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Introduction: Ultrasound-guided needle biopsy is a commonly employed

technique in modern medicine for obtaining tissue samples, such as those

from breast tumors, for pathological analysis. However, it is limited by the low

signal-to-noise ratio and the complex background of breast ultrasound imaging.

In order to assist physicians in accurately performing needle biopsies on

pathological tissues, minimize complications, and avoid damage to

surrounding tissues, computer-aided needle segmentation and tracking has

garnered increasing attention, with notable progress made in recent years.

Nevertheless, challenges remain, including poor ultrasound image quality, high

computational resource requirements, and various needle shape.

Methods: This study introduces a novel Spatio-Temporal Memory Network

designed for ultrasound-guided breast tumor biopsy. The proposed network

integrates a hybrid encoder that employs CNN-Transformer architectures, along

with an optical flow estimation method. From the Ultrasound Imaging

Department at the First Affiliated Hospital of Shantou University, we developed

a real-time segmentation dataset specifically designed for ultrasound-guided

needle puncture procedures in breast tumors, which includes ultrasound biopsy

video data collected from 11 patients.

Results: Experimental results demonstrate that this model significantly

outperforms existing methods in improving the positioning accuracy of needle

and enhancing the tracking stability. Specifically, the performance metrics of the

proposedmodel is as follows: IoU is 0.731, Dice is 0.817, Precision is 0.863, Recall

is 0.803, and F1 score is 0.832. By advancing the precision of needle localization,

this model contributes to enhanced reliability in ultrasound-guided breast tumor

biopsy, ultimately supporting safer and more effective clinical outcomes.
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Discussion: Themodel proposed in this paper demonstrates robust performance

in the computer-aided tracking and segmentation of biopsy needles in

ultrasound imaging, specifically for ultrasound-guided breast tumor biopsy,

offering dependable technical support for clinical procedures.
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1 Introduction

In the realm of modern medicine, ultrasound-guided breast tumor

biopsy is a cost-effective, convenient, and safe diagnostic method

commonly employed for obtaining tissue samples for histological

examination and pathological analysis (1). This technique aids

physicians in confirming the origin and nature of breast lesions, as

well as in monitoring disease progression (2). Ultrasound imaging is

frequently employed to guide needle biopsy in real-time, enabling

physicians to accurately navigate the needle to the target site while

minimizing complications and preventing damage to surrounding

tissues (2–5). However, the unique characteristics of ultrasound

imaging, such as its low signal-to-noise ratio and dependence on the

beam-to-needle orientation, introduce challenges in maintaining

consistent visibility of the needle during procedures.

During the imaging process, those electronically controlled

ultrasound beams which perpendicular to the needle produce

strong specular reflections, thus enhancing needle visibility (6, 7).

However, this optimal condition is often not maintained during the

biopsy. When the needle direction is not perfectly perpendicular to

the ultrasound beams or deviates from the ultrasound plane, it may

result in unclear or completely invisible needle imaging (8).

Furthermore, the needle’s visibility diminishes with increasing

insertion depth due to the attenuation of ultrasound beams (9).

These challenges are exacerbated by the needle’s small size, low

contrast with surrounding tissues, and motion artifacts, which can

mislead inexperienced physicians and increase the likelihood of

inaccurate biopsy sampling and additional surgical risks (10).

To address these issues, during ultrasound-guided biopsy

procedures where physicians manually manipulate the needle, real-

time and precise computer-aided needle segmentation and tracking are

essential. Such technologies can assist physicians in accurately locating

the needle while adjusting the needle’s position and angle in real-time,

thereby significantly improving both the safety and accuracy of the

procedure. Particularly for clinical novices and early-career physicians,

AI-assisted tools play a pivotal role in reducing technical barriers,

increasing confidence, and enhancing procedural outcomes. By

enabling real-time feedback, these systems ensure optimal needle

trajectory and alignment, even under suboptimal imaging conditions.

Previous research has explored various approaches to needle

segmentation and tracking in ultrasound images. Device-based
02
solutions, such as electromagnetic trackers (11), have been

proposed, but image-based methods are generally more suitable

for clinical settings due to their ease of integration. Traditional

computer vision and machine learning techniques based on image

have been extensively investigated. For example, Novotny et al. (12)

proposed using Principal Component Analysis (PCA) to integrate

prior knowledge with ultrasound data for enhanced representation.

Ding et al. (13) developed a template-based method for

preprocessing ultrasound images to increase contrast between the

needle tip and surrounding tissues, and applied the Gaussian Flow

Lines (GFL) algorithm to detect the needle edge. Zhou and Qiu et al.

(14, 15) proposed a 3D Hough transform method using distance

metrics to optimize fitting results, while Kaya and Senel et al. (16,

17) introduced a two-stage Gabor filter method for needle tip

localization and optimized estimation of insertion angles.

Although these methods offer valuable insights, they are limited

by their dependency on image quality, high computational

demands, and sensitivity to variations in needle shape and size.

With rapid advancements in deep learning technology, its

application in computer vision and medical image analysis has

become increasingly widespread, leading to the emergence of deep

learning methods for needle segmentation in ultrasound images.

Geraldes and Rocha et al. (18, 19) used Multi-Layer Perceptrons

(MLPs) to segment needle in 2D ultrasound images, demonstrating

the feasibility of deep learning for detecting needle in challenging

ultrasound images. Pourtaherian et al. (20) proposed an Orthogonal

Plane Convolutional Neural Network (OPCNN) to detect needle

positions in 3D ultrasound images. Yang et al. (21) introduced the

VOI-CNNs model, which utilizes a three-plane convolutional neural

network for needle segmentation. Lee et al. (22) developed a

segmentation-based tracking model that integrates spatial and

channel “Squeeze and Excitation” (scSE) modules, and Yang et al.

(23) proposed a Direction-Fused Fully Convolutional Network (DF-

FCN) to train models both along and perpendicular to the needle axis.

While these methods reduce the need for manual intervention required

by traditional approaches, they typically rely on large amounts of

annotated training data and computational resources. To improve

detection efficiency, Mwikirize et al. (24) proposed a region-based Fast

R-CNN for detecting needle in 2D ultrasound images. Ronneberger

et al. (25) introduced U-Net, a fully convolutional network that

leverages multi-scale semantic information from ultrasound images
frontiersin.org
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to enhance detection accuracy. Additionally, many similar works have

focused on detailed optimizations: Zhang et al. (26) proposed an

attention-based U-Net for multi-needle segmentation and

localization; Yang et al. (27) introduced a 3D patch-wise method to

segment needle in 3D ultrasound images by dividing the 3D image into

small blocks; and Bi et al. (28) developed amethod to explicitly separate

anatomical and domain features by calculating mutual information in

the latent space, improving the generalization ability of

segmentation models.

However, despite these advancements, existing deep learning

methods for needle localization in ultrasound-guided procedures

struggle to effectively extract features from ultrasound images with

low signal-to-noise ratios and complex backgrounds. Moreover,

they fail to leverage the inter-frame relationships present in

needle video sequences, overlooking subtle displacements and

morphological changes of the needle in complex tissue

backgrounds. Consequently, these limitations result in insufficient

localization accuracy and affect the safety and precision of

clinical operations.

To address these limitations, we propose a novel Spatio-

Temporal Needle Attention Network (STNAN), which achieves

accurate segmentation, tracking, and prediction of the needle’s

dynamic trajectory. Unlike conventional methods, STNAN

leverages the inter-frame relational information inherent in

ultrasound video sequences to enhance its tracking capabilities.

Subsequently, we propose a feature encoder that integrates CNN

and Transformer architectures, enabling the model to extract multi-

scale features and local information from ultrasound images while

capturing long-range dependencies across image sequences.

Additionally, we design an innovative feature processing method

that incorporates optical flow estimation to extract subtle

displacement and morphological features of the needle in

complex tissue environments. Furthermore, the proposed

approach offers substantial potential for clinical implementation,

particularly in assisting novice physicians, by providing additional

support and enhancing operator confidence.

The main contributions of this paper are as follows:
Fron
1. To leverage the correlation information between frames in

video sequences, we introduce a memory bank structure to

store features extracted from ultrasound needle video

sequences, thereby effectively processing and utilizing

temporal information.

2. To address the challenges posed by ultrasound images with

low signal-to-noise ratios and complex backgrounds, we

propose a semantic feature encoder that integrates CNN

and Transformer structures. This encoder not only extracts

multi-scale features and local information from the images

but also captures long-range dependencies within them.

3. To accurately capture and track the needle’s motion

trajectory, we propose a feature processing method that

integrates optical flow estimation, capable of extracting

subtle displacements and morphological changes of

the needle.
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2 Materials and methods

The natural scene model Space-Time Correspondence

Networks (STCN) provides an effective framework for capturing

spatio-temporal correspondences (29). However, it is confronted

with two challenges: due to substantial domain differences between

medical and natural scene images, the basic feature extraction

approach may be insufficient for capturing critical information in

medical imaging, resulting in mismatched features. Additionally,

common global matching patterns can lead the model to mistakenly

segment distant objects with similar appearances. To address these

challenges, we proposed Spatio-Temporal Needle Attention

Network (STNAN) based on STCN, which employs the negative

squared Euclidean distance to effectively model spatio-temporal

correspondence, avoiding the need to re-encode mask features for

each frame. The model utilizes a memory bank to store feature

information from the previous frames. Furthermore, we introduce a

novel hybrid architecture feature encoder and integrate optical flow

information from adjacent frames as supplementary features to

perceive motion information. The network structure is depicted

in Figure 1.

STNAN takes a video sequence and the annotation of the first

frame as input, processes the video frame by frame, and establishes

a Feature Memory Bank. The network includes two encoders: C&T

Query Encoder and Memory Encoder. The C&T Query Encoder

takes the current frame of the ultrasound image as the query frame

input, extracts the key feature of the query frame, denoted as kQ.

Meanwhile the Memory Encoder takes the previous images and

corresponding masks as input, extracts the associated value feature,

denoted as vM.

During the sequence query process, features are extracted only

once per frame. After completing a query, the key feature kQ of the

current query frame is used as the key feature kM of the memory

frame for the next query, reducing computational overhead. The

key feature kQ of the query frame is compared with the key feature

kM of the memory frame, and the affinity value aff between them is

calculated using the negative squared Euclidean norm. The

corresponding value feature vM is retrieved from the Feature

Memory Bank. The key features kQ and corresponding kM are

processed through our designed Optical Flow Regression module to

obtain the optical flow vector flow. This vector, along with the

affinity value aff, is utilized to calculate the value feature of the query

frame, denoted as vQ. Finally, the mask of the current frame’s target

object can be generated through the decoder.
2.1 Feature extraction with hybrid
architecture of C&T query encoder

For ultrasound needle images characterized by low signal-to-

noise ratios and complex backgrounds, fully extracting the needle’s

features is essential for improving network accuracy. Convolutional

Neural Networks (CNNs) are highly effective at extracting deep,

discriminative features from image data, particularly excelling at
frontiersin.org
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capturing local information and multi-scale features. However,

CNNs have limitations in handling long-range dependencies, and

experience a significantly increase in computational complexity as

network depth grows. On the other hand, Transformers effectively

capture long-range dependencies in images through self-attention

mechanisms but perform less sensitively in processing local

structural details. Additionally, Transformers entail significant

computational resources when dealing with high-resolution

images and exhibit relatively weaker capabilities in extracting

local feature.

To capitalize on the strengths of both CNNs and Transformers,

we propose a hybrid architecture called C&T Query Encoder, which

integrates CNN and Transformer components. This architecture

utilizes CNNs’ capabilities in local feature extraction and multi-

scale information processing, alongside Transformers’ ability to

capture long-range dependencies, thereby achieving more

comprehensive and efficient feature extraction in image analysis

tasks. Its structure is illustrated in Figure 2.

The design of the C&T Query Encoder follows these steps: The

input image is first processed through three convolutional layers for

initial processing, downsampling, and local feature extraction while

preserving spatial information. The output of these initial

convolutional layers is then fed into four combined modules, each

consisting of a Patch Embedding layer and i Blocks. These modules

are alternated to apply Self-Attention at various scales, capturing

connections between different regions in the image. The Patch

Embedding layer performs two-fold downsampling through a

convolutional layer to extract low-resolution and multi-scale

features. Each Block contains residual structures with both

Depth-Wise Separable Convolution (DW Conv) and a

Lightweight Multi-Head Self Attention module (LMHSA). These

modules are interspersed with Layer Norm (LN), ensuring stable

feature extraction.

DW Conv significantly reduces computational complexity and

the number of parameters by separating the convolution operation

into depthwise and pointwise convolutions, thereby enhancing

computational efficiency. In each Block, we employ residual

structures, initially implement a DW Conv with a 3 × 3 kernel
Frontiers in Oncology 04
size, followed by the integration of the LMHSA module, and

subsequently reapply another DW Conv. This configuration

effectively extracts local features from the feature map by

combining the advantages of depthwise and pointwise

convolutions. Additionally, the introduction of residual

connections facilitates efficient gradient propagation throughout

the network, thus enhancing training stability. The overall goal is to

improve translation invariance in computer vision tasks while

maintaining computational efficiency.

Following the first DW Conv module, Layer Normalization is

applied to the feature map, enhancing training stability and

convergence speed. The normalized feature map is then fed into

the LMHSA module, as illustrated in Figure 3.

We employ a size-controllable DW Conv to reduce the

resolution of the input feature, thereby decreasing the size of the

K and V subspace feature maps and lowering the computational

load of self-attention mechanism. The input feature is then mapped

to three subspaces—V, K, and Q— using three distinct linear spatial

mapping matrices WV, WK, and WQ, and the attention value is

calculated as follows:

attention(Q,K ,V) = Softmax(
QKT

ffiffiffi

d
p )V

where d represents the dimension of the key vector

After the LMHSA module, we further apply Layer

Normalization to the feature map. This is followed by another

DW Conv to process the featuremap, extracting local information.

Through the above design, the model can effectively extract

semantic features, thus providing robust feature support for

subsequent segmentation tasks.
2.2 Flow regression estimation based on
search window

Deep stereo matching methods can leverage multi-view images

to compute depth information, thereby improving the model’s

ability to perceive the needle’s spatial position. Since stereo
FIGURE 1

Overview of the proposed STNAN for needle segmentation.
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matching can be considered a specific case of optical flow, the

matching cost learning in optical flow estimation is equally

applicable to needle motion estimation. Optical flow estimation

captures subtle motion information between adjacent frames, which

is essential for detecting the needle’s minute displacements. By

estimating optical flow, the model gains a deeper understanding of

the needle’s motion patterns, enabling more precise trajectory

tracking during segmentation.

In our deep stereo matching approach, we introduce a matching

cost learning mechanism to enhance the accuracy of optical flow

estimation by learning the matching cost between adjacent frames.

As shown in Figure 4, the Semantic Feature Ft of the current

frame is superimposed with the features Ft-1 under each hypothesis

to obtain U × V Semantic Fusion Feature Maps Fu(p):

Fu(p) = Ft(p)jjFt−1(p + u)
Frontiers in Oncology 05
where p = (x, y) represents the original position coordinates,

‖ denotes superposition in the channel dimension, and u represents

the displacement hypothesis.

In the feature map, for each pixel, we limit the scan matching

range to a local window with determined scale containing U × V

pixels. By hypothesizing various displacement directions of each

pixel, we obtain corresponding Fu(p), as shown in Figure 5.

As seen in the Figure 5, each pixe l has U × V

displacement hypotheses.

On this basis, the semantic fusion feature map Fu(p) is fed into

the Displacement Aware Cost Learning (DACL) module. The

DACL module comprises a series of convolutional and

deconvolutional layers to extract features from Fu(p). Using a

CNN-based 2D matching network, the module calculates local

correlations and aggregates matching costs under U × V different

displacement hypotheses, producing a comprehensive matching
FIGURE 3

Scheme of the proposed Lightweight Multi-Head Self Attention module.
FIGURE 2

Scheme of the proposed Hybrid Architecture of C&T Query Encoder.
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cost, denoted as Cost. Furthermore, the DACL module reweights

the matching cost through a 1 × 1 convolution, calculated as

follows:

Cost(u, p) = Conv1�1( o
u=(U ,V)

M(Fu(p)))

where M represents the 2D matching network.

Subsequently, motion features from the previous and current

frames are extracted by encoding. Motion features are then fused

with the semantic feature Ft of the current frame through the

Motion-attention Based Feature Fusion Module (MAFFM), as

illustrated in Figure 6.

We begin by applying a 1 × 1 convolution to reduce the

dimensionality of the Motion Feature, followed by smoothing

them using a Sigmoid activation function. A broadcast

mechanism is then employed to reweight the Semantic Feature Ft
of the current frame. Finally, we superimpose Ft onto itself to obtain

a Motion Attention Feature, which is utilized for subsequent mask

propagation. This design enables the model to effectively exploit

inter-frame relationships within the needle sequence, allowing it to

accurately capture the needle’s motion trajectory.
2.3 Real-time ultrasound needle dataset

In the field of ultrasound-guided biopsy, particularly for breast

tumor puncture, there is a significant shortage of publicly
Frontiers in Oncology 06
available datasets for needle segmentation. As a result, most

existing studies rely on non-public datasets derived from non-

human samples. These datasets often do not accurately reflect real

surgical conditions and typically focus on single-frame images,

overlooking the continuity of needle movement during the biopsy

process. To address this gap, in collaboration with physicians from

the Ultrasound Imaging Department at the First Affiliated Hospital

of Shantou University, we collected ultrasound biopsy video data

from 11 patients of varying ages, creating a real-time segmentation

dataset specifically tailored for ultrasound-guided needle puncture

in breast tumors. Each video was recorded at a frame rate of 25

frames per second. The institutional review board approved this

study, and the requirement to obtain informed consent was waived

(approval number: B-2022-182).

To ensure temporal continuity and reduce redundant features,

we extracted frames at random intervals of 5 to 10 frames, selecting

approximately 250 consecutive frames from each video. Each frame

contains a single needle, annotated by experienced ultrasound

imaging physicians to obtain mask images as dataset labels. We

used nine video frame sequences (approximately 2,250 images) for

the training set and the remaining two sequences (approximately

500 images) for the test set. All images were uniformly resized to

448 × 448 pixels.
2.4 Loss function and evaluation metrics

Biopsy needle in ultrasound images appear as thin, elongated

straight lines and are significantly outnumbered by background

pixels. To address this issue of imbalanced samples, we adopt Binary

Cross Entropy (BCE) as the loss function. The calculation of BCE is

as follows:

LBCE = −(y ∗ log (p) + (1 − y) ∗ log (1 − p))

where y represents the true label of the sample (1 for biopsy

needle, 0 for background), and p represents the probability that the

model predicts the sample as a biopsy needle.

To comprehensively assess the segmentation performance, we

use several evaluation metrics, including Intersection over Union,

Dice coefficient, Precision, Recall, and F1-score.
FIGURE 5

Illustration of the displacement search box.
FIGURE 4

Scheme of the proposed feature processing method incorporating optical flow estimation.
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The calculation formulas for IoU,Dice, Precision, Recall, and F1-

score are as follows:

IoU =
TP

TP + FP + FN

Dice =
2TP

2TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2 ∗ Precision ∗Recall
Precision + Recall

Considering the real-time requirements of ultrasound-guided

biopsy procedures, we measured the inference speed of the model

on the test set, recording both the number of frames segmented per

second and the average time required for segmenting each frame.
2.5 Training parameters and training
method settings

Our model was trained on an NVIDIA GeForce RTX 3090 GPU

using the Adaptive Moment Estimation (Adam) optimizer. The

training was conducted with a batch size of 4, an initial learning rate

of 10-5, and a learning rate decay factor of 0.2.

To enhance the continuity of the model’s segmentation and

tracking performance, we employed the following training strategy:

During each iteration, four video sequences were randomly selected

from the training set and we sequentially select five images as

training samples, with the first image providing the ground truth

mask label. Memory features were extracted from the first frame

and its corresponding mask label to predict the mask of the second

frame, and the features from both frames were stored in the

memory repository. These fused memory features were then

used to predict the masks for subsequent frames in sequence. For

all frames except the first, the predicted masks were compared

with the ground truth labels for loss calculation, followed by

backpropagation and parameter updates in the network.
Frontiers in Oncology 07
To improve the model’s robustness, we randomly reverse the

temporal order of the five continuous frames during

training, enabling the model to learn both forward and

backward predictions.

To prevent redundant memory features and maintain efficient

inference speed, we adopted the default memory storage interval of

STCN, storing semantic and mask features every 5 frames.
3 Results

3.1 Parameter optimization experiments

We introduces the C&T Query Encoder, which allows for the

stacking of a variable number of Blocks, thereby facilitating a

balance between model accuracy and inference speed. We

systematically explored the impact of the number of Blocks i in

the C&T Query Encoder on model performance and validated the

performance of the STCN+C&T model under various

configurations through experimentation. Table 1 presents the

performance metrics of the STCN+C&T model when varying

numbers of Blocks are stacked in the C&T Query Encoder. In

terms of the performance metrics, multiple standard metrics

including IoU, Dice, Precision, Recall, F1 scores and FPS are used

for evaluating image segmentation tasks.

In Table 1, the first column represents the number of Blocks in

the four stacked structures of the C&T Query Encoder. As the

number of Blocks increases, the IoU and Dice scores of the STNAN

model improve, while inference speed decreases correspondingly.
TABLE 1 Performance comparison of STCN+C&T model with different
numbers of blocks.

The
number
of blocks

IoU Dice Precision Recall F1 FPS

(2, 2, 6, 2) 0.718 0.806 0.840 0.803 0.821 60.17

(2, 2, 10, 2) 0.712 0.803 0.838 0.799 0.818 55.41

(3, 3, 12, 3) 0.709 0.802 0.845 0.790 0.816 52.53

(3, 3, 16, 3) 0.720 0.809 0.854 0.790 0.820 46.52
frontier
The bold values provided in the table below indicate the best-performing metrics
in comparison.
FIGURE 6

The structure of the Motion-attention based feature fusion module (MAFFM).
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The experiments reveal that when the number of Blocks is set to 3,

3, 16, and 3 respectively, the STCN+C&T model achieves optimal

performance on the test set, with an IoU of 0.720, Dice of 0.809, F1

score of 0.820, and FPS of 46.52, significantly surpassing the 25 FPS

ultrasound biopsy video data provided by the hospital, thereby

meeting real-time operational requirements.

Furthermore, we investigated the effect of varying displacement

search window sizes in optical flow estimation onmodel performance.

On a semantic feature map with a size of 12 × 12, we set various

displacement search window sizes and conducted experiments under

the optimal Block configuration, with the results shown in Table 2.

Since the displacement search window is centered on each pixel

and has an odd-numbered side length, we implemented four

window size configurations: 5 × 5, 7 × 7, 9 × 9 and 11 × 11. The

results indicate that the performance of the model improves when

the displacement search window size increases from 5 × 5 to 9 × 9;

When the size continues to increase to 9 × 9, the model effect

decreases. We speculate that this decline occurs because the needle

displacement between some frames is large, and a smaller search

window cannot adequately capture these variations, resulting in

some needle pixels in the past frames not matching the correct

points in the current frame. As the search window size continues to

increase, although more information can be captured, it may also

lead to matching noise points or irrelevant points in the

background, thereby reducing the accuracy of the matching.

Ultimately, when the displacement search window size is 9 × 9,

the model achieves its optimal performance, which can also satisfy

real-time operational requirements.
3.2 Ablation study

This paper introduces several improvements to the original

STCN model, proposing the STNAN model. The effectiveness of

each improvement module to improve the model’s performance

was validated through a series of experiments. Specifically, we

compared the performance of the original STCN model with that

of the model incorporating each improvement module, with the

results shown in Table 3.

The performance metrics of the original STCN model is as

follows: IoU is 0.696, Dice is 0.793, Precision is 0.861, Recall is

0.761, F1 score is 0.808, and FPS is 60.79, with a single-frame

segmentation time of 0.016 seconds.
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After adding C&T Encoder and FR modules, significant

improvements are demonstrated across recall (0.761 vs 0.803),

precision (0.861 vs 0.863), IOU (0.696 vs 0.731) and Dice(0.793

vs 0.863).In conclusion, the proposed improvement strategies in

this paper have significantly enhanced the performance of the

model in ultrasound needle tracking and segmentation tasks.
3.3 Comparative experiments

Table 4 presents the results of the proposed STNAN against all

the compared methods over the datasets. Comparisons between our

STNAN and recently favored frameworks for medical image

segmentation were conducted, benchmarking against convolutional

baseline models such as U-Net, VGG16 and FCN32. We further

perform comparison against the STCN segmentation networks.

The results demonstrate that our STNAN model surpasses the

performance of all other methodologies. This highlights the

significant advantages of STNAN in terms of segmentation

accuracy and overall quality, indicating its strong suitability for

meeting the clinical requirements of biopsy procedures.

To visually illustrate the performance differences between

various models in handling ultrasound needle tracking and

segmentation tasks, we selected several ultrasound needle images

from the test set in sequential order, emphasizing cases where the

grayscale visibility of the biopsy needle is relatively weak.

Furthermore, we conducted a visual analysis of each model’s

segmentation and tracking results, as depicted in Figure 7.
TABLE 2 Performance of STNAN with different displacement search
window sizes.

Size of
window
(U, V)

IoU Dice Precision Recall F1 FPS

U=5, V=5 0.712 0.801 0.855 0.775 0.813 38.59

U=7, V=7 0.722 0.810 0.851 0.798 0.824 37.74

U=9, V=9 0.731 0.817 0.863 0.803 0.832 35.57

U=11, V=11 0.720 0.809 0.852 0.796 0.823 30.26
The bold values provided in the table below indicate the best-performing metrics
in comparison.
TABLE 3 Ablation study results of the STNAN model.

Model IoU Dice Precision Recall F1 FPS

STCN 0.696 0.793 0.861 0.761 0.808 60.79

STCN+C&T 0.720 0.809 0.854 0.790 0.820 46.52

STCN+C&T
+FR(STNAN)

0.731 0.817 0.863 0.803 0.832 35.57
frontier
The bold values provided in the table below indicate the best-performing metrics
in comparison.
TABLE 4 Comparison with various models with respect to efficiency and
segmentation metrics.

Model IOU Dice Precision Recall F1 FPS

PSPNet 0.233 0.348 0.579 0.291 0.387 29.15

FCN32 0.563 0.689 0.762 0.676 0.716 19.93

UNet 0.511 0.623 0.716 0.660 0.687 23.63

SegNet 0.399 0.548 0.621 0.527 0.570 15.50

VGG16+UNet 0.508 0.649 0.789 0.667 0.723 22.90

ResNet50
+FCN32

0.566 0.697 0.737 0.684 0.710 9.96

STCN 0.696 0.793 0.861 0.761 0.808 60.79

STNAN(Ours) 0.731 0.817 0.863 0.803 0.832 35.57
The bold values provided in the table below indicate the best-performing metrics
in comparison.
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The first two columns of Figure 7 display the original

ultrasound images from the test set alongside their corresponding

ground truth labels. The third column displays the superimposed

ultrasound images along with ground truth data, while the

remaining columns show the segmentation results of each model.

Classic semantic segmentation models often struggle with

challenging ultrasound needle tracking and segmentation tasks,

frequently failing to accurately segment the needle and tenting to

misidentify needle-like tissues in the image as the needle, resulting

in an increased incidence of false positives in the segmentation

results. The STCN model considers the spatio-temporal correlation

between frames, improving the segmentation results to some extent.

However, it still suffers from false positives due to its reliance on

global matching techniques, which may undermine its effectiveness

during clinical procedures.

In contrast, our STNAN model demonstrates superior

performance in accurately identifying and tracking needle while

maintaining a lower rate of false positives. It is attributed to the

proposed semantic feature encoder for low signal-to-noise ratio

ultrasound images and the optical flow regression estimation

method. These advancements make STNAN highly promising

for real-world clinical applications, as it effectively minimizes

false positives while achieving precise segmentation of the

puncture needle.
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4 Discussion

This paper introduces a novel Spatio-Temporal Needle

Attention Network (STNAN) to address key challenges in

ultrasound-guided needle biopsy. By integrating Convolutional

Neural Networks (CNNs) and Transformer architectures, STNAN

effectively extracts multi-scale features and captures long-range

dependencies. Additionally, the model incorporates an optical

flow estimation mechanism to detect subtle displacements and

morphological changes of the needle in complex tissue

environments. Experimental results demonstrate that STNAN

significantly outperforms existing methods in enhancing the

accuracy and continuity of needle localization, thereby improving

both the safety and precision of clinical procedures.

The proposed model is designed as an AI-assisted tool to

support less experienced physicians during ultrasound-guided

biopsy procedures. In practice, needle visibility is often

compromised due to factors such as suboptimal angles, deviations

from the ultrasound plane, and signal attenuation at greater depths,

which pose significant challenges for novice operators. STNAN

provides real-time needle tracking and segmentation, offering

additional guidance and improving operator confidence.

The dataset used to train STNAN consisted of 11 patients,

yielding approximately 2750 image frames. During model training,
FIGURE 7

Visual comparison of different methods on our dataset. (A) Image. (B) Ground Truth. (C) Image+GT. (D) PSPNet. (E) FCN32. (F) UNet. (G) SegNet.
(H) VGG16+UNet. (I) ResNet50+FCN32. (J) STCN. (K) STNAN. Yellow indicates the prediction of needle.
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STNAN achieved convergence without signs of overfitting,

demonstrating that the data was sufficient for learning key

features of needle localization. However, we acknowledge that

expanding the dataset could further enhance the model’s

generalizability, especially when applied to more diverse

clinical scenarios.

STNAN shows excellent performance in ultrasound-guided

needle localization tasks, providing robust technical support for

clinical operations. In future work, we will focus on further

optimizing the model’s real-time performance and exploring its

broader applications in ultrasound-guided interventions.

Expanding training datasets with diverse clinical cases is expected

to improve the model’s generalizability, and advanced techniques

such as data augmentation and transfer learning will be employed to

optimize model performance. Additionally, incorporating trajectory

prediction features could further assist operators in planning needle

movements, paving the way for safer and more precise procedures

in clinical practice.
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