10, 20 mM Hepatoma carcinoma
cell lines:
HepG2, MHCC97H

Glabridin inhibits the TGF-b/SMAD2 pathway by upregulating
miR-148a, reducing cancer stem cell markers (CD44, EpCAM), and
impairing self-renewal, tumor sphere formation, and
independent growth.

(44)

Breast cancer 20 mg/kg BALB/c nude mice Glabridin blocks the TGF-b/SMAD2 pathway by upregulating miR-
148a, reducing the proliferation and transformation traits of cancer
stem cells (CSCs). It increases epithelial markers like E-cadherin
and ZO-1, inhibits EMT, and weakens cell migration and invasion.
Additionally, it reduces CSC markers like CD44 and ALDH-1,
inhibiting tumor self-renewal, sphere formation, and anchorage-
independent growth.

(34)

10 mM Human breast cancer
cell lines MDA-MB-231
and Hs-578T

Adenocarcinoma of lung 12.5, 25, 50 mg/kg BALB/c nude mice Glabridin inhibits EMT by upregulating E-cadherin and
downregulating EMT-related proteins like N-cadherin, Snail, and
vimentin, reducing cancer cell migration and invasion.

(35)

20, 40, 60, 80, 100 µM Adenocarcinoma of lung
cell: A459

Breast cancer 10 mg/kg Balb/C mice Glabridin inhibits EMT by upregulating epithelial markers (E-
cadherin, occludin) and downregulating mesenchymal markers
(vimentin, Zeb1), effectively reducing tumor metastasis.

(36)

10, 20, 40 mM Breast carcinoma
cell lines:4t1

Lung Cancer 1, 2.5, 5, 10 mM Adenocarcinoma of lung
cells: A459 cells: A549,
type II alveolar
epithelial cells

Glabridin inhibits FAK and Src activation, blocks the FAK/Src
complex, and suppresses the AKT and RhoA pathways, reducing
cancer cell migration and invasion. It also limits tumor angiogenesis
by inhibiting vascular endothelial cell tube formation.

(54)

Breast cancer 1, 2.5, 5, 11 mM Human breast cancer
cell lines: MDA-MB-231

Glabridin inhibits cancer cell migration and invasion by suppressing
FAK and Src activation. It also reduces cell migration by decreasing
RhoA and MLC activity, preventing cytoskeletal reorganization.

(55)

Osteosarcoma 5, 10, 20 mM Human osteosarcoma
cell lines: MG63

Glabridin inhibits osteosarcoma cell migration and invasion by
suppressing p38 and JNK pathway activation, preventing CREB-
AP1 complex formation, and reducing MMP-2 and MMP-
9 expression.

(59)

Melanoma 20, 40, 60, 80, 120 mM Mouse melanoma
cell: B16F1

Glabridin reduces MMP-2 secretion, limiting tumor cell degradation
of the ECM.

(60)

Liver cancer 10, 20, 40 mM Human hepatoma cell
lines: Huh7, Sk-Hep-1

Glabridin inhibits tumor cell migration and invasion by suppressing
the NF-kB, AP-1, and JNK1/2 pathways, downregulating MMP-9.

(61)
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of pyruvate (PA) to lactic acid (LA), and elevated levels of lactic acid

can lead to extracellular acidosis, which in turn promotes tumor cell

invasion, angiogenesis, and metastasis (69).

Glabridin significantly inhibited the expression of glycolysis-

related genes HK-2 and LDHA in melanoma cells, and reduced

levels of lactate (LD) and ATP in the cell culture medium.

Furthermore, animal studies demonstrated that glabridin

intervention significantly slowed tumor tissue growth in mice,

resulting in up-regulation of cellular Bax expression and down-

regulation of B-cell lymphoma-2 (Bcl-2), HK-2, and LDHA

expression in tumor tissues (37). During glycolysis, glucose

transporter protein-1 (GLUT-1) is a key protein responsible for

transporting glucose into the cell and maintaining the intracellular

glucose concentration (70). Li et al. (71) found that glabridin

significantly downregulated GLUT-1 expression and inhibited the

glycolytic pathway in MDA-MB-231 breast cancer cells, regulating

their energy metabolism. Therefore, the mechanism of apoptosis

induced by glabridin may be related to its regulation of the

expression of glycolysis-related genes.

Inhibition of the glycolytic pathway as a novel cancer

therapeutic strategy has shown initial success in tumor models

such as melanoma and breast cancer. Glabridin exhibits anti-tumor

potential by modulating the glycolytic pathway and has

demonstrated remarkable effects in several cell lines and animal

models. However, the inhibition of glycolysis may be accompanied

by metabolic adaptation and the development of drug resistance.

Therefore, precisely regulating the glycolytic pathway to enhance

therapeutic effects and prevent the development of drug resistance

remains a key focus for future research.

5.2.2 Promotion of mitochondrial
apoptosis pathway

Mitochondria play a crucial role in regulating energy

metabolism and apoptosis. In cancer cells, mitochondria
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overproduce reactive oxygen species (ROS), which contribute to

cancer progression by inducing genomic instability, modifying gene

expression, and participating in signaling pathways (72).

Yang et al. found that glabridin significantly inhibits the

proliferation of bladder urothelial carcinoma cells and induces

apoptosis (38). In a nude mouse model, glabridin significantly

inhibits tumor growth and prolongs the survival time of tumor-

bearing mice. The mechanism may involve glabridin-induced

permeabilization of the outer mitochondrial membrane, which leads

to the release of mitochondrial cytochrome c (CYCS) and subsequently

triggers apoptosis. In addition, glabridin promotes vacuole formation

in the cytoplasm of MDA-MB-231 breast cancer cells, causing loss of

mitochondrial membrane potential and ROS production, leading to

mitochondrial dysfunction and cancer cell apoptosis (73).

The role of glabridin in bladder and breast cancer cells reveals

its potential to induce apoptosis through ROS production and loss

of mitochondrial membrane potential. This mechanism may have

broad applications in cancer therapy, as inducing cancer cell death

through targeting the mitochondrial pathway is a promising

strategy to overcome drug resistance. However, precisely

regulating this process to avoid damage to normal cells remains a

key focus for future research.

5.2.3 Inhibition of the epidermal growth factor
receptor signaling pathway

EGFR is a receptor tyrosine kinase commonly associated with

cancer progression and poor prognosis. Inhibition of EGFR tyrosine

kinase activity is considered a promising strategy for cancer

treatment (74). Studies have shown that EGFR signaling is closely

linked to breast cancer development and resistance to cytotoxic

drugs (75).

Through molecular docking, ADMET profiling, and

pharmacophore modeling, it was found that glabridin is an

effective EGFR inhibitor, with an optimal binding affinity of -7.63
FIGURE 4

Mechanism of glabridin-induced apoptosis in tumor cells.
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kcal/mol, comparable to the highly effective anti-cancer drug

afatinib, and has demonstrated good efficacy in the treatment of

breast cancer (76). Zhu et al. (77) found that glabridin can reduce

the viability of breast cancer SK-BR-3 cells and induce apoptosis.

Further studies showed that glabridin down-regulated the levels of

phosphorylated epidermal growth factor receptor (P-EGFR) and

phosphorylated protein kinase B (P-AKT) and promoted the

expression of cysteine-aspartic acid protease 3 (caspase-3),

cysteine-aspartic acid protease 8 (caspase-8), and cysteine-aspartic

acid protease 9 (caspase-9), indicating that glabridin exerts its anti-

cancer effects by regulating the activation of the EGFR signaling

cascade. For detailed information, please refer to Table 2.
5.3 Inhibition of tumor cell proliferation

Cell proliferation is a crucial factor in cell growth and

differentiation. Inhibiting tumor cell proliferation can effectively

hinder cancer progression and is a critical aspect of cancer

treatment (64, 78). The mechanism of glabridin inhibiting tumor

cell proliferation is shown in Figure 5.
5.3.1 Inhibition of P13K/Akt signaling pathway
The phosphoinositide 3-kinase/protein kinase B (PI3K/Akt)

signaling pathway is a critical signaling pathway in various

cancers, exerting extensive regulatory effects on cell survival,

growth, migration, metabolism, and angiogenesis (79).

Tan et al. (80) found that glabridin significantly inhibits the

proliferation of prostate cancer cells. Network pharmacology and
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molecular docking results showed that the PI3K/Akt pathway is key

to this process. In vitro experiments showed that glabridin

significantly inhibits Akt phosphorylation, suggesting it inhibits

prostate cancer cell proliferation by regulating the PI3K/Akt

pathway. Zhang et al. (81) also confirmed this view in their study,

finding that glabridin promoted ROS signaling in prostate cancer

cells in a dose-dependent manner. The excessive production of ROS

is an important marker of cancer and can regulate a variety of

tumor-related signaling pathways (82). Glabridin can promote

apoptosis by inhibiting PI3K/Akt signaling via ROS, enhancing

caspase-3 activity, and increasing the Bcl-2-associated X protein

(Bax)/Bcl-2 expression ratio.

The mammalian target of rapamycin (mTOR) is a protein

kinase that regulates cell proliferation, survival, metabolism, and

immunity. It plays an important role in many human cancers and

can promote tumor cell growth and metastasis through multiple

mechanisms (83). Li et al. (84) investigated the effect and molecular

mechanism of glabridin on inhibiting the proliferation of colon

cancer cells. After glabridin intervention, the expression of PI3K,

Akt, and mTOR proteins, as well as downstreammolecules MMP-9,

MMP-2, and Bcl-2, was significantly reduced, while the expression

of Bax, caspase-3, and caspase-9 proteins was significantly

increased. The mechanism of action may be related to the

inhibition of the PI3K-Akt-mTOR signaling pathway.
5.3.2 Inhibition of JNK/P38 signaling pathway
JNK is a member of the mitogen-activated protein kinase

(MAPK) family (85) and plays a role in regulating signaling

pathways involved in tumor cell proliferation, migration, and
TABLE 2 Mechanism of glabridin-induced apoptosis in tumor cells.

Cancers Effective
concentrations

Cell type/
Animal model

Possible mechanisms Reference

Melanoma 20 mg/kg C57BL/6 mice Glabridin induces tumor cell apoptosis by upregulating the pro-
apoptotic gene Bax and downregulating the anti-apoptotic gene Bcl-
2 while inhibiting glycolysis by reducing HK2 and
LDHA expression.

(37)

20, 40, 60, 80, 100 mM Mouse melanoma
cells: B16F10

Breast cancer 5, 10, 20, 30 mM Human breast cancer
cell lines: MDA-MB-231

Glabridin reduces glucose uptake and energy supply in breast
cancer cells by downregulating GLUT1 expression. It inhibits LDH
activity and lactic acid production, blocks glycolysis, and lowers
ATP levels, restricting cancer cell growth and proliferation.

(71)

Urothelial bladder
carcinoma

10 mg/kg Nude-mice Glabridin upregulates pro-apoptotic proteins like CYCS, activating
the intrinsic apoptosis pathway and inducing cell apoptosis.

(38)

13.4, 18.6 mM Urothelial bladder
carcinoma cell:
BIU-87, EJ

Breast cancer 20, 40, 60, 80, 100 mM Human breast cancer
cell lines: MDA-MB-
231, MCF7

Glabridin upregulates endoplasmic reticulum stress markers
(CHOP), inducing stress and protein aggregation that disrupts
cancer cell metabolism. It also increases ROS production and lowers
mitochondrial membrane potential, leading to oxidative stress,
impaired mitochondrial function, and cell death.

(73)

Breast cancer 10, 50, 100 mM Breast carcinoma cell
lines: SK-BR-3

Glabridin activates the apoptosis pathway by upregulating caspases
3, 8, and 9 to reduce cell viability; it inhibits phosphorylated EGFR,
and p-AKT, blocking breast cancer proliferation signals; and lowers
intracellular ROS levels, reducing oxidative stress and inhibiting
tumor progression.

(77)
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apoptosis. It is regarded as a potential target for cancer therapy (86).

p38 MAPK is also a member of the MAPK family and can be

activated by inflammatory factors and various environmental

stresses. These kinases are key components of signal transduction

cascades used by cancer cells to sense and adapt to their

environment (87).

Studies have found that glabridin regulates JNK1/2 and P38

MAPK phosphorylation, downregulates the anti-apoptotic protein

Bcl-2 and procaspase-9, and upregulates Bax and caspase-3,

inhibiting colorectal cancer cell proliferation (88). Huang et al.

investigated the molecular mechanism of glabridin’s anti-cancer

effects in human promyelocytic leukemia and found (89) that

glabridin upregulates the phosphorylation of P38 MAPK and

JNK1/2 in a time- and dose-dependent manner, promoting the

activation of caspase-3, caspase-8, and caspase-9, thereby inhibiting

the proliferation of acute myeloid leukemia (AML) cell lines (HL-

60, MV4-11, U937, and THP-1). For detailed information, please

refer to Table 3.
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5.4 Induction of tumor cell cycle arrest

The disruption of normal cell cycle progression is a

fundamental mechanism underlying tumorigenesis. Interfering

with and blocking various stages of the cell cycle can effectively

inhibit the division and proliferation of tumor cells (90). Cyclins

regulate the cell cycle by binding to and activating cyclin-dependent

kinases (CDKs) (91). Wang et al. found that glabridin can

significantly inhibit the expression of cyclin-dependent kinase 2

(CDK2), cyclin-dependent kinase 4 (CDK4), and G1/S-specific

cyclin D3(cyclin D3), blocking the cell cycle at the G1 phase,

thereby inhibiting the proliferation of liver cancer cells (92).

The Wnt/b-catenin signaling pathway and its downstream

target proteins are crucial regulators of cell proliferation (93).

Abnormal Wnt/b-catenin signaling leads to the proliferation and

differentiation of cancer cells, playing a significant role in

tumorigenesis and progression (94, 95). Huang et al. found that

glabridin exhibits high cytotoxicity against cervical cancer cells
FIGURE 5

Mechanism of glabridin suppressing proliferation in tumor cells.
TABLE 3 Mechanism of glabridin suppressing proliferation in tumor cells.

Cancers Effective
concentrations

Cell type Possible mechanisms Reference

Prostate cancer 72 mM Prostate cancer cell line:
PC-3

Glabridin induces apoptosis by inhibiting AKT phosphorylation. (80)

Prostate cancer 5, 10, 20 mM Prostate cancer cell
lines: DU-145, LNCaP

Glabridin increases intracellular and mitochondrial ROS levels,
reduces the p-Akt/Akt ratio, inhibits cell proliferation, and induces
apoptosis by upregulating Bax and caspase-3 and downregulating
Bcl-2.

(81)

Colon cancer 12.5, 25, 50, 100 mM Colon cancer cell lines:
SW480, SW620, HT29
and HCT116

Glabridin inhibits cancer cell proliferation by downregulating PI3K,
AKT, and mTOR, upregulating Bax, caspase-3, and caspase-9, and
reducing Bcl-2, inducing colon cancer cell death through the
intrinsic apoptosis pathway.

(84)

(Continued)
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(Hela), promoting cell cycle arrest in the S and G2/M phases and

inducing apoptosis in the G0/G1 phase (96). Experimental results

showed a significant reduction in the expression levels of Wnt1, b-
catenin, G1/S-specific cyclin D3(cyclin D1), and MMP-2 proteins.

This mechanism may be associated with the inhibition of the Wnt/

b-catenin signaling pathway.
5.5 Induction of autophagy in tumor cells

Autophagy is an intracellular catabolic process that involves the

delivery of misfolded proteins, damaged or aged organelles, and

excess cytoplasmic components to lysosomes for degradation via

autophagosomes. This process is crucial for maintaining cellular

homeostasis and vitality (97). Microtubule-associated protein light

chain 3-II (LC3-II) and Beclin 1, a key molecule in autophagy, are

autophagy-related markers that play crucial roles in the autophagic

process (98, 99).

Hsieh et al. investigated the role of glabridin in inducing

autophagy and related signaling pathways in liver cancer cells.

They found that glabridin upregulated the expression of LC3-II

and Beclin1 and induced autophagy by modulating the

phosphorylation of p38MAPK and JNK1/2, which subsequently

led to cell death (100).
5.6 Inhibition of tumor angiogenesis

Angiogenesis is a critical marker of cancer development and

progression (101). The rapid proliferation of malignant tumors

leads to insufficient oxygen and nutrient supply, driving tumor cells

to promote angiogenesis by increasing angiogenic factors like

vascular endothelial growth factor (VEGF), platelet-derived

growth factor (PDGF), and angiopoietin. This process supports

the survival, growth, and proliferation of tumor cells and facilitates

tumor invasion and metastasis to other tissues via the bloodstream

(102). Consequently, inhibiting tumor angiogenesis has emerged as

a significant strategy in cancer treatment.

Mu et al. (103) found that the molecular mechanism of

glabridin in treating breast cancer involves upregulating miR-148a

and inhibiting the Wnt/b-catenin pathway. Specifically, glabridin

upregulates miR-148a expression in a dose-dependent manner.

miR-148a targets Wnt1, leading to the accumulation of b-catenin
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in the cell membrane and nucleus. This results in reduced VEGF

secretion, decreased angiogenesis, and ultimately inhibits tumor

growth and development. The mechanism by which glabridin

induces cellular autophagy, causes cell cycle arrest, and inhibits

tumor angiogenesis is shown in Figure 6.
5.7 Enhancing chemotherapy
drug sensitivity

The conventional method for treating malignant tumors is

chemotherapy; however, cancer cells are prone to developing

resistance to these drugs, which often leads to reduced efficacy or

even treatment failure (104). Combination chemotherapy is a

treatment method that involves the simultaneous use of two or

more chemotherapy drugs. Compared with monotherapy,

combination therapy not only reduces drug resistance but also

more effectively controls and cures cancer (105).

5-fluorouraci l is one of the most commonly used

chemotherapeutic agents and is widely employed in the treatment

of colon cancer, breast cancer, and liver cancer (106). However, its

low bioavailability, short half-life, rapid metabolism, and the

development of resistance following chemotherapy limit its

therapeutic efficacy (107). Zhang’s research indicates that

glabridin, in combination with 5-fluorouracil, can effectively

inhibit the malignant proliferation and invasion of the MKN-45

gastric cancer cell line (108). This effect may be associated with the

downregulation of MMP-9 and MMP-2 expression.

Tamoxifen is an anti-estrogen drug that has become the

primary treatment option for postmenopausal women with

metastatic breast cancer (109). Paclitaxel is a naturally occurring

compound found in yew trees and is widely used for cancer

treatment (110). The current drug resistance of cancer cells has

become a major obstacle to the effective treatment of these two

drugs (111, 112). Lin et al. (113) found that glabridin significantly

enhanced the anti-proliferative and pro-apoptotic effects of

tamoxifen on breast cancer cells, as well as the anti-proliferative

and pro-apoptotic effects of paclitaxel on prostate cancer cells. The

mechanism may be related to a reduction in mitochondrial

transmembrane potential and an increase in intracellular ROS,

which in turn induces the activation of the caspase cascade.

Doxorubicin (DOX) is a topoisomerase inhibitor and an

anthracycline-class anticancer drug (114). Qian et al. (115) found
TABLE 3 Continued

Cancers Effective
concentrations

Cell type Possible mechanisms Reference

Colon cancer 1, 5, 10, 25 mM Human colorectal
cancer cell lines: RKO

Glabridin enhances tumor cell apoptosis by upregulating pro-
apoptotic proteins Bax and Caspase-3 and downregulating anti-
apoptotic proteins Bcl-2 and Procaspase-9.

(88)

Acute myeloid leukemia 10, 20, 40 mM Acute myeloid leukemia
cell lines: HL-60, MV4-
11, U937 and THP-1

Glabridin increases intracellular and mitochondrial ROS
production, downregulates Akt and ERK1/2 phosphorylation to
inhibit tumor cell proliferation, and upregulates p38 and JNK
phosphorylation, increasing Bax, activating caspase-3 and PARP
cleavage, and decreasing Bcl-2 to enhance apoptosis.

(89)
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that glabridin reduces the IC50 values of paclitaxel and DOX in MDA-

MB-231 breast cancer cells and enhances DOX-induced apoptosis. The

mechanism involves glabridin downregulating the expression of P-

glycoprotein (P-gp) and competitively inhibiting P-gp efflux pumps,

thereby increasing the accumulation of DOX and paclitaxel in breast

cancer cells. In another study, researchers assessed the cytotoxicity of

glabridin on three cancer cell lines: A2780 (human ovarian carcinoma),

SKNMC (human neuroblastoma), and H1299 (human non-small cell

lung carcinoma). The results indicated that glabridin can kill up to 90%

of cancer cells in these lines, with IC50 values of 10, 12, and 38 mM for

A2780, SKNMC, and H1299, respectively. Additionally, glabridin

enhances the cytotoxicity of DOX against these cancer cells and

significantly reduces cell viability. The synergistic inhibitory effect of

glabridin and DOX on H1299 cells was most pronounced, with

glabridin significantly increasing DOX accumulation in a dose-

dependent manner. At DOX concentrations of 15 µM and 30 µM,
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intracellular accumulation of doxorubicin increased by 2.8-fold and

2.5-fold, respectively (116).

Glabridin not only enhances the anti-tumor effects of DOX but

also reduces DOX-induced cardiotoxicity. Huang et al. (117) found

that glabridin can reduce DOX-induced myocardial enzyme leakage,

including aminotransferase, creatine kinase, lactate dehydrogenase,

and creatine kinase-MB, downregulate pro-apoptotic proteins (Bax,

caspase 9, and caspase 3), and upregulate anti-apoptotic proteins

(Bcl-2) in cardiac tissues. In addition, glabridin can regulate the

DOX-induced imbalance of intestinal flora, thereby reducing the

ratio of M1/M2 macrophages in the colon. This is accompanied by

the downregulation of lipopolysaccharide (LPS) in feces and

peripheral blood, and the upregulation of butyrate, indicating that

glabridin can effectively prevent DOX-induced cardiotoxicity by

modulating the intestinal flora and polarization of colonic

macrophages. For detailed information, please refer to Table 4.
FIGURE 6

Mechanisms by which glabridin induces cellular autophagy, induces cell cycle arrest, and inhibits tumor angiogenesis.
TABLE 4 Mechanisms by which glabridin induces cellular autophagy, induces cell cycle arrest, inhibits tumor angiogenesis and enhances
chemotherapy drug sensitivity.

Pharmacological
action

Cancers Effective
concentrations

Cell type Possible mechanisms Reference

Induction of tumor cell
cycle arrest

Liver cancer 0, 15, 35, 45 mM Hepatoma carcinoma cell
lines: HepG2

Glabridin inhibits cancer cell proliferation
and survival by downregulating cyclin D3,
CDK2, and CDK4, blocking the G1/S phase
transition, and reducing CREB and
ATF1 phosphorylation.

(92)

Cervical
cancer

1, 2.5, 5, 10, 20 mM Cervical cancer cell
lines: Hela

Glabridin downregulates Wnt1, b-catenin,
and downstream proteins Cyclin D1, MMP-
2, and Survivin, inhibiting the tumor
cell cycle.

(96)

Induction of autophagy in
tumor cells

Liver cancer 25, 50, 100 mM Human hepatoma cell
lines: Huh7, HepG2 and
Sk-Hep-1

Glabridin induces tumor cell apoptosis by
upregulating caspase-3, caspase-8, caspase-9

(100)

(Continued)
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5.8 Glabridin prevents skin and
endometrial cancer

5.8.1 Prevention of skin cancer
Ultraviolet B (UVB) is considered a major environmental factor

detrimental to human health. It can activate various signal

transduction pathways and induce the expression of multiple

specific genes, which are the main mechanisms behind skin aging

and cancer development (118). Therefore, it is important to prevent

and reverse UVB damage to reduce the incidence of skin cancer. A

study on the anti-photoaging properties of glabridin found that

glabridin effectively attenuated the levels of pro-inflammatory

factors, including IL-1b, tumor necrosis factor-a (TNF-a), IL-22,
and IFN-g, thereby preventing UVB-induced photoaging in mice

and reducing skin inflammation (119). Another study found that

glabridin possesses antioxidant activity, can prevent DNA oxidative

damage caused by UVB irradiation, and reduces the production of

ROS and the activation of apoptosis pathway proteins (120),

thereby preventing skin cancer.

5.8.2 Prevention of endometrial cancer
It has been reported that the affinity of glabridin for the human

estrogen receptor is comparable to that of genistein, the best-known

phytoestrogen (22). Abnormally high estrogen levels are associated

with an increased incidence of certain cancers, especially breast and

endometrial cancer. The International Agency for Research on
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Cancer (IARC) has classified estrogen and combined estrogen-

progestin postmenopausal therapy as known human carcinogens

(23). Glabridin exhibits an estrogenic effect in the endometrial cell

line Ishikawa, increasing in a dose-dependent manner and

potentially reducing the risk of endometrial cancer (121). Another

study found that glabridin, in combination with tamoxifen,

exhibited estrogenic activity and inhibited cell proliferation (122).

Compared to tamoxifen alone, glabridin in combination with

tamoxifen reduced the proliferation of MCF-7 cells twofold. This

suggests that combining glabridin with tamoxifen may serve as an

estrogen replacement therapy to reduce the risk of tamoxifen-

associated endometrial cancer.
6 Glabridin drug delivery systems

Glabridin exhibits inhibitory effects on the growth of various

tumors; however, its poor water solubility, low bioavailability, and

lack of specific targeting limit its clinical application. Numerous

studies have demonstrated that novel drug delivery systems can

significantly enhance the solubility, stability, targeting, and

bioavailability of poorly soluble drugs (123). Currently, several

glabridin drug delivery systems have been developed, such as

liposomes, cyclodextrin inclusion complexes, nanoparticles, and

polymer micelles. These advancements offer promising solutions

for improving the clinical application of glabridin. Glabridin drug
TABLE 4 Continued

Pharmacological
action

Cancers Effective
concentrations

Cell type Possible mechanisms Reference

cleavage while enhancing autophagy by
upregulating LC3-II and beclin-1.

Inhibition of
tumor angiogenesis

Breast cancer 10 mM Human breast cancer cell
lines: MDA-MB-231 and
Hs-578T

Glabridin upregulates miR-148a, inhibits
Wnt1 and b-catenin activity, and reduces the
expression of proliferation and angiogenesis
genes such as VEGF.

(103)

Enhancing chemotherapy
drug sensitivity

Gastric
cancer

6, 12, 25, 30, 40 µM Human breast cancer cell
lines: MDA-MB-231

Glabridin promotes tumor cell apoptosis by
upregulating BAX, Caspase-3, Caspase-8, and
Caspase-9 and downregulating Bcl-2, and
inhibits cancer cell invasion and metastasis
by downregulating N-Cadherin and
upregulating E-Cadherin to reduce
cell adhesion.

(108)

Endometrial
cancer

50 mM Human breast cancer cell
lines: MDA-MB-231

Glabridin reduces tumor invasiveness by
inhibiting cell migration and EMT through
upregulating E-cadherin and downregulating
b-catenin.

(113)

Breast cancer 10, 30 mM Breast cancer cell lines:
MDA-MB-231

Glabridin increases DOX accumulation in
MDR cells by inhibiting P-gp expression and
ATPase activity, enhancing its cytotoxicity
and apoptosis effects.

(115)

Ovarian
cancer,
Lung cancer

5, 10, 15, 20, 25, 30 µM Human euroblastoma
cells: SKNMC, Human
ovarian carcinoma cell
lines: A2780, and human
non-small cell lung
carcinoma cells: H1299

Glabridin induces apoptosis by upregulating
Bax, downregulating Bcl-2, and activating
caspase-3.

(116)
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delivery systems can be classified based on the physical state of the

delivery system and the mechanisms of drug release as follows: The

glabridin drug delivery system is shown in Figure 7.
6.1 Liquid carrier system

6.1.1 Liposomes
Liposomes are vesicular structures formed by encapsulating

drugs within a lipid bilayer (124). They can significantly enhance

the permeability and solubility of drugs and possess high

biocompatibility, non-immunogenicity, low toxicity, and

biodegradability (125, 126). Thus, they serve as an excellent drug

delivery system.

Huang et al. prepared glabridin liposomes using the complex

coacervation method and investigated their particle size

distribution, in vitro drug release characteristics, and stability. The

results showed that glabridin liposomes had superior in vitro drug

release compared to pure glabridin in the first 120 minutes. After

three months, the mass fraction of glabridin in the liposomes

remained at 38.5%, with a retention rate of 96.25% (127). Zhang

et al. prepared glabridin liposomes using the thin film dispersion
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method and evaluated their effects on skin aging. The results

demonstrated that glabridin liposomes exhibited lower

cytotoxicity compared to pure glabridin and were more effective

in inhibiting melanin production (128). Another study employed

the ultrasonic emulsification method to prepare glabridin

nanol iposomes . The resul ts indicated that glabr idin

nanoliposomes exhibited excellent sustained release, transdermal

absorption, and photostability, thereby enhancing the utilization of

glabridin (129).

Wang et al. utilized Confocal Raman Spectroscopy (CRS) to

assess the epidermal permeability of glabridin liposomes compared

to pure glabridin. The study showed that glabridin liposomes had

3.8 times greater skin permeability than pure glabridin, and

liposome encapsulation significantly enhanced its transdermal

absorption and bioavailability (130).

Currently, liposomes are regarded as one of the most advanced

drug delivery vehicles. Given their excellent biocompatibility and

low toxicity, they have been successfully utilized in various small-

molecule drugs and large-molecule biologics (131). For glabridin,

liposomes significantly enhance its skin penetration and antioxidant

activity. However, the significant efficacy of glabridin liposomes in

skin cancer requires further experimental verification. Additionally,
FIGURE 7

Gabridin’s drug delivery system.
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the production processes of liposomes (e.g., thin-film dispersion

and ultrasonic emulsification) have matured (132) and received

multiple approvals from the US Food and Drug Administration

(FDA) and the European Medicines Agency (EMA) (133),

particularly for cancer treatment drugs (134). Therefore, glabridin

liposomes are regarded as one of the most promising delivery

systems for rapid advancement to clinical applications. However,

their high material cost and the necessity of refrigeration post-

preparation, owing to the susceptibility of phospholipids to

oxidation, limit their long-term stability (135).

6.1.2 Nanosuspension
Nanosuspension is the dispersions of drug nanoparticles within

a liquid medium, typically water, and consists mainly of

nanoparticles with sizes ranging from 100 to 1000 nm. To

maintain stability, nanosuspensions are generally stabilized with a

small amount of surfactant (136, 137).

Wang et al. prepared a glabridin nanosuspension using the anti-

solvent precipitation-homogenization method and optimized

particle size by evaluating formulation parameters with the Box-

Behnken design (138). The optimal formulation consisted of 0.25%

glabridin, 0.47% poloxamer 188, and 0.11% polyvinylpyrrolidone

K30. The average particle size of the resulting nanosuspension was

149.2 nm with a polydispersity index of 0.254. The results showed

that the nanosuspension significantly enhanced the transdermal

penetration flux of glabridin both in vitro and in vivo, without any

lag phase. After 3 months of storage at room temperature, no

significant particle aggregation was observed, and the drug loss was

minimal at 5.46%.

Due to the large specific surface area of nanoparticles,

nanosuspensions can enhance the stability of drugs in solvents

and extend their shelf life (139, 140); they are suitable for topical

administration (e.g., eyes, lungs, and skin) (141). Nanosuspensions

are relatively inexpensive to produce and simple to scale up. Several

nanosuspension formulations have been approved worldwide (142).

However, particle aggregation and changes in particle size need to

be controlled during long-term storage.

6.1.3 Nanoemulsion
Nanoemulsion is a thermodynamically unstable yet kinetically

stable colloidal solution, formed by dispersing droplets with a

particle size of less than 100 nm in a different liquid medium. Its

composition typically includes water, oil, surfactants, and co-

surfactants (143). Nanoemulsions are characterized by low surface

tension, good physical stability, high solubility, and ease of

preparation (144).

Liu et al. prepared nanoemulsions using various oil phases and

compared their physicochemical properties, including apparent

solubility, droplet size, and zeta potential, as well as in vitro and

in vivo skin permeability and stability (145). Their study identified

the eutectic mixture of menthol and camphor as the optimal solvent

for glabridin. The solubility of glabridin in the prepared

nanoemulsion was 76.6 mg/g, and both its in vitro and in vivo

skin permeability were significantly enhanced compared to pure

glabridin. Additionally, the nanoemulsion exhibited excellent

chemical stability.
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Nanoemulsions are highly efficient transdermal absorption

systems suitable for local drug delivery (146). For glabridin,

Nanoemulsion can enhance its skin absorption rate and stability;

however, whether they can improve glabridin’s efficacy against skin

cancer requires further experimental verification. The production

processes of Nanoemulsion are relatively simple and easy to scale

up (147). Currently, many approved products in cosmetics and

pharmaceuticals utilize Nanoemulsion (141). However, the chemical

stability of Nanoemulsion requires improvement, as they may

undergo phase separation at extreme temperatures (high or

low) (148).
6.2 Solid carrier system

6.2.1 Nanoparticles
Nanoparticles are solid particles sized between 10 and 1000 nm,

created using nanotechnology to dissolve or encapsulate drugs

within a polymer carrier material (149). These nanoparticles can

target drug delivery to tumors or diseased tissues (150), exhibiting

high drug loading, high encapsulation efficiency, and controlled

drug release (151).

Li et al. discovered that glabridin-loaded nanoparticles not only

possess antioxidant activity but also specifically accumulate in the

spleen to inhibit inflammatory responses (12). Chen et al. employed

an ionic-gelation method to prepare glabridin nanoparticles by

blending glabridin with chitosan (CS) and poly-g-glutamic acid (g-
PGA). The results indicated that the appearance and particle size of

the nanoparticles remained stable after 90 days, with an encapsulation

rate of 88.30 ± 0.54% and a drug loading rate of 26.47 ± 0.73% (152).

The preparation processes of nanoparticles are well-established,

with methods such as solvent evaporation and ultrasound widely

applied in industrial production (153). Currently, various

nanoparticle drugs have been approved for cancer treatment (154),

and their high targeting and controlled release properties demonstrate

significant potential in clinical trials for cancer therapies. However,

different types of nanomaterials exhibit significant variability in

toxicity and metabolic pathways, which may lead to potential

immune responses and cumulative toxicity; therefore, rigorous

safety evaluations are still required for clinical applications (155).

6.2.2 Nanocomplex
Nanocomplexes are nano-aggregates formed by non-covalent

interactions between carrier molecules, such as proteins or

oligosaccharides, and drugs (156), which can improve the

physicochemical properties of drugs, increasing solubility,

encapsulation rate, and bioavailability (157).

Chitosan is a natural polysaccharide widely utilized in drug

delivery applications owing to its excellent biocompatibility and

biodegradability (158). Su et al. studied the stability of glabridin in

the chitosan-glabridin nanocomplex, finding that the encapsulation

rate of glabridin in the nanocomplex could reach up to 84%,

significantly enhancing stability in aqueous solution and under

ultraviolet light (159). Beta-lactoglobulin (b-Ig) is an essential

milk protein widely utilized in food and drug delivery systems

owing to its excellent biocompatibility and biodegradability (160).
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Based on the fact that b-lg readily solubilizes in water and binds

many small hydrophobic molecules, Wei et al. developed a novel

nanocomplexed glabridin with b-lg using an antisolvent

precipitation method (161). Molecular docking modeling showed

that glabridin binds to b-lg through hydrophobic and hydrogen

bond interactions, increasing its solubility in aqueous solution by 21

times. At the same concentration, nanocomplexed glabridin with b-
lg shows better 2,2-diphenyl-1-pyridinium hydrazone and 2,2’-

azino-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging

capacities compared to pure glabridin. Therefore, the

nanocomplexation of b-lg with glabridin, which enhances the

solubility of glabridin in aqueous systems, offers a promising

opportunity for b-lg to serve as an effective carrier molecule.

Nanocomplexes enhance drug stability and solubility, effectively

preventing rapid metabolism or degradation within the biological

environment (162). They perform excellently in localized and

targeted drug delivery, demonstrating significant potential for

cancer treatment (163). However, the long-term stability of

nanocomplexes in vivo and their potential immune response risks

require further investigation.

6.2.3 Metal-organic frameworks
Metal-organic frameworks (MOFs) are porous materials

formed by the coordination of metal ions or metal clusters with

organic ligands. Compared to other nanomaterials, MOF

nanoparticles have several advantages, including adjustable pore

size, low density, and high surface area (164, 165). These

characteristics have led to the increasing use of MOFs as carriers

in drug delivery systems in biomedical research, particularly for the

delivery of anticancer drugs (166).

ZIF-8 is a special metal-organic framework formed by the self-

assembly of zinc ions (Zn2+ >) and 2-methylimidazole (2-MIM). In

addition to the advantages of other MOFs, ZIF-8 shows high

stability in aqueous solutions due to the strong interaction

between Zn2+ and 2-MIM. Chen et al. prepared a ZIF-8 metal-

organic framework (MOF) encapsulating glabridin using the anti-

solvent precipitation method (167). The drug encapsulation

efficiency was 98.67%, and pH-controlled release of glabridin was

achieved. Additionally, cell experiments demonstrated that the

MOF significantly enhanced the antioxidant activity, melanin-

inhibiting activity, and bioavailability of glabridin.

MOFs can respond to external stimuli (e.g., temperature, light,

pH) by adjusting their pore structures to enable controlled drug

release (168), demonstrating significant potential in targeted drug

delivery, gene therapy, and related fields. However, the

incorporation of metal components raises concerns about the

potential biotoxicity and biodegradability of MOFs, which remain

insufficiently verified (169), posing challenges for safety assessments

in biomedical applications.
6.3 Inclusion and polymer systems

6.3.1 Cyclodextrin inclusion complex
An inclusion complex is a special complex formed when a drug

is partially or completely encapsulated within the cavity structure of
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a host molecule (170). Cyclodextrin is a cyclic oligosaccharide

synthesized by cyclodextrin glucosyltransferase (CGRase) using

starch as a substrate (171). Its hydrophilic outer surface and

relatively hydrophobic central cavity can form complexes with

drugs, thereby enhancing their solubility and stability (172, 187).

Wei et al. employed a co-evaporation method to prepare a

complex of glabridin and hydroxypropyl-b-cyclodextrin (HP-b-
CD). The results demonstrated that at 25°C, the solubility of the

complex in pure water was 40.74 ± 0.44 mM, which was 1852 times

higher than that of glabridin. In vitro experiments revealed that the

DPPH free radical scavenging capacity and the tyrosinase inhibitory

activity of the complex were enhanced by approximately 9 and 20

times, respectively (173).

Li et al. demonstrated that the encapsulation efficiency and drug

loading capacity of the glabridin/HP-b-CD inclusion complex were

90.03% and 14.51%, respectively. The saturation solubility of the

inclusion complex was 109.36 mg/mL. The cumulative dissolution

rates in gastric and intestinal juices after 1 hour were 15.75 and 12.4

times higher than those of glabridin, respectively, while the

cumulative release rate over 24 hours was 53 times that of

glabridin. The uptake of Caco-2 cells was 0.349 mg/g, significantly

higher than that of glabridin (0.039 mg/g). These results indicate that

the glabridin/HP-b-CD inclusion complex significantly enhances the

dissolution and release of glabridin, thereby increasing its

bioavailability (174). Thus, the glabridin/HP-b-CD inclusion

complex is expected to be an ideal form of glabridin for drug delivery.

Wang et al. developed a novel inclusion complex,

sulfobutylether-b-cyclodextrin/glabridin, using the freeze-drying

method. The solubility of this inclusion complex was 1889 times

higher than that of glabridin. Moreover, this inclusion complex

exhibited excellent biocompatibility, along with significant

antibacterial, anti-inflammatory, and antioxidant activities, and

effectively accelerated the healing of skin damage (175).

Yao et al. prepared 2-sulfobutyl-b-cyclodextrin/glabridin
inclusion complexes using freeze-drying, spray-drying, and

kneading methods. The saturation solubility of these complexes

was greater than 83 mg/mL. The encapsulation efficiency and drug

loading capacity of the inclusion complex prepared by freeze-drying

were 86.09% and 22.39%, respectively. The cumulative dissolution

rates in gastric and intestinal fluids, as well as the antiproliferative

activity against the human liver cancer cell line (HepG-2), were

significantly higher than those of glabridin (176).

Cyclodextrin inclusion complex significantly enhances the

solubility of glabridin and effectively improves the bioavailability

of drugs, making them suitable for oral and topical administration

(177). However, the production costs of cyclodextrin complexes

remain relatively high (178). Studies indicate that cyclodextrin

complexes are valuable not only for cancer and inflammation

treatment but also for delivering novel small molecule and

peptide drugs (133). Nonetheless, further toxicological and

biocompatibility studies are required to ensure their safety across

various administration routes (179, 180).

6.3.2 Polymeric micelles
Polymeric micelles are thermodynamically stable colloidal

solutions that form through the self-assembly of synthetic
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amphiphilic block copolymers in aqueous environments. Their

hydrophilic shell and nanoscale particle size facilitate drug release

within the body and enhance drug concentration at the target

site (181).

Partially myristoylated chitosan pyrrolidone carboxylate (PMCP) is a

cationic, amphiphilic derivative of chitosan. Senio et al. employed PMCP

emulsification to develop novel, nanoparticle-sized cationic polymeric

micelles encapsulating glabridin (182). The skin permeability and

melanin inhibition efficacy of the polymeric micelles were evaluated

using a human skin model. The results showed that the glabridin dose

absorbed 24 hours after applying polymeric micelles was approximately

four times higher than that of conventional oil-in-water micelles with

Tween 60 (control), significantly inhibiting melanin production. These

polymeric micelles hold significant promise as a transdermal drug

delivery system for treating skin pigmentation.

Polymer micelles represent a novel delivery system that has

emerged in recent years. For glabridin, polymer micelles enhance

drug transdermal absorption and stability, making them suitable for

intravenous injection and targeted drug delivery (183, 184).

However, the preparation process is complex, with stringent

requirements for storage and transportation conditions. Large-

scale production requires further optimization (185). Currently,

the regulatory pathway for polymer micelles remains unclear, and

their large-scale clinical application continues to face

challenges (186).

In summary, new drug delivery systems for glabridin, including

liposomes, cyclodextrin complexes, polymer micel les ,

nanopart ic les , nanoemuls ions , nanosuspensions , and

nanocomposites, have been extensively researched. These systems

have made significant strides in improving the solubility, stability,

and bioavailability of glabridin. Notably, glabridin is widely utilized

in the cosmetics industry for its whitening effects. Current drug
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delivery systems for glabridin primarily focus on enhancing skin

permeability and anti-melanin effects. However, there is a notable

lack of research on its release rate, stability, accumulation, and

targeting within the body. Furthermore, existing studies have

mainly addressed issues related to drug distribution and release,

with insufficient consideration of disease pathology and innovative

treatment strategies. Future research should prioritize

understanding disease pathogenesis and utilize functionalized

materials sensitive to pH, redox conditions, temperature, light,

sound, and magnetism. This approach aims to create synergistic

effects between drugs and carriers, as well as between different

drugs, while integrating diverse treatment methods to further

explore the potential of glabridin in disease treatment. For

detailed information, please refer to Table 5.
7 Conclusion and outlook

In recent years, plant extracts have been increasingly utilized in

the clinical treatment of various diseases. Compared to synthetic

drugs, plant extracts exhibit greater biodegradability, enhanced

biocompatibility, and fewer side effects, making them considered

safer alternatives (188). Malignant tumors pose a significant threat

to human health and social development. Increasing evidence

suggests that monomeric compounds derived from Chinese

herbal medicine play a crucial role in anti-tumor therapy.

Glabridin demonstrates considerable promise in the realm of

anti-tumor research. Its anti-tumor effects include inhibition of

tumor cell proliferation, metastasis, and invasion; induction of

apoptosis and cell cycle arrest; promotion of autophagy;

suppression of angiogenesis; enhancement of chemotherapy

sensitivity; and prevention of cancer. Compared to commonly used
TABLE 5 Summary of the advantages and limitations of glabridin delivery systems.

Drug delivery systems Advantage Limitations References

Liquid carrier system Liposomes Good biocompatibility,
Enhanced bioavailability,
Targeted delivery

Poor stability,
Complex preparation process

(125, 126, 135, 139, 140,
142, 147, 148, 155, 157,
162, 164, 165, 168, 169,
178, 183, 184, 187)

Nanosuspension Suitable for insoluble drugs,
Simple preparation process

The challenge of particle aggregation

Nanoemulsion Enhanced bioavailability,
Simple preparation process

High requirements for storage
conditions,
Poor stability

Solid Carrier Systems Nanoparticles High drug-loading capacity,
Targeted delivery,
Good stability

Poor biocompatibility,
High production costs

Nanocomplex Diverse functionality,
Smart drug release

Complex preparation process,
High production costs

Metal-
Organic frameworks

High specific surface area,
Targeted delivery

Poor biocompatibility,
Regulatory challenges

Inclusion and
polymer systems

Cyclodextrin inclusion
complex

Enhance drug solubility,
Good stability

Limited drug-loading capacity,
Poor control over release rate

Polymeric micelles High drug-loading capacity,
Good biocompatibility,
Good stability

Poor control over the release rate
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anti-tumor drugs, glabridin exhibits lower toxicity and side effects,

along with good tolerance and safety. When combined with other

anti-tumor drugs, glabridin can enhance therapeutic efficacy. Given

its broad anti-tumor effects and its capacity to improve resistance to

traditional chemotherapeutic drugs, glabridin can serve as an effective

adjunct in small molecule targeted anti-tumor therapy, gene therapy,

anti-angiogenesis therapy, and radiotherapy.

Although preclinical data indicate that glabridin has significant

anti-cancer potential, significant challenges remain in translating

preclinical findings to clinical applications. Current research on

glabridin’s anti-tumor effects primarily focuses on in vitro cell

studies. Future preclinical trials should include more animal

models, particularly xenograft mouse models of various cancers,

to evaluate glabridin’s anti-tumor efficacy and safety. Additionally,

dose-optimization studies are necessary to establish the optimal

dose range and assess long-term safety, especially regarding

potential toxicity to target organs like the liver and kidneys. As a

natural anti-tumor compound, glabridin holds promise for

combination use with existing anti-cancer therapies, such as

chemotherapy, radiotherapy, and immune checkpoint inhibitors.

Future studies should explore combining it with standard anti-

cancer drugs to evaluate the potential of combination therapy in

overcoming drug resistance and enhancing efficacy.

Current drug delivery systems primarily focus on enhancing

skin penetration and transdermal absorption, while research on

dosage forms targeting tumors within the body remains limited.

Future studies should aim to optimize drug delivery systems,

particularly by enhancing the delivery efficiency, targeting, and

therapeutic effects of glabridin through nano-carrier systems. For

instance, polymeric nanoparticles (PNPs), lipid nanoparticles

(LNPs), and nanogels can encapsulate glabridin effectively,

enhancing its water solubility and controlling drug release.

Adjusting particle size, surface modification, and drug loading

can modify these nanocarriers to promote drug accumulation in

tumor tissue, thereby enhancing therapeutic effects and minimizing

side effects on normal tissues. Additionally, to further enhance

glabridin’s therapeutic efficacy, developing tumor-targeted delivery

systems is essential. Nanocarrier surfaces can be functionalized with

specific antibodies, small-molecule peptides, or carbohydrate

molecules to precisely target tumor cells. For example, glabridin

can be combined with small peptides targeting EGFR or human

epidermal growth factor receptor 2 (HER2) to achieve selective

delivery to tumor sites.

In summary, glabridin exhibits substantial anti-tumor potential

and holds considerable promise for future development and

application. It is anticipated that further in-depth research will
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elucidate its potential and offer robust references and support for

anti-tumor therapies.
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