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AI predicting recurrence in non-
muscle-invasive bladder cancer:
systematic review with study
strengths and weaknesses
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Rakesh Heer3,4† and Kabita Adhikari1*†

1School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom, 2Department of Urology,
Freeman Hospital, Newcastle upon Tyne, United Kingdom, 3Division of Surgery, Imperial College London,
London, United Kingdom, 4Centre for Cancer, Newcastle University, Newcastle upon Tyne, United Kingdom
Background: Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its

high recurrence rate of 70-80%, imposing a significant human burden and

making it one of the costliest cancers to manage. Current prediction tools for

NMIBC recurrence rely on scoring systems that often overestimate risk and lack

accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming

oncological urology by leveraging molecular and clinical data to enhance

predictive precision.

Methods: This comprehensive review critically examines ML-based frameworks

for predicting NMIBC recurrence. A systematic literature search was conducted,

focusing on the statistical robustness and algorithmic efficacy of studies. These

were categorised by data modalities (e.g., radiomics, clinical, histopathological,

genomic) and types of ML models, such as neural networks, deep learning, and

random forests. Each study was analysed for strengths, weaknesses, performance

metrics, and limitations, with emphasis on generalisability, interpretability, and

cost-effectiveness.

Results: ML algorithms demonstrate significant potential, with neural networks

achieving accuracies of 65–97.5%, particularly with multi-modal datasets, and

support vector machines averaging around 75%. Models combining multiple data

types consistently outperformed single-modality approaches. However,

challenges include limited generalisability due to small datasets and the "black-

box" nature of advanced models. Efforts to enhance explainability, such as

SHapley Additive ExPlanations (SHAP), show promise but require refinement for

clinical use.

Conclusion: This review illuminates the nuances, complexities and contexts that

influence the real-world advancement and adoption of these AI-driven

techniques in precision oncology. It equips researchers with a deeper

understanding of the intricacies of the ML algorithms employed. Actionable

insights are provided for refining algorithms, optimising multimodal data

utilisation, and bridging the gap between predictive accuracy and clinical
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utility. This rigorous analysis serves as a roadmap to advance real-world AI

applications in oncological care, highlighting the collaborative efforts and

robust datasets necessary to translate these advancements into tangible

benefits for patient management.
KEYWORDS

artificial intelligence, non-muscle-invasive bladder cancer, NMIBC, machine learning,
recurrence, prediction
1 Introduction

Bladder cancer continues to be a significant health concern.

Particularly in the UK, where it stands as the 11th most common

cancer, necessitating efficacious diagnostic and management

strategies to curtail its impact (1). With 28 new reported cases

and 15 deaths daily, the disease’s impact is undeniable (1). A disease

of heterogeneous nature, bladder cancer is primarily categorized

into two main types: non-muscle-invasive bladder cancer (NMIBC)

and muscle-invasive bladder cancer (MIBC). Among them, NMIBC

is more common, yet carries a risk of escalating into MIBC if left

untreated or poorly managed. About 45% of untreated high-grade

NMIBC cases escalate into MIBC (2–4). An alarming feature of

NMIBC is its high recurrence rate post-treatment, reported to be

70-80% (5), requiring frequent monitoring and interventions.

Due to its high prevalence and recurrence rate, bladder cancer

happens to be one of the costliest cancers to manage – it cost the EU

approximately 4.9 billion in 2012 to treat bladder cancer (6, 7). The

high cost of managing NMIBC is due in part to the expensive

diagnostic procedures and follow-up care required for patients with

recurrent NMIBC. For example, cystoscopy, the gold standard for

monitoring, is expensive (£240-£2000 per visit) and invasive,

contributing significantly to overall costs and involving indirect

costs from lost productivity and risks like urinary tract infections

(8, 9). From 2015-2022, flexible cystoscopy cost the NHS over £810

million in total (inflation-adjusted) (10–15). Guidelines recommend

cystoscopy every 3-6 months for the first 2 years, then annually,

leading to significant cumulative costs. The average 3-year cost per

NMIBC patient in the UK was estimated at £8735,with annual costs

ranging from £1218 for grade 1 recurrence cases to £3957 for grade 3

(16). These escalating costs juxtapose the financial burden of NMIBC

with the pressing need for precise diagnostic techniques and reliable

predictive tools that can reduce the frequency of costly cystoscopic

follow-ups.

Traditionally, prognostication and risk assessment in bladder

cancer have relied on tools like the American Joint Committee on

Cancer TNM staging system (17, 18). The TNM system categorizes

bladder cancer based on tumor size and invasion (T), lymph node

involvement (N), and distant metastasis (M). While validated and
02
widely used, these systems lack the comprehensive integration of

factors needed for precise prognostication (19). They do not

encompass the full scope of factors necessary for precise

prognostication. They seem to fall short when compared to

predictive models that incorporate numerous clinical variables

(19). Additionally, their design does not readily permit the

integration of novel information such as molecular markers or

complex bioinformatics data, which are becoming increasingly

relevant in the era of personalized medicine (20). A multimodal

approach is recommended which combines histopathological

markers with the results of imaging studies.

Despite numerous published studies on NMIBC recurrence

prediction models, their adoption in clinical practice remains

surprisingly low. Reasons for this can range from the lack of

demonstrated improvement in clinical decision-making upon

external validation to the logistical difficulty of integrating these

prediction tools into electronic medical records to be readily

available to the physician at the point of care. This systematic

review addresses these gaps by analyzing AI-based prediction

models for bladder cancer recurrence, emphasizing the need for

better validation and integration into clinical workflows.

The aim of this systematic review is to evaluate the performance

and utility of AI-based predictive models in NMIBC recurrence.

The research question, framed using the PICOS criteria, is as

follows: How do AI-based predictive models perform compared to

traditional methods in forecasting recurrence in NMIBC

patients? Specifically:
• Population: Patients diagnosed with NMIBC.

• Intervention: AI-based predictive models.

• Comparison: Traditional statistical or clinical models.

• Outcome: Predictive performance metrics (e.g., accuracy,

discrimination, AUC) and clinical utility.

• StudyDesign:Observational, retrospective, and prospective studies.
By synthesizing the findings of existing studies, this review aims to

identify gaps in current methodologies, provide insights into effective

AI-based approaches, and offer guidance for future research to

enhance personalized and efficient bladder cancer management.
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1.1 Non-muscle invasive bladder cancer

Bladder cancer is a disease characterized by the uncontrolled

growth of abnormal cells in the lining of the bladder, a hollow organ

in the lower abdomen responsible for storing urine. Non-muscle-

invasive bladder cancer (NMIBC) is a subtype of bladder cancer

that hasn’t penetrated the muscular wall of the bladder. This type of

bladder cancer, often found early, comprises about 75% of all

bladder cancer cases (21).

Bladder cancer staging follows the TNM system, detailing

cancer progression within or beyond the bladder (see Figure 1 for

TNM staging). Early stages (CIS, Ta, T1) are Non-Muscle-Invasive,

with the tumor confined to the bladder’s surface or connective

tissue yet not penetrating the deeper muscle layers. These stages

can, however, progress to muscle-invasive (MIBC) stages. NMIBC

carries a lower risk of metastasis compared to MIBC but has a high

recurrence rate (21). NMIBC has a tendency to often recur. These

recurrences can be either at the same stage as the initial tumor or at

a more advanced stage (22). Treatment primarily includes

transurethral resection of bladder tumor (TURBT) to remove

cancerous cells (23). Depending on the risk of recurrence and

progression, intravesical therapy, where medication is directly

instilled into the bladder, may be applied post-TURBT. This can

include chemotherapy agents, such as mitomycin C, or

immunotherapy with Bacillus Calmette-Guerin.

Bladder cancer is associated with numerous risk factors, the

most significant being tobacco smoking, which accounts for about

half of all cases (24). Figure 2 highlights the overwhelming effect of

smoking over other factors. Other factors include occupational
Frontiers in Oncology 03
exposures, chronic bladder inflammation, and genetic

predisposition, which contribute to the complexity of predicting

the disease’s occurrence and progression (25–27). Additionally,

gender disparities exist, with men being about three to four times

more likely to develop bladder cancer than women (28). Age, diet

high in processed meat, and tumor characteristics like grade and

size also play crucial roles in predicting the likelihood of recurrence

in NMIBC (24, 26, 29). Other predictive factors include genetic

alterations or mutations, the presence of bladder cancer markers in

the urine, and findings from imaging studies and cystoscopy (30).

This variability in risk factors highlights the challenges in

developing personalized care plans, underscoring the need for

sophisticated predictive tools.

Creating personalized care plans for bladder cancer is

challenging due to its highly varied nature. Each case differs in

terms of tumor biology, stage, grade, and genetic mutations, which

means a treatment effective for one patient may not work for

another. Despite advances in bladder cancer genetics, the lack of

reliable predictive biomarkers underscores the need for more

advanced tools. In the following sections, we explore how

Artificial Intelligence and Machine Learning (ML)-based

approaches, are poised to fill this gap by offering more precise

and individualized predictions, ultimately improving patient

outcomes and treatment strategies.
1.2 Current methods and the need
for innovation

The European Organisation for Research and Treatment of

Cancer (EORTC) and The Club Urológico Español de Tratamiento

Oncológico (CUETO), are two popular clinical urology research

organisations, that developed the tools for recurrence prediction

used currently. EORTC developed the EORTC Risk Tables (31),

and CUETO introduced the CUETO Scoring system. These tables

use a variety of factors, such as the number and size of tumors, prior

recurrence rates, T-stage, and grade to calculate risk scores (32, 33).
FIGURE 2

Distribution of major risk factors for bladder cancer. Tobacco
smoking accounts for approximately 50% of cases, occupational
exposures contribute to 18%, and other factors (including exposure
to arsenic, chronic bladder inflammation, previous radiation or
chemotherapy, diet, and genetic predisposition) comprise the
remaining 32%. Data synthesized from multiple sources (24–27, 29).
FIGURE 1

Stages of tumor metastasis illustrated in AJCC TNM staging system.
Carcinoma-in-situ (CIS), Ta and T1 are non-muscle invasive stages
and T2 - T4 are muscle invasive stages. CIS: primary stage where
tumor is confined to inner bladder lining. Ta: tumor limited to
epithelium. T1: tumor reaches the lamina propria. Stage III (T2):
tumor invades into bladder wall muscle. T3: tumor spreads to the fat
around the bladder. Stage IV (T4): tumor spreads to nearby pelvic
organs/tissues.
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Vedder et al. (34) conducted a study which revealed that both

EORTC and CUETO’s risk scores were not accurate in predicting

recurrence (found c-indices of 0.55-0.61, where 0.5 is random

guess). Other studies have also concluded that CUETO and

EORTC presented poor discriminative value in predicting clinical

events. These models overestimated the risk, especially in highest-

risk patients (35–37). This has significant implications for both

physicians and patients alike.

Poor and unreliable recurrence prediction has far-reaching

consequences. Unreliable predictions of recurrence can trigger

unnecessary invasive procedures like repeated cystoscopies or

biopsies, overburdening healthcare providers and depleting

valuable resources (38). This, in turn, escalates the financial costs

borne by the NHS (39, 40), diverting funds that could otherwise be

allocated to patient care and research endeavors. For patients, the

repercussions of unreliable recurrence prediction are substantial,

entailing risks and complications. False-positive predictions cause

unnecessary anxiety and subject patients to additional tests and

treatments with inherent risks. Conversely, false-negative

predictions can delay or miss disease progression, hindering

timely intervention and adversely affecting patient health (41, 42).

Traditional mathematical and statistical tools use a limited set

of variables. These tools assume straightforward, proportional

relationships between patient variables like tumor size, number of

tumors, prior recurrence, and T-stage with outcomes such as

recurrence and progression. By assigning linear scores based on

cancer grade (1, 2, or 3), they overlook the nuanced severity

differences, such as the greater jump from Grade 2 to 3 compared

to Grade 1 to 2. In reality, cancer prognosis is shaped by complex,

non-linear interactions involving molecular markers, genetic

factors, and evolving medical data—factors that static, linear

models cannot adequately capture. These traditional methods also

struggle with missing data and incorporating recent advancements.

Emerging approaches aim to enhance tumor classification, discover

novel biomarkers, and improve predictions for bladder cancer

metastasis, while other promising areas include body composition

analysis and biomarkers beyond traditional assessments (43–45).

Additionally, novel prognostic models based on gene signatures

show potential (46). However, these innovations cannot be

integrated into traditional tools highlighting the urgent need for

more sophisticated models that offer reliable, dynamic predictions

for NMIBC recurrence.
1.3 AI as a game-changer in NMIBC
recurrence prediction

Artificial Intelligences (AI) has emerged as a powerful tool in

the medical field, with machine learning (ML) at its forefront,

particularly in tasks related to cancer prognosis and recurrence

prediction. AI, a broad category of computational methodologies

designed to emulate human cognitive functions, has been

increasingly deployed in the medical field. ML algorithms can be

trained to learn from existing data, adjusting their mathematical

parameters to predict outcomes with high accuracy. In the context

of bladder cancer, algorithms like support vector machines (SVM),
Frontiers in Oncology 04
random forest (RF), artificial neural networks (ANN), and deep

learning (DL) have been used to design models that enhance the

prediction of cancer recurrence (47–52).

These models leverage a diverse range of markers — radiomic,

clinical, pathological, and genomic — to build comprehensive and

nuanced predictive models (53–57). They aim to improve risk

stratification, anticipate recurrence, and optimize treatment

planning, opening doors to more personalized patient

management. Nonetheless, while advancements in AI and ML

hold considerable promise, there is still much to learn, explore,

and validate before these technologies can fully realize their

potential in bladder cancer management.

Research in AI techniques to predict NMIBC recurrence is

accelerating rapidly. As demonstrated in Figure 3, the number of

studies focusing on bladder cancer recurrence has shown a steady,

linear increase over the past two decades (depicted by a line graph).

However, the adoption of ML approaches has grown at a much

faster, exponential rate (depicted by the bar graph). This surge in

ML research highlights the recognition of its potential to improve

predictive accuracy and model complex, non-linear relationships

that traditional statistical methods often struggle to capture. With

increasing accessibility and advancements in computational power,

the relevance of ML approaches in bladder cancer research is

expected to continue expanding.

An emerging trend in the development of ML models for

NMIBC prediction is the integration of multiple feature types,

such as clinical, genomic, and imaging data. Single-feature models

often fail to account for the multifaceted nature of cancer

progression, whereas combining multiple data sources allows for

more comprehensive models and improved predictive performance.

This shift can be attributed to advancements in data integration

techniques, the growing availability of multi-modal datasets and

ease of access of powerful GPUs, which enable researchers to

leverage richer and more diverse data for more accurate and

clinically relevant predictions.

Figure 4 depicts a typical bladder cancer prediction workflow

using an ML model, consisting of data pre-processing and ML

algorithm application. The process begins with secure data storage,

followed by data pre-processing, where irrelevant or incomplete

data is removed and medical scans are segmented to focus on key

areas like tumor lesions. Redundant features are identified and

eliminated, often using clustering techniques. Then, ML algorithms

are trained with this processed data for cancer recurrence

prediction. The model’s performance, evaluated by accuracy,

precision, recall, and F1-score, may lead to retraining for

improved standards. While accuracy measures the overall

correctness of the model, precision indicates the proportion of

positive cases correctly identified, avoiding false positives. Similarly,

recall reflects how many actual positives were correctly identified,

avoiding false negatives. The F1-score combines precision and recall

into a single metric, balancing both false positives and false

negatives. Finally, the model’s effectiveness is compared with

existing methods to assess any advancements in bladder cancer

recurrence prediction and clinical detection benefits.

Accurately assessing the risk and predicting the occurrence and

recurrence of NMIBC early is crucial for effective treatment and
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management of NMIBC. ML-based diagnosis and predictive

systems have been proven valuable in tumor detection, bladder

segmentation, and NMIBC identification (48, 58). Moreover, AI

approaches also have been applied to tumor staging, grading,

survival rate prediction, response to chemotherapy, and

recurrence rates, all of which are essential in personalized NMIBC

management (59–61).

However, as of this date, no reliable AI algorithm is capable of

accurately predicting NMIBC recurrence and improving

management through a combination of the aforementioned

markers. By reviewing these studies, we aim to pave the way for

researchers to develop highly precise AI-based NMIBC recurrence

prediction systems, facilitating optimal personalized management

for early-stage NMIBC.
2 Methods

2.1 Search strategy

In this systematic review, we survey studies published up to

October 2024, focusing on highly-ranked articles related to the

implementation of ML and AI in bladder cancer prediction. We

searched databases such as PubMed, IEEE Xplore, ScienceDirect

(Elsevier), Springer, Nature, and MDPI. We used a combination of

keywords that matched the scope of the survey such as “Bladder

Cancer OR Non-Muscle Invasive Bladder Cancer OR NMIBC”
Frontiers in Oncology 05
AND “Artificial Intelligence” OR “Machine Learning” OR “Neural

Networks” AND “Prediction” OR “Predictor” AND “Recurrence”.

Our search yielded a total of 175 unique studies. We reviewed the

175 articles on ML for NMIBC, focusing on those used for

recurrence prediction. Upon abstract evaluation, 98 articles were

discarded according to the exclusion criteria defined below. A

further 46 studies were excluded based on full-text analysis. A

total of 25 studies were finally selected for in-depth analysis within

this review. Our study adhered to the guidelines set forth by the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (62). The PRISMA flowchart is

depicted in Figure 5.
2.2 Inclusion criteria

The inclusion criteria for this systematic review were defined to

ensure the relevance and quality of the studies selected for analysis.

The criteria are as follows: (1) original research articles, including

peer-reviewed journal papers and conference proceedings; (2)

studies specifically focused on the application of ML techniques

for the prediction of NMIBC recurrence; (3) research exclusively

addressing NMIBC recurrence or survival outcomes; (4)

publications available in the English language. (5) Articles that

report specific performance metrics (e.g., accuracy, sensitivity,

specificity, AUC) to evaluate the effectiveness of the proposed

ML models.
FIGURE 3

This graph shows the overall growth in bladder cancer recurrence studies and the exponential rise in ML-based approaches. While the total number
of bladder cancer studies has increased linearly over the past two decades, the adoption of ML methods has grown at a much faster, exponential
rate. This trend suggests that ML approaches are becoming increasingly relevant in the field, with future research likely to continue emphasizing
advanced computational methods.
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FIGURE 4

Machine learning workflow model for bladder cancer prediction. (A) pre-processing steps –Data stored in a secure database goes through image
segmentation or filtration, depending on the data type. Then feature selection is applied to identify useful features in the data while discarding the
redundant and unimportant features. (B) Application of ML algorithms - ML algorithms are selected and trained, prediction is made, and
performance is evaluated using the most suitable metrics. Then a robust comparison is made to deduce added benefit and the superiority over the
existing frameworks.
FIGURE 5

PRISMA flow diagram showing search methodology, inclusion and exclusion criteria.
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2.3 Exclusion criteria

The exclusion criteria for this systematic review were designed to

eliminate studies outside the scope of NMIBC recurrence prediction.

The following were excluded: (1) studies focused solely on diagnosis

without addressing recurrence or survival prediction; (2) non-original

research, including systematic reviews, meta-analyses, commentaries,

editorials, and case reports; (3) articles lacking full-text access or

sufficient methodological details; (4) studies using only traditional

statistical methods without machine learning; (5) research on cancer

types other than NMIBC (such as Gall Bladder Cancer, prostate

cancer, lung cancer) or studies that did not differentiate between

muscle-invasive and non-muscle-invasive bladder cancer.
3 Comparative analysis of AI models
for NMIBC recurrence prediction

Accurate prediction of bladder cancer recurrence is critical for

guiding treatment strategies and optimizing patient care. Recent

breakthroughs in AI have ushered a new era of possibilities, offering

unprecedented opportunities to refine and improve the prediction

of recurrence as well as the occurrence of various fatal diseases such

as cancers. By harnessing advanced ML algorithms and integrating

diverse markers such as radiomic, clinical, histopathological, and

genomic data, AI-based approaches have demonstrated remarkable

potential in unraveling the intricate nature of bladder cancer

recurrence. In this section, we explore the pivotal studies and

advancements that showcase the transformative role of AI in

bladder cancer recurrence prediction, shedding light on its

promises, challenges, and future prospects.

To provide a clear understanding and a structured walkthrough

of the studies, this section is categorized into four subsections based

on similar methodologies as follows:
Fron
• Models using Imaging and Morphological Features

• Models using Genomic and Protein Markers

• Models using Clinical, Treatment and External Factors

• Models using a Combination of Feature Types listed above
To provide a consolidated view of research in this

interdisciplinary field, we have provided the Table 1 which offers

a comprehensive overview of the various studies that have used ML

techniques for NMIBC recurrence prediction. We provide the

primary objectives of each study, the specific prediction tasks

undertaken, the patient cohorts involved, the variables and data

modalities employed, the chosen ML models, and the resultant

performance metric.
3.1 Models using imaging and
morphological features

Imaging-based ML models have become central to predicting

NMIBC recurrence, leveraging data from pathology slides,
tiers in Oncology 07
radiomics, and CT scans. These approaches provide detailed

insights into tumor morphology and cellular patterns, often

revealing features that traditional methods may overlook. Studies

in this category use deep learning and other ML techniques to

enhance prognostic accuracy by analyzing both tissue samples and

imaging modalities.

The analysis of pathology slides has been a cornerstone of many

ML models for NMIBC recurrence prediction, offering insights into

tissue morphology and cellular characteristics. Chen et al. (63) used

machine learning on Hematoxylin and Eosin-stained images from

514 patients, a substantial sample size for bladder cancer research.

Unlike other approaches that use nuclear extraction techniques,

they applied LASSO with 10-fold cross-validation to identify 22

bladder cancer-related and 18 survival-related image features. Their

diagnostic model achieved strong performance, with Area Under

the Receiver Operating Curve (AUROC) values of 94.1%, effectively

distinguishing bladder cancer from normal tissues and glandular

cystitis. The ML-based risk score served as an independent

predictor for survival, enhancing prediction accuracy for 1-, 3-,

and 5-year overall survival by more than 10%. However, the use of

non-uniform median cut-off values for high-risk scores limits

consistency, indicating a need for further standardization and

validation in future prospective trials before broad clinical adoption.

Building on this approach of using pathology slides, Tokuyama

et al. (49) explored the predictive value of nuclear atypia in NMIBC,

focusing on the morphological characteristics of cancer cells derived

from transurethral resection specimen. They utilized ML to predict

the recurrence of NMIBC based on nuclear atypia (abnormalities in

the nuclei of cancer cells) extracted from transurethral resection

specimens. Using SVM and RF algorithms on a dataset of 125

patients, the authors derived quantitative morphological features

from regions of interest on Hematoxylin and Eosin-stained slides.

This involved the application of a nuclear extraction process using

software programs “Ilastik” and “YOLO v3” for the segmentation of

individual nuclei. The SVM-based model achieved a 90%

probability of predicting NMIBC recurrence within 2 years post-

TURBT, while the RF-based model achieved 86.7%. Despite these

promising results, the study’s limitations included a relatively small

sample size, the potential for bias in the nuclear extraction process,

and the limited generalizability due to the exclusion criteria.

Drachneris et al. (64) provided a new perspective by analyzing

immune cell density gradients. They used CD8+ cell-density gradients

to predict Recurrence-free survival in NMIBC patients post-BCG

therapy. CD8+ are a type of white blood cell that is crucial for

fighting infections or cancer. Traditional methods merely count the

total number of immune cells, while this study analyses the spatial

distribution (or the cell density gradients), which provides deeper insight

into the cancer’s immune response. By combining the HALO AI

Densenet v2 classifier (a deep learning-based image analysis platform

designed for digital pathology) and multivariable Cox regression

models, the study creates a robust model with a C-index of 0.74.

However, the paper recognizes that broader, prospective validations and

explorations of other immune factors are required to further validate the

methods. This study shows that a fresh perspective on established

methods can enhance bladder cancer prognosis accuracy.
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TABLE 1 Summary of studies utilizing machine learning techniques for NMIBC recurrence prediction and assessments.

y MLModel Performance

SVM,
Random Forests

SVM: 90.0%, RF: 86.7%

s
LASSO-Cox
hazard model

Diagnostic model: AUROC: 89.2% - 96.3%;
Prognostic model:
HR = 2.09 (TCGA cohort),
HR = 5.32 (General cohort)

SVM with
feature elimination

Accuracy: 81.0%
AUROC: 83.8%

AutoParis-X (NN) C-index: Up to 0.77

Clinical
and Radiomics

AUC: 0.909, C-index: 0.804

Deep learning (patch-
level, WSI-level)

AUC: 0.860

SVM Accuracy: 80.0%

GLM, KNN, SVM,
Random Forests

AUC: 76%

Univariate and
multivariate analyses,
NN analysis

Multivariate analysis found LOH as an
independent predictor of recurrence-free
probability; NN performance metrics
not mentioned.

es
Convolutional
Neural Networks

AUC: 0.889, C-index: 0.869

AF-UCS (Learning
Classifier System)

Accuracy: 66%

Bayesian learning
with LASSO

Time to First Recurrence AUC:
Clinico-pathological = 0.62
SNP-only = 0.55
Combined = 0.61.
Time to progression AUC:
Clinico-pathological = 0.76

(Continued)
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Reference Objective Prediction Task Patients Variables Data Modalit

Tokuyama et al. (49) Predict NMIBC recurrence Recurrence 125 Nuclear atypia from TUR specimens H&E stained slide

Chen et al. (63) Diagnostic and prognostic
models for BCa based on
H&E images

Diagnosis and survival 514 H&E stained images Digital
pathological image

Xu et al. (47) personalized tool for BCa
recurrence risk

Recurrence risk 71 Radiomics and clinical factors MRI and
clinical data

Levy et al. (65) Predict bladder cancer
recurrence using imaging
features from urine cytology

Recurrence 135 Imaging features from urine
cytology exams

Urine cytology
slide images

Huang et al. (67) Predict 5-year recurrence risk
in NMIBC using MRI and
deep learning

Recurrence 191 Clinical, radiomics, and deep
learning features

Multiparametric
MRI

Wang et al. (66) Predict recurrence of NMIBC
using deep learning on
pathology images

Recurrence 210 Pathological and clinical features Pathology
slide images

Lee et al. (69) Significance of IPP in
NMIBC prognosis

Prognosis 122 IPP, age, BPH and other
clinicopathological variables

Clinical data

Zhao et al. (70) Predict prognosis and
recurrence of bladder cancer
using ECM-related genes

Prognosis
and Recurrence

960 Six ECM-related genes, FSTL1, stage,
age, gender

Genetic and
clinical data

Cai et al. (71) Evaluate prognostic role of
LOH on chromosome 18 in
low-risk NMIBC

Recurrence 108 LOH on chromosome 18, number of
lesions, clinico-pathological factors

Clinical data

Wang et al. (68) Predict bladder cancer
recurrence using multiphase
CT images

Recurrence 874 Clinical and imaging features Multiphase
enhanced CT ima

Urbanowics
et al. (76)

Identify genetic and
environmental factors in
bladder cancer susceptibility

Risk and Survival time 914 DNA repair gene SNPs, smoking history Genetic and
clinical data

Maturana et al. (82) SNP impact on
NMIBC prognosticators

Prognosis 995 171,304 SNP, 6 clinical-
pathological indicators

Clinical and
genetic data
s

g
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TABLE 1 Continued

dality MLModel Performance

SNP-only = 0.58
Combined = 0.76

s Random Forests AUC: 0.828

s Primary panel: Accuracy 76%, AUC 0.77

a Multivariate
Logistic Regression

AUC: 0.813 (validation)

s Logistic regression
with LASSO

Highest AUC: 0.96

ta
Decision tree,
Random Forest,
AdaBoost,
GBM, XGBoost

Best model AUC: 0.623

ta
mSVM-RFE AUC: 0.784

ay
SVM Recurrence Acc: 71.0%

(cisplatin), 60.2%
(carboplatin), 54.5%
(oxaliplatin)
Remission Acc: 59%, 61%, and 72%

gical Multivariable
Cox regression

C-index: 0.7837

gical Neural Networks Sensitivity: 96.66%,
Specificity: 100%, PPV: 100%, NPV: 90.9%

ta
NFM, Neural
Networks, Logistic
Regression and
Linear Regression

NFM and NN Accuracy: 88-95%
LR and LinR accuracy = 71-77%

(Continued)

A
b
b
as

e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.15

0
9
3
6
2

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Reference Objective Prediction Task Patients Variables Data Mo

Krochmal et al. (85) Predict bladder cancer
recurrence using Urinary
peptide panel

Recurrence 98 Urinary peptide panel Urine sampl

Frantzi et al. (84) Develop and validate urine-
based biomarker panels for
primary and recurrent
BCa detection

Biomarker panels
for detection

481 Peptide biomarkers Urine sampl

Zhan et al. (86) Develop a urinary exosome
derived lncRNA panel for BCa
diagnosis and recurrence

Diagnosis
and Recurrence

368 MALAT1, PCAT-1, SPRY4-IT1
lncRNA expressions

LncRNA dat

Gogalic et al. (87) Validate a protein panel for
noninvasive detection of
recurrent NMIBC

Diagnosis
and recurrence

45 Biomarkers (ECadh, IL8, MMP9, EN2,
VEGF, past recurrences, BCG therapies,
stage at diagnosis)

Urine sampl

Zhang and Ma (89) Identify biomarkers for
bladder cancer recurrence
using ML

Recurrence 345 TBIL, CA50, and 34 clinical parameters Clinical and
biomarker d

Chang et al. (83) Develop non-invasive urine-
based proteomic biomarkers
for recurrence

Recurrence 279 11 Urinary proteins Urine
proteomic d

Mucaki et al. (61) Predicting
chemotherapy responses

Recurrence
and remission

54 Gene expression, clinical metadata RNA-
seq, microar

Drachneris et al. (64) Predict recurrence-free
survival in NMIBC post
BCG therapy

Recurrence-
free survival

157 CD8+ cell density indicators
(Immunodrop, Center of Mass), tumor
stage, tumor grade

Histopatholo
slides

Ajili et al. (88) Predict BCa recurrence post-
BCG immunotherapy

Recurrence
classification

308 Clinical variables: Age, gender, tumor
stage, grade, size, multiplicity, smoking,
CD34 expression

Histopatholo
data

Catto et al. (52) To compare the predictive
accuracies of NFM, NN, And
traditional statistical methods
for the behavior of BCa

Recurrence
(Occurrence
and Timing)

109 Experimental molecular biomarkers (p53,
mismatch repair proteins) and
conventional clinicopathological data

Clinical and
molecular da
e
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The use of cellular features extends to urine cytology as well.

The study by Levy et al. (65) used a Deep learning ML tool called

AutoParis-X to predict bladder cancer recurrence risk from 1,259

urine cytology images. The prediction model achieved good

accuracy (C-index 0.77), outperforming models using standard

cytological assessment alone. It was found that the model worked

best when it looked at samples from the first 6 months after the

initial cancer diagnosis. This model was trained on retrospective

data from 159 patients from only one hospital. The small number of

patients, single-centered and retrospective analysis results in

concerns about the model’s generalizability.

Pathomics, which integrates patch-level and whole-slide image

analyses, represents another advancement in pathology-based

models. Wang et al. (66) introduced a novel pathomics model

using deep learning for predicting NMIBC recurrence with high

accuracy. This study aimed to address the challenge of early

recurrence prediction in NMIBC by leveraging deep learning to

analyze pathology images. The model, developed using a two-phase

approach—patch-level prediction followed by whole slide image

(WSI)-level prediction—achieved a strong performance with an

AUC of 0.860 in the test cohort. Transfer learning was employed to

generalize the model across different datasets, while model

interpretability was improved through visualization techniques,

helping clinicians understand the predictions. However, the use of

pathology images, while innovative, requires digital pathology

infrastructure that may not be available in all clinical settings.

The model’s excellent performance suggests it could be a valuable

tool in clinical practice, but external validation in larger and more

diverse patient populations is needed.

Shifting from pathology images to radiomics, Xu et al. (47)

shifted the focus toward integrating radiomics features from MRI

scans, offering a novel approach to personalized risk assessment. Xu

et al. conducted a study which aimed to devise a personalized tool

for estimating the two-year recurrence risk of bladder cancer. A

model incorporating both radiomics features extracted from MRI

scans and clinical factors was built using data from 71 patients. The

model utilized ML methods like SVM-based recursive feature

elimination. This nomogram, relying on muscle-invasive status

and an radiomics-derived score, showed promising accuracy

(80.95% in validation) and a high AUROC value of 0.838. Despite

these strong results, potential bias due to retrospective design and

single-center sampling remain as the limitations. Future

investigations could explore the potential of additional factors,

currently omitted due to incomplete data, in enhancing the

predictive power of the model. Moreover, the role of different

radiomics features in predicting lymph node status, crucial for

prognosis, was recommended for future research.

Building on this, Huang et al. (67) demonstrated the potential of

combining multiparametric MRI and Deep learning for predicting

bladder cancer recurrence. In their study, the authors developed a

clinical-radiomics deep learning model that integrated radiomics

features from multiparametric MRI with deep learning and clinical

data to predict the 5-year recurrence risk in NMIBC patients. With

a dataset of 191 patients, the model outperformed traditional

clinical models, achieving an AUC of 0.909. The use of SHapley

Additive ExPlanations further enhanced the interpretability of the
T
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model, showing that radiomics features contributed significantly to

prediction accuracy. However, the approach relies heavily on

expensive and advanced MRI technology, which may not be

accessible in many clinical settings. Furthermore, while SHAP

values increase interpretability, the inherent complexity of

radiomics and the deep Learning models still creates a “black

box” issue, limiting clinician trust in the model’s outputs.

CT imaging has also been explored for recurrence prediction.

Wang et al. (68) developed a deep learning model using multiphase

enhanced CT images to predict bladder cancer recurrence, showing

substantial clinical promise. This multi-center study involved 874

patients from four centers and used CNNs to develop a signature

capable of predicting recurrence risk. The model demonstrated

excellent performance, with an AUC of 0.889 and a concordance

index of 0.869. It outperformed traditional clinical models and

staging systems, indicating its potential utility in guiding

personalized treatment strategies for NMIBC patients. Despite the

robust performance of the deep learning model, it relies on high-

resolution imaging data, which may limit accessibility in less

technologically advanced medical centers. Further prospective

validation and exploration of how the deep learning model

integrates with clinical decision-making would be beneficial.

Finally, specialized clinical features, such as intravesical

prostatic protrusion (IPP), have been studied as independent

predictors of recurrence. Lee et al. (69) investigated the role of

IPP in predicting NMIBC recurrence using imaging data obtained

from preoperative CT urography. By analyzing the severity of IPP in

122 male NMIBC patients, the study demonstrated that structural

bladder and prostate features significantly influence recurrence risk.

Severe IPP (≥ 5mm) was observed in 27% of patients and was

associated with a 2.6-fold increased risk of recurrence. Using SVM,

incorporating IPP improved NMIBC recurrence prediction by 6%.

Kaplan-Meier analysis showed that severe IPP negatively impacted

recurrence-free especially in high-risk patients. However,

limitations such as the small sample size, retrospective design,

and lack of post-void residual data suggest further research is

needed to explore the relationship between IPP, ageing, and

bladder conditions. These findings position IPP as an

independent risk factor for recurrence and its potential role

in prognosis.
3.2 Models using genomic and
protein markers

A multitude of studies have attempted to predict NMIBC

recurrence, each employing unique yet complementary

methodologies using biological insights combined with ML. The

journey begins with Zhao et al.’s (70) paper, which focuses on ECM-

related genes’ prognostic potential in Bladder Cancer. By using

expression data from multiple datasets, six ECM-related genes were

identified: CTHRC1, MMP11, COL10A1, FSTL1, SULF1, COL5A3.

An AUC of 0.76 was achieved in recurrence prediction by training

many ML models, including Generalised Linear Models, K-Nearest

Neighbours, SVMs and Random Forests, on 675 non-recurrent and

285 recurrent bladder cancer patients. The study demonstrates the
Frontiers in Oncology 11
potential of ML and ECM gene signatures for recurrence prediction

in bladder cancer, though larger sample sizes would help validate

the approach. Limitations include few normal samples for

comparison and lack of extensive validation of individual

gene trends.

Another genomic study, this time by Cai et al. (71), analyzed

loss of heterozygosity (LOH) on chromosome-18 in 65 patients

with NMIBC and 43 controls. Loss of heterozygosity occurs when

one of the two copies (alleles) of a gene, inherited from each parent,

is lost or inactivated, which can lead to cancer if the affected gene’s

role is to suppress tumors. At multivariate analysis, LOH on Chr 18

(P=0.002) and the number of lesions (P=0.03) were identified as

independent predictors of recurrence-free probability. ANNs were

used to confirm the multivariate analysis but the performance

metrics were not mentioned. This paper, published in 2010, did

not gain widespread adoption due to factors such as small study

sample size; robustness of other recurrence predictors [FGR3 (72),

Ki-67 (73) and NMP22 (74, 75)].

Urbanowicz (76) also aimed to uncover patterns of genetic

associations with bladder cancer by applying an ML classifier

system called AF-UCS (Attribute Feedback-sUpervised Classifier

System). The algorithm aimed to validate findings that specific

SNPs in DNA repair genes, such as XPD (Xeroderma pigmentosum

group D) codon 751 and 312, along with SNPs in other DNA repair

genes, are predictive of bladder cancer risk when considered

alongside smoking pack-years. Their model had an accuracy of

0.66, indicating a low to moderate level of predictive performance.

Since this publication in 2013, there has been limited follow-up

potentially due to other ML methods having superior accuracy, and

the other models not requiring specialized expertise. Additionally,

large-scale Genome-Wide Association Studies are now more

common than focused candidate gene approaches (77–81).

Building on the growing interest in genomic predictors,

Maturana et al. (82) published a study three years later that

focused on predicting outcomes of NMIBC patients using

genomic SNP profiles in conjunction with clinico-pathological

prognosticators. The study utilized Bayesian learning methods,

including sequential threshold models and LASSO, and evaluated

822 NMIBC patients followed up for over a decade. The genomic

models yielded AUROC values ranging from 0.55 to 0.62, while

clinic-pathological models performed slightly better, with AUROC

values between 0.57 and 0.76. These results indicate that SNP

profiles alone are poor predictors of NMIBC recurrence and

progression, and their inclusion in clinico-pathological models

adds limited value. The limitations of the study include a

relatively small sample size in certain subgroup analysis and the

limited predictive ability of common SNPs in NMIBC outcomes.

Chang et al. (83) utilized urinary proteomic profiling to develop

a non-invasive method for diagnosing and monitoring bladder

cancer recurrence. By analyzing urine samples from 279 patients,

the authors used a multi-support vector machine-recursive feature

elimination (mSVM-RFE) algorithm to identify 13 protein markers

for diagnosis and 11 markers for recurrence monitoring. The

diagnostic model achieved high sensitivity (90.9%) and specificity

(73.3%), while the recurrence monitoring model reached 75%

sensitivity and 81.8% specificity. This study’s strength lies in its
frontiersin.org
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non-invasive nature, providing a practical alternative to invasive

procedures like cystoscopy. However, the reliance on high-

resolution mass spectrometry and the single-center design may

limit the generalizability of the findings. The model’s utility is

promising, but larger, multi-center validation studies are required

to ensure its efficacy in diverse clinical settings.

Frantzi et al.’s study (84) formulated and validated urine-based

biomarker panels for primary and recurrent bladder cancer

detection using capillary electrophoresis-mass spectrometry (CE-

MS). Their methodology Combined statistical analysis and machine

learning: initial statistical tests identified significant peptide

biomarkers, which were further refined using SVMs via

MosaCluster software to create and optimize high-dimensional

biomarker panels. Case-control comparisons across multicenter

cohorts identified the biomarkers, with the primary panel

achieving an AUROC of 0.87 (91% sensitivity, 68% specificity)

and the recurrent panel attaining an AUROC of 0.75 (88%

sensitivity, 51% specificity) during independent validation. By

incorporating all available biomarkers, optimized panels improved

performance further, achieving AUROCs of 0.88 for primary and

0.76 for recurrent cancer. These findings highlight the potential for

non-invasive urine-based tests to complement or reduce the need

for invasive cystoscopy in bladder cancer diagnosis and monitoring.

Despite these promising results, the study was limited by

unadjusted confounding variables, such as tumor size and

hematuria, and by its cross-sectional design. Further research is

needed to confirm their clinical utility and performance in real-

world settings.

This study by Krochmal et al. (85) analyzed CE-MS

peptidomics data (detected types and amounts of peptides in a

biological sample) from 98 bladder cancer patients to develop an

ML model to predict recurrence. With a training set of 50 patients,

Cox regression identified 36 peptides predictive of relapse which

were then input into a Random Forest model. The training set

produced an accuracy of 100%, while test set accuracy is not

mentioned. The limited size of the training dataset (n=48), and

the unreported test accuracy, calls into question the study’s

generalizability. A comparison with established clinical tools

would have highlighted any advancements over existing methods.

Mucaki et al. (61) applied biochemically-inspired machine

learning (ML) models, specifically supervised SVMs, to predict

responses to chemotherapy agents, including cisplatin, a critical

drug in bladder cancer treatment. The models were described as

“biochemically-inspired” because they incorporated genes with

established biological relevance to the mechanisms of action and

resistance of cisplatin, ensuring the selection of features grounded in

prior biochemical knowledge rather than relying purely on data-

driven approaches. These gene signatures were designed to reflect

pathways involved in apoptosis, DNA repair, and drug transport,

enhancing interpretability and biological validity. Using a dataset of

90 cancer patients, the cisplatin-specific gene signature achieved

71.2% accuracy in predicting bladder cancer recurrence, with

exceptional performance in non-smokers (100%) and 79%

accuracy in smokers. The study also utilized ensemble averaging

across multiple thresholds to improve model robustness. However,

a key limitation was the reliance on breast cancer cell line data to
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train the SVM models, which limits their applicability to bladder

cancer-specific contexts, as no retraining was performed on bladder

cancer datasets. While this work highlights the promise of AI-

driven approaches for identifying recurrence risk factors, it also

underscores the need for developing bladder cancer-specific models

to improve clinical relevance.

Two other studies [Zhan et al. (86) and Gogalic et al. (87)]

explored the application of protein panels in recurrence prediction.

Zhan et al. utilized MALAT1, PCAT-1, and SPRY4-IT1 biomarkers

and achieved an accuracy of 81.3% and a sensitivity and specificity

of 0.625 and 0.850 respectively. Additionally, tumor stage showed a

statistically significant correlation as a predictor, with PCAT-1

identified as an independent predictor. Gogalic et al. combined

common clinicopathological markers with ECadh, IL8, MMP9,

EN2, and VEGF biomarkers. Their model, incorporating these

markers, yielded an AUROC of 0.84.
3.3 Models using clinical, treatment and
external factors

Ajili et al. (88) applied ANNs to predict bladder cancer

recurrence after Bacillus Calmette-Guerin immunotherapy. Using

a multilayer perceptron model in MATLAB, the researchers

incorporated patient characteristics, tumor attributes, and

treatment details, achieving high performance, with a mean

square error of 0.02634. The model accurately classified 39 out of

40 cases, yielding sensitivity of 96.66%, specificity of 100%, and

positive/negative predictive values of 100% and 90.9%, respectively.

However, the small sample size and difficulties in determining the

optimal network topology (e.g., hidden layer nodes) limited the

study. These results showcase the potential of ANNs in bladder

cancer prognosis but illuminate the need for larger datasets and

further validation before clinical application.

Zhang and Ma (89) investigated the predictive value of two

clinical biomarkers, CA50 and total bilirubin (TBIL), for bladder

cancer recurrence using ML models. The study evaluated the

individual and combined predictive performance of these

biomarkers in a cohort of 345 bladder cancer patients. The results

demonstrated that CA50 had an AUC of 0.602 (p = 0.038) and TBIL

had an AUC of 0.585 (p = 0.014), indicating that both biomarkers

were moderate predictors of recurrence. When combined, the AUC

increased to 0.623 (p = 0.013), showing an improvement in

predictive power, though still relatively modest. While the

combination of these two biomarkers offered better performance

than either one alone, the overall predictive accuracy remained

limited, suggesting that additional features or biomarkers may be

necessary to enhance the model’s ability to predict bladder cancer

recurrence. The study provides valuable insights into the role of

clinical biomarkers in cancer prognosis but highlights the need for

further optimization to improve predictive robustness.

Schwarz et al. (90) examined the role of explainability in ML

models for predicting bladder cancer recurrence, enhancing their

clinical utility. In this study, the authors used three ML models—

SVM, gradient boosting, and ANNs—and compared them to

logistic regression for predicting 2-year recurrence in urothelial
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carcinoma patients. Gradient boosting performed best, with an F1-

score of 83.89% and AUC of 70.82%. To address the black-box

nature of these models, the authors employed permutation feature

importance and feature importance ranking measure to explain the

most influential features driving predictions, such as therapeutic

measures. This approach enhances the transparency of ML models,

potentially increasing their adoption in clinical settings. However,

while they attempt to address the “black-box” issue using feature

importance measures like permutation feature importance and

feature importance ranking measure, the interpretability of these

models remains limited. These feature importance methods often

fail to provide clinically actionable insights, as they simply show

which features contribute most to the prediction without

explaining why.
3.4 Models using a combination of
feature types

Integrating diverse feature types—such as imaging, morphological,

clinical, and genomic markers—has proven to significantly enhance

the predictive performance of AI models for NMIBC recurrence. By

leveraging multiple data sources, these models offer a more

comprehensive understanding of tumor behavior and patient risk

profiles. This section reviews key studies that have successfully

combined these feature types, highlighting their methodologies,

outcomes, and potential for clinical application.

One of the earliest studies in this area, conducted by Catto et al.

(52), aimed to compare the predictive accuracies of neuro-fuzzy

modeling (NFM), neural networks (NN), and traditional statistical

methods for predicting bladder cancer recurrence. The study used

data from 109 NMIBC patients who were treated with TURBT. The

data was used to train and test the predictive models. The study

found that both NFM and NN predicted the patients’ relapse with

an accuracy ranging from 88% to 95%, which was superior to

statistical methods (71-77%). The difference was statistically

significant, indicated by the p-value of less than 0.0006. The low

p-value suggests that these differences are not just due to random

chance. NFM appeared better than NN at predicting the timing of

relapse (p < 0.073). Importantly, NFM offered a transparency

advantage over NN, allowing for easier clinical validation and

manipulation of input variables for exploratory predictions. This

early work highlighted the potential of combining different data

types to boost predictive power while maintaining interpretability.

Lucas et al. (91) further advanced this approach by

incorporating both histopathological image features and clinical

data to predict recurrence-free survival in NMIBC patients. Their

model, built using Convolutional Neural Networks (CNNs) and

Bidirectional GRUs, achieved a 1-year AUC of 0.62 (n=359) and a

5-year AUC of 0.76 (n=281). Their prediction model consisted of a

multi-step process that combined features extracted from the

histopathological images with the clinical data to create an overall

outcome. Their model’s strength lies in the autonomous analysis of

histopathological data, reducing human bias and possibly capturing

more nuanced features. However, the study’s relatively small,
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single-center dataset and extended inclusion period raised

concerns about generalizability and consistency in clinical

practices over time. Nevertheless, the integration of image and

clinical data illustrated the power of multi-modal approaches in

predicting bladder cancer recurrence.

In this study (92), a deep learning-based approach (DeepSurv)

was used by Jobczyk et al. to recalibrate the prediction tools for the

recurrence and progression of NMIBC in a cohort of 3,892 patients.

The existing risk groups, EORTC and CUETO, showed moderate

performance in predicting survival outcomes. The deep learning

models displayed improved accuracy. In the training group of 3,570

patients, the c-indices were 0.650 for recurrence-free survival and

0.878 for progression-free survival. In the validation group of 322

patients, the c-indices stood at 0.651 for recurrence-free survival

and 0.881 for progression-free survival. The models surpassed the

performance of standard risk stratification tools and demonstrated

no signs of overfitting. These findings highlight the potential of deep

learning models in enhancing the prediction of recurrence and

progression in NMIBC, offering a valuable tool for personalized

patient care.
4 Discussion

Our comprehensive review of 25 ML-based studies highlights a

growing trend in the adoption of ML-based approaches for NMIBC

prediction and management. This demonstrates the potential of these

approaches to drive a transformative shift in bladder cancer care. Our

work offers a distinct contribution as we move beyond surface-level

summaries to conduct a rigorous, in-depth evaluation of each study’s

methodologies. We prioritize a detailed interpretation of the reported

model performances, assess the robustness of sample sizes, explore

the diversity of data modalities, and critically analyze the specific

prediction tasks—key aspects that are often overlooked in other

reviews. By focusing on these crucial factors, we uniquely uncover

strengths and weaknesses that were previously missed, providing a

deeper, more nuanced understanding of each study’s true

contribution to the field.

Our analysis reveals a significant evolution in the field. Early

studies were confined to single data types, but as the field

progressed, more advanced ML models integrating multiple

modalities—such as radiomics from MRI and CT scans, genetic

markers, and histopathology—showed considerable promise. This

integration has led to superior predictive performance, emphasizing

the importance of a holistic approach to NMIBC recurrence

prediction. A significant number of studies on NMIBC recurrence

prediction employ these complex ML models, as evidenced

by Figure 6.

Among these, NNs have emerged as the most commonly used

approach, featured in 10 studies (46, 52, 64–66, 68, 71, 88, 91, 92).

These models, which incorporate clinical, pathological, and

genomic markers, achieved accuracies ranging from 0.65 to 0.975.

NNs are particularly suited to handling complex, multi-modal

datasets and often outperform simpler models in predicting

recurrence, making them an attractive option for integrating
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various data types. SVMs were the second most used algorithm,

appearing in 9 studies (47, 49, 61, 69, 70, 83, 85, 90, 92). These

studies reported overall accuracies around 0.75. SVMs are known

for handling high-dimensional data well, maintaining competitive

performance while offering a balance of interpretability

and complexity.

By comparison, simpler models like logistic regression have shown

lower performance. For example, Hasnain et al. (93) used logistic

regression alongside more complex models like SVM and Random

Forest, finding it lagged in predictive power. While easier to interpret,

simpler models often struggle with multi-modal and high-dimensional

data compared to more advanced algorithms. Another notable trend is

the integration of traditional statistical models with ML techniques,

such as in Jobczyk et al. (92), where a Cox proportional hazards model

was combined with a deep neural network. This hybrid approach

allows models to retain the interpretability of traditional methods

while leveraging the predictive power of modern AI techniques, a

promising direction for clinical adoption.

Building on our review, we highlight the transformative

potential of integrating ML-based models into NMIBC

management. Below, we outline key opportunities and challenges

that must be addressed for successful clinical adoption.
4.1 Opportunities and
transformative potential
Fron
• Enhanced Accuracy and Precision: One of the most

compelling opportunities presented by ML in NMIBC

management is the potential for improved diagnostic

accuracy and precision. ML models can identify subtle

patterns and complex relationships that may be
tiers in Oncology 14
overlooked by human observers, reducing interobserver

variability and mitigating the influence of individual

clinician biases. This enhanced consistency can lead to

better patient outcomes through more accurate

predictions of recurrence and progression.

• Automation Leading to Productivity and Cost

Reduction: ML algorithms can automate complex and

time-consuming tasks such as image analysis, pattern

recognition, and data integration. Automation increases

productivity by enabling faster processing of large

volumes of data and reduces healthcare costs through

more efficient resource utilization. This allows clinicians

to focus more on patient care rather than administrative or

repetitive tasks.

• Reduction of Interobserver Variability and Clinician

Bias: Diagnoses often rely on each clinician’s personal

experience and are subject to interobserver variability and

bias. ML models can provide consistent and objective

analyses, reducing variability between clinicians and

minimizing the impact of subjective judgment.

• Personalized Medicine and Transferable Knowledge: ML

models facilitate personalized treatment strategies by

analyzing individual patient data to predict responses to

specific therapies. Tailoring treatment plans to each

patient’s unique profile can improve efficacy and reduce

unnecessary interventions. Additionally, the methodologies

developed through ML in NMIBC are transferable to

muscle-invasive bladder cancer (MIBC) and other

malignancies, broadening the impact of this technology.

ML tools can also serve as educational resources for training

new professionals, enhancing learning through explainable

models that illustrate decision-making processes.
4.2 Challenges and considerations

Despite the encouraging results presented in multiple studies,

several significant hurdles exist before ML-based models can be

successfully implemented in clinical settings. Below, we discuss key

challenges identified in our review.
• Limited Generalizability and Overfitting: AI models often

struggle with the heterogeneity of NMIBC tumors in stage,

grade, and molecular subtypes. Small sample sizes in many

studies lead to overfitted models that are not representative

of the broader NMIBC population. High predictive

accuracy reported by studies like Ajili et al. is limited by

factors such as retrospective designs and single-institution

datasets, which affect generalizability. To address this,

multi-institutional data, diverse imaging techniques, and a

wide range of NMIBC presentations should be included in

training datasets.
FIGURE 6

The distribution of machine learning models used in NMIBC
recurrence prediction studies included in this review. More complex
models, such as NNs and SVMs, dominate the research landscape,
while simpler, interpretable models like logistic regression are used
less frequently.
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• Complexity of Implementation in Clinical Settings:

Implementing complex multimodal models in clinical

practice requires specialized expertise, which may not

always be available. Multimodal models need more

complex data preprocessing and tuning, making scaling

difficult across centers. Additionally, the lack of

transparency in some models, particularly deep learning,

hinders their adoption in clinical practice.

• Lack of Interpretability and the “Black-Box”Nature of AI

Models: Clinicians need models that not only provide

accurate predictions but also explain their reasoning to

support confident, informed medical decisions. This

challenge highlights a broader issue in the field of ML in

healthcare: a significant disconnect between ML research

and clinical requirements. While researchers often

prioritize high accuracy, favoring complex models that

enhance publication appeal, clinicians prioritize models

that are interpretable, even if they sacrifice some accuracy.

Bridging this gap requires a focus on developing models

that balance performance with interpretability, better

aligning ML innovations with the practical needs of real-

world clinical applications.

• Regulatory Challenges and Algorithmic Bias: Predicting

NMIBC recurrence faces challenges such as data access

regulations, patient confidentiality, and ethical approvals,

which can delay research and limit data availability.

Additionally, ML algorithms may perpetuate biases,

reducing prediction reliability for underrepresented

groups. Addressing these issues requires implementing

federated learning to train models across institutions

without sharing raw data, using differential privacy to

anonymize sensitive information, and ensuring NMIBC

datasets reflect diverse patient demographics to improve

accuracy and fairness.
4.3 Future directions

To fully leverage ML in NMIBC management, future efforts

should prioritize developing multimodal models, improving

interpretability, integrating ML into clinical workflows, and

addressing ethical and regulatory barriers.
• Multimodal Models: Combining genomics, radiomics, and

clinical data can enhance predictive power and

generalizability. International collaboration is essential to

assemble large, diverse datasets that capture variability in

patient demographics and practices. Federated learning can

enable training on multi-center data while preserving

patient privacy, thus boosting model robustness.

• Improving Interpretability: To build clinician trust, models

should incorporate explainable AI techniques, such as SHAP
tiers in Oncology 15
values or attention mechanisms, making predictions

transparent. User-friendly interfaces with visualization tools

can further support clinician interaction with model outputs,

enhancing usability in practice.

• Integrating ML into Clinical Workflows: Embedding ML

tools within Electronic Health Records can offer real-time

decision support. Adaptive decision-support systems that

refine recommendations based on clinician feedback and

evolving patient data will enhance decision-making by

incorporating both clinical expertise and algorithmic insights.

• Regulatory Sandbox forMLTesting: Establishing a regulatory

sandbox can accelerate validation by allowing controlled testing

in clinical settings with flexible oversight. This framework

supports iterative model adjustments and real-time data

collection, speeding up the approval process. Engaging

regulatory bodies to develop NMIBC-specific guidelines will

facilitate smoother pathways to clinical adoption.
5 Conclusion

NMIBC, with its high recurrence rate of 70%-80% and

substantial treatment costs, demands innovative predictive

solutions. Our systematic review of 25 ML-based studies

highlights the transformative potential of ML in NMIBC

management. We explore various ML-based frameworks that

utilize radiomics, histopathological markers, clinical data,

genomics, and their combinations to predict NMIBC recurrence.

Studies that integrated multiple data sources demonstrated

remarkable accuracy, with NNs leading the charge. Our review

encompasses the usage of ML-based models, acknowledges the

potential for failures, and emphasizes the need for further

intensive investigations to ensure their beneficial application.

Unlike previous reviews that leave researchers struggling with

complex technical details, our in-depth and nuanced evaluation of

each study’s methodologies offers simplified, valuable insights into

the intricacies of these ML algorithms, their clinical relevance, and

practical applications. The future of NMIBC management is poised

for innovation, as ML models have the potential to reduce both bias

and interobserver variability. However, a significant hurdle remains

- the scarcity of high-quality data. Developing robust and expansive

datasets through collaboration is crucial for training models that

can deliver real-world impact. While ML has shown immense

potential in reshaping personalized medicine, its role in

predicting NMIBC recurrence is not yet the gold standard.
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et al. Bladder cancer, a review of the environmental risk factors. Environ Health. (2012)
11:S11. doi: 10.1186/1476-069X-11-S1-S11
frontiersin.org

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer
https://doi.org/10.1016/j.eururo.2011.05.045
https://doi.org/10.1016/j.eururo.2016.05.041
https://doi.org/10.1016/j.juro.2007.09.003
https://doi.org/10.1016/j.eururo.2013.11.046
https://doi.org/10.1097/MOU.0000000000000078
https://doi.org/10.1016/j.eururo.2015.10.024
https://doi.org/10.1111/bju.14690
https://doi.org/10.1086/675718
https://www.england.nhs.uk/costing-in-the-nhs/national-cost-collection/
https://www.england.nhs.uk/publication/2020-21-national-cost-collection-data-publication/
https://www.england.nhs.uk/publication/2020-21-national-cost-collection-data-publication/
https://www.england.nhs.uk/publication/2019-20-national-cost-collection-data-publication/
https://www.england.nhs.uk/publication/2019-20-national-cost-collection-data-publication/
https://www.england.nhs.uk/publication/2018-19-national-cost-collection-data-publication/
https://www.england.nhs.uk/publication/2018-19-national-cost-collection-data-publication/
https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016
https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016
https://www.bankofengland.co.uk/monetary-policy/inflation/inflation-calculator
https://www.bankofengland.co.uk/monetary-policy/inflation/inflation-calculator
https://doi.org/10.1016/j.clgc.2019.12.004
https://doi.org/10.1093/jjco/hyz017
https://doi.org/10.1245/s10434-010-0985-4
https://doi.org/10.1016/j.juro.2016.06.049
https://doi.org/10.1016/j.euo.2022.04.008
https://doi.org/10.1016/S0140-6736(16)30512-8
https://doi.org/10.1016/S0140-6736(16)30512-8
https://doi.org/10.6004/jnccn.2013.0059
https://doi.org/10.1016/j.juro.2014.01.087
https://doi.org/10.1016/j.eururo.2012.07.033
https://doi.org/10.1016/j.urology.2005.02.031
https://doi.org/10.1186/1476-069X-11-S1-S11
https://doi.org/10.3389/fonc.2024.1509362
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Abbas et al. 10.3389/fonc.2024.1509362
27. Cumberbatch MGK, Jubber I, Black PC, Esperto F, Figueroa JD, Kamat AM,
et al. Epidemiology of bladder cancer: A systematic review and contemporary update of
risk factors in 2018. Eur Urol. (2018) 74:784–95. doi: 10.1016/j.eururo.2018.09.001

28. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: A Cancer J Clin. (2018) 68:394–424. doi: 10.3322/
caac.21492

29. Farling KB. Bladder cancer: Risk factors, diagnosis, and management. Nurse
Practitioner. (2017) 42:26. doi: 10.1097/01.NPR.0000512251.61454.5c

30. Audenet F, Attalla K, Sfakianos JP. The evolution of bladder cancer genomics:
What have we learned and how can we use it? Urologic Oncology: Semin Original
Investigations. (2018) 36:313–20. doi: 10.1016/j.urolonc.2018.02.017

31. EORTC risk tables: Predicting recurrence and progression in stage Ta T1 bla -
Evidencio (2023). Available online at: https://www.evidencio.com/models/show/1025
(Accessed November 20, 2023).

32. Seo KW, Kim BH, Park CH, Kim CI, Chang HS. The efficacy of the EORTC
scoring system and risk tables for the prediction of recurrence and progression of non-
muscle-invasive bladder cancer after intravesical bacillus calmette-guerin instillation.
Korean J Urol. (2010) 51:165–70. doi: 10.4111/kju.2010.51.3.165

33. Predicting disease recurrence and progression - Uroweb (2023). Available online
at: https://uroweb.org/guidelines/non-muscle-invasive-bladder-cancer/chapter/
predicting-disease-recurrence-and-progression (Accessed November 19, 2023).

34. Vedder MM, Márquez M, de Bekker-Grob EW, Calle ML, Dyrskjøt L, Kogevinas
M, et al. Risk prediction scores for recurrence and progression of non-muscle invasive
bladder cancer: an international validation in primary tumours. PloS One. (2014) 9:
e96849. doi: 10.1371/journal.pone.0096849

35. Krajewski W, Aumatell J, Subiela JD, Nowak Ł, Tukiendorf A, Moschini M, et al.
Accuracy of the CUETO, EORTC 2016 and EAU 2021 scoring models and risk
stratification tables to predict outcomes in high–grade non-muscle-invasive urothelial
bladder cancer. Urologic Oncology: Semin Original Investigations. (2022) 40:491.e11–
491.e19. doi: 10.1016/j.urolonc.2022.06.008

36. Fujii Y. Prediction models for progression of non-muscle-invasive bladder
cancer: A review. Int J Urol. (2018) 25:212–8. doi: 10.1111/iju.13509

37. Xylinas E, Kent M, Kluth L, Pycha A, Comploj E, Svatek RS, et al. Accuracy of the
EORTC risk tables and of the CUETO scoring model to predict outcomes in non-
muscle-invasive urothelial carcinoma of the bladder. Br J Cancer. (2013) 109:1460–6.
doi: 10.1038/bjc.2013.372

38. Born K, Levinson W, De Freitas L. Reducing harm from overuse of healthcare.
BMJ. (2022) 379:o2787. doi: 10.1136/bmj.o2787

39. Morton B. Warning over cuts to NHS services without £10bn extra funding. BBC
News. (2021).

40. Greenfield P. NHS wields the axe on 17 ‘unnecessary procedures’. Guardian.
(2018).

41. Monteiro LL, Witjes JA, Agarwal PK, Anderson CB, Bivalacqua TJ, Bochner BH,
et al. ICUD-SIU International Consultation on Bladder Cancer 2017: Management of
non-muscle invasive bladder cancer. World J Urol. (2019) 37:51–60. doi: 10.1007/
s00345-018-2438-9

42. Kim LHC, Patel MI. Transurethral resection of bladder tumour (TURBT). Trans
Andrology Urol. (2020) 9:3056–72. doi: 10.21037/tau.2019.09.38

43. Zhu S, Yu W, Yang X, Wu C, Cheng F. Traditional classification and novel
subtyping systems for bladder cancer. Front Oncol. (2020) 10:102. doi: 10.3389/
fonc.2020.00102

44. Castaneda PR, Theodorescu D, Rosser CJ, Ahdoot M. Identifying novel
biomarkers associated with bladder cancer treatment outcomes. Front Oncol. (2023)
13. doi: 10.3389/fonc.2023.1114203

45. Zhang C, Hu J, Li H, Ma H, Othmane B, Ren W, et al. Emerging biomarkers for
predicting bladder cancer lymph node metastasis. Front Oncol. (2021) 11. doi: 10.3389/
fonc.2021.648968

46. Huang LK, Lin YC, Chuang HH, Chuang CK, Pang ST, Wu CT, et al. Body
composition as a predictor of oncological outcome in patients with non-muscle-
invasive bladder cancer receiving intravesical instillation after transurethral resection of
bladder tumor. Front Oncol. (2023) 13:1180888. doi: 10.3389/fonc.2023.1180888

47. Xu X, Wang H, Du P, Zhang F, Li S, Zhang Z, et al. A predictive nomogram for
individualized recurrence stratification of bladder cancer using multiparametric MRI
and clinical risk factors. J Magnetic Resonance Imaging. (2019) 50:1893–904.
doi: 10.1002/jmri.26749

48. Shkolyar E, Jia X, Chang TC, Trivedi D, Mach KE, Meng MQH, et al.
Augmented bladder tumor detection using deep learning. Eur Urol. (2019) 76:714–8.
doi: 10.1016/j.eururo.2019.08.032

49. Tokuyama N, Saito A, Muraoka R, Matsubara S, Hashimoto T, Satake N, et al.
Prediction of non-muscle invasive bladder cancer recurrence using machine learning of
quantitative nuclear features. Modern Pathol. (2022) 35:533–8. doi: 10.1038/s41379-
021-00955-y

50. Pantazopoulos D, Karakitsos P, Iokim-liossi A, Pouliakis A, Botsoli-stergiou E,
Dimopoulos C. Back propagation neural network in the discrimination of benign from
Malignant lower urinary tract lesions. J Urol. (1998) 159:1619–23. doi: 10.1097/
00005392-199805000-00057
Frontiers in Oncology 17
51. Shao CH, Chen CL, Lin JY, Chen CJ, Fu SH, Chen YT, et al. Metabolite marker
discovery for the detection of bladder cancer by comparative metabolomics.
Oncotarget. (2017) 8:38802–10. doi: 10.18632/oncotarget.16393

52. Catto JWF, Linkens DA, Abbod MF, Chen M, Burton JL, Feeley KM, et al.
Artificial intelligence in predicting bladder cancer outcome: A comparison of neuro-
fuzzy modeling and artificial neural networks1. Clin Cancer Res. (2003) 9:4172–7.
doi: 10.1016/S1569-9056(03)80262-2

53. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol. (2017) 14:749–62. doi: 10.1038/nrclinonc.2017.141

54. Zheng Q, Yang R, Ni X, Yang S, Xiong L, Yan D, et al. Accurate diagnosis and
survival prediction of bladder cancer using deep learning on histological slides. Cancers.
(2022) 14:5807. doi: 10.3390/cancers14235807

55. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, et al. Deep
learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. (2018)
8:3395. doi: 10.1038/s41598-018-21758-3

56. Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z, et al. DeepGene: An advanced cancer
type classifier based on deep learning and somatic point mutations. BMC Bioinf. (2016)
17 476. doi: 10.1186/s12859-016-1334-9

57. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS,
Velázquez Vega JE, et al. Predicting cancer outcomes from histology and genomics
using convolutional networks. Proc Natl Acad Sci. (2018) 115:E2970–9. doi: 10.1073/
pnas.1717139115

58. Cha KH, Hadjiiski LM, Samala RK, Chan HP, Cohan RH, Caoili EM, et al.
Bladder cancer segmentation in CT for treatment response assessment: application of
deep-learning convolution neural network—A pilot study. Tomography. (2016) 2:421–
9. doi: 10.18383/j.tom.2016.00184

59. Jansen I, Lucas M, Bosschieter J, de Boer OJ, Meijer SL, van Leeuwen TG, et al.
Automated detection and grading of non–muscle-invasive urothelial cell carcinoma of
the bladder. Am J Pathol. (2020) 190:1483–90. doi: 10.1016/j.ajpath.2020.03.013

60. Wang H, Hu D, Yao H, Chen M, Li S, Chen H, et al. Radiomics analysis of
multiparametric MRI for the preoperative evaluation of pathological grade in bladder
cancer tumors. Eur Radiol. (2019) 29:6182–90. doi: 10.1007/s00330-019-06222-8

61. Mucaki EJ, Zhao JZL, Lizotte DJ, Rogan PK. Predicting responses to platin
chemotherapy agents with biochemically-inspired machine learning. Signal
Transduction Targeted Ther. (2019) 4:1–12. doi: 10.1038/s41392-018-0034-5

62. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies
that evaluate health care interventions: explanation and elaboration. PloS Med. (2009)
6:e1000100. doi: 10.1371/journal.pmed.1000100

63. Chen S, Jiang L, Zheng X, Shao J, Wang T, Zhang E, et al. Clinical use of machine
learning-based pathomics signature for diagnosis and survival prediction of bladder
cancer. Cancer Sci. (2021) 112:2905–14. doi: 10.1111/cas.14927

64. Drachneris J, Rasmusson A, Morkunas M, Fabijonavicius M, Cekauskas A,
Jankevicius F, et al. CD8+ Cell Density Gradient across the Tumor Epithelium–Stromal
Interface of Non-Muscle Invasive Papillary Urothelial Carcinoma Predicts Recurrence-
Free Survival after BCG Immunotherapy. Cancers. (2023) 15:1205. doi: 10.3390/
cancers15041205

65. Levy JJ, Chan N, Marotti JD, Rodrigues NJ, Ismail AAO, Kerr DA, et al.
Examining longitudinal markers of bladder cancer recurrence through a
semiautonomous machine learning system for quantifying specimen atypia from
urine cytology. Cancer Cytopathology. (2023) 131:561–73. doi: 10.1002/cncy.22725

66. Wang GY, Zhu JF, Wang QC, Qin JX, Wang XL, Liu X, et al. Prediction of non-
muscle invasive bladder cancer recurrence using deep learning of pathology image. Sci
Rep. (2024) 14:18931. doi: 10.1038/s41598-024-66870-9

67. Huang H, Huang Y, Kaggie JD, Cai Q, Yang P, Wei J, et al. Multiparametric MRI
-based deep learning radiomics model for assessing 5-year recurrence risk in non-
muscle invasive bladder cancer. J Magnetic Resonance Imaging. (2024). doi: 10.1002/
jmri.29574

68. Wang H, Zhang M, Miao J, Hou F, Chen Y, Huang Y, et al. Deep learning
signature based on multiphase enhanced CT for bladder cancer recurrence prediction:
A multi-center study. eClinicalMedicine. (2023) 66:102352. doi: 10.1016/
j.eclinm.2023.102352

69. Lee J, Choo MS, Yoo S, Cho MC, Son H, Jeong H. Intravesical prostatic
protrusion and prognosis of non-muscle invasive bladder cancer: analysis of long-
term data over 5 years with machine-learning algorithms. J Clin Med. (2021) 10:4263.
doi: 10.3390/jcm10184263

70. Zhao H, Chen Z, Fang Y, Su M, Xu Y, Wang Z, et al. Prediction of prognosis and
recurrence of bladder cancer by ECM-related genes. J Immunol Res. (2022)
2022:1793005. doi: 10.1155/2022/1793005

71. Cai T, Nesi G, Canto MD, Mondaini N, Piazzini M, Bartoletti R. Prognostic role
of loss of heterozygosity on chromosome 18 in patients with low-risk nonmuscle-
invasive bladder cancer: results from a prospective study. J Surg Res. (2010) 161:89–94.
doi: 10.1016/j.jss.2008.10.017

72. Sikic D, Taubert H, Breyer J, Eckstein M, Weyerer V, Keck B, et al. The
prognostic value of FGFR3 expression in patients with T1 non-muscle invasive bladder
cancer. Cancer Manage Res. (2021) 13:6567–65780. doi: 10.2147/CMAR.S318893
frontiersin.org

https://doi.org/10.1016/j.eururo.2018.09.001
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1097/01.NPR.0000512251.61454.5c
https://doi.org/10.1016/j.urolonc.2018.02.017
https://www.evidencio.com/models/show/1025
https://doi.org/10.4111/kju.2010.51.3.165
https://uroweb.org/guidelines/non-muscle-invasive-bladder-cancer/chapter/predicting-disease-recurrence-and-progression
https://uroweb.org/guidelines/non-muscle-invasive-bladder-cancer/chapter/predicting-disease-recurrence-and-progression
https://doi.org/10.1371/journal.pone.0096849
https://doi.org/10.1016/j.urolonc.2022.06.008
https://doi.org/10.1111/iju.13509
https://doi.org/10.1038/bjc.2013.372
https://doi.org/10.1136/bmj.o2787
https://doi.org/10.1007/s00345-018-2438-9
https://doi.org/10.1007/s00345-018-2438-9
https://doi.org/10.21037/tau.2019.09.38
https://doi.org/10.3389/fonc.2020.00102
https://doi.org/10.3389/fonc.2020.00102
https://doi.org/10.3389/fonc.2023.1114203
https://doi.org/10.3389/fonc.2021.648968
https://doi.org/10.3389/fonc.2021.648968
https://doi.org/10.3389/fonc.2023.1180888
https://doi.org/10.1002/jmri.26749
https://doi.org/10.1016/j.eururo.2019.08.032
https://doi.org/10.1038/s41379-021-00955-y
https://doi.org/10.1038/s41379-021-00955-y
https://doi.org/10.1097/00005392-199805000-00057
https://doi.org/10.1097/00005392-199805000-00057
https://doi.org/10.18632/oncotarget.16393
https://doi.org/10.1016/S1569-9056(03)80262-2
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.3390/cancers14235807
https://doi.org/10.1038/s41598-018-21758-3
https://doi.org/10.1186/s12859-016-1334-9
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.18383/j.tom.2016.00184
https://doi.org/10.1016/j.ajpath.2020.03.013
https://doi.org/10.1007/s00330-019-06222-8
https://doi.org/10.1038/s41392-018-0034-5
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1111/cas.14927
https://doi.org/10.3390/cancers15041205
https://doi.org/10.3390/cancers15041205
https://doi.org/10.1002/cncy.22725
https://doi.org/10.1038/s41598-024-66870-9
https://doi.org/10.1002/jmri.29574
https://doi.org/10.1002/jmri.29574
https://doi.org/10.1016/j.eclinm.2023.102352
https://doi.org/10.1016/j.eclinm.2023.102352
https://doi.org/10.3390/jcm10184263
https://doi.org/10.1155/2022/1793005
https://doi.org/10.1016/j.jss.2008.10.017
https://doi.org/10.2147/CMAR.S318893
https://doi.org/10.3389/fonc.2024.1509362
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Abbas et al. 10.3389/fonc.2024.1509362
73. Bertz S, Otto W, Denzinger S, Wieland WF, Burger M, Stöhr R, et al.
Combination of CK20 and ki-67 immunostaining analysis predicts recurrence,
progression, and cancer-specific survival in pT1 urothelial bladder cancer. Eur Urol.
(2014) 65:218–26. doi: 10.1016/j.eururo.2012.05.033

74. Wang Z, Que H, Suo C, Han Z, Tao J, Huang Z, et al. Evaluation of the NMP22
BladderChek test for detecting bladder cancer: A systematic review and meta-analysis.
Oncotarget. (2017) 8:100648–56. doi: 10.18632/oncotarget.22065

75. Ponsky LE, Sharma S, Pandrangi L, Kedia S, Nelson D, Agarwal A, et al.
Screening and monitoring for bladder cancer: refining the use of NMP22. J Urol. (2001)
166:75–8. doi: 10.1016/S0022-5347(05)66080-6

76. Urbanowicz RJ, Andrew AS, Karagas MR, Moore JH. Role of genetic
heterogeneity and epistasis in bladder cancer susceptibility and outcome: A learning
classifier system approach. J Am Med Inf Assoc. (2013) 20:603–12. doi: 10.1136/
amiajnl-2012-001574

77. Wu X, Hildebrandt MAT, Chang DW. Genome-wide association studies of
bladder cancer risk: A field synopsis of progress and potential applications. Cancer
Metastasis Rev. (2009) 28:269–80. doi: 10.1007/s10555-009-9190-y

78. Menon DK, Rosand J. Finding a place for candidate gene studies in a genome-
wide association study world. JAMA Network Open. (2021) 4:e2118594. doi: 10.1001/
jamanetworkopen.2021.18594

79. Garcia-Closas M, Ye Y, Rothman N, Figueroa JD, Malats N, Dinney CP, et al. A
genome-wide association study of bladder cancer identifies a new susceptibility locus
within SLC14A1, a urea transporter gene on chromosome 18q12.3. Hum Mol Genet.
(2011) 20:4282–9. doi: 10.1093/hmg/ddr342

80. Rafnar T, Sulem P, Thorleifsson G, Vermeulen SH, Helgason H,
Saemundsdottir J, et al. Genome-wide association study yields variants at 20p12.2
that associate with urinary bladder cancer. Hum Mol Genet. (2014) 23:5545–57.
doi: 10.1093/hmg/ddu264

81. Wang M, Li Z, Chu H, Lv Q, Ye D, Ding Q, et al. Genome-wide association study
of bladder cancer in a chinese cohort reveals a new susceptibility locus at 5q12.3. Cancer
Res. (2016) 76:3277–84. doi: 10.1158/0008-5472.CAN-15-2564
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learning-based recalibration of the CUETO and EORTC prediction tools for recurrence
and progression of non–muscle-invasive bladder cancer. Eur Urol Oncol. (2022) 5:109–
12. doi: 10.1016/j.euo.2021.05.006

93. Hasnain Z, Mason J, Gill K, Miranda G, Gill IS, Kuhn P, et al. Machine learning
models for predicting post-cystectomy recurrence and survival in bladder cancer
patients. PloS One. (2019) 14:e0210976. doi: 10.1371/journal.pone.0210976
frontiersin.org

https://doi.org/10.1016/j.eururo.2012.05.033
https://doi.org/10.18632/oncotarget.22065
https://doi.org/10.1016/S0022-5347(05)66080-6
https://doi.org/10.1136/amiajnl-2012-001574
https://doi.org/10.1136/amiajnl-2012-001574
https://doi.org/10.1007/s10555-009-9190-y
https://doi.org/10.1001/jamanetworkopen.2021.18594
https://doi.org/10.1001/jamanetworkopen.2021.18594
https://doi.org/10.1093/hmg/ddr342
https://doi.org/10.1093/hmg/ddu264
https://doi.org/10.1158/0008-5472.CAN-15-2564
https://doi.org/10.1186/s12885-016-2361-7
https://doi.org/10.1021/acs.jproteome.4c00199
https://doi.org/10.1158/1078-0432.CCR-15-2715
https://doi.org/10.1038/s41598-019-44129-y
https://doi.org/10.1186/s12943-018-0893-y
https://doi.org/10.1080/1354750X.2016.1276628
https://doi.org/10.4172/2157-7099.1000226
https://doi.org/10.4172/2157-7099.1000226
https://doi.org/10.2147/CMAR.S457269
https://doi.org/10.1016/j.ijmedinf.2024.105414
https://doi.org/10.1016/j.euf.2020.12.008
https://doi.org/10.1016/j.euo.2021.05.006
https://doi.org/10.1371/journal.pone.0210976
https://doi.org/10.3389/fonc.2024.1509362
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses
	1 Introduction
	1.1 Non-muscle invasive bladder cancer
	1.2 Current methods and the need for innovation
	1.3 AI as a game-changer in NMIBC recurrence prediction

	2 Methods
	2.1 Search strategy
	2.2 Inclusion criteria
	2.3 Exclusion criteria

	3 Comparative analysis of AI models for NMIBC recurrence prediction
	3.1 Models using imaging and morphological features
	3.2 Models using genomic and protein markers
	3.3 Models using clinical, treatment and external factors
	3.4 Models using a combination of feature types

	4 Discussion
	4.1 Opportunities and transformative potential
	4.2 Challenges and considerations
	4.3 Future directions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


