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The pivotal role of metabolic reprogramming in cancer-related drug resistance,

through the tryptophan-catabolized kynurenine pathway (KP), has been

particularly underscored in recent research. This pathway, driven by

indoleamine 2,3-dioxygenase 1 (IDO1), facilitates immune evasion and

promotes tumor progression by fostering an immunosuppressive environment.

In Phase III investigation of the combination of IDO1 inhibition with immune

checkpoint inhibitors (ICIs), the combination therapy was not efficacious. In this

review, we revisit current advances, explore future directions, and emphasize the

importance of dual inhibition of the KP rate-limiting enzymes IDO1 and

tryptophan 2,3-dioxygenase-2 (TDO2) in appropriate patient populations. We

propose that dual inhibition may maximize the therapeutic potential of KP

inhibition. Additionally, we delve into the complex cellular interactions in

cancer and metabolic dependencies within the tumor microenvironment

(TME). Insights from preclinical studies, recent clinical trials, and promising

therapeutic combinations will be discussed to elucidate and promote a clear

path forward for the direction of KP research into cancer-related outcomes.
KEYWORDS

lung cancer, metabolism, immunometabolism, drug resistance, kynurenine,
dual inhibitors
Introduction

Drug resistance in cancer remains a formidable challenge in modern oncology, severely

limiting the efficacy of treatments across a wide spectrum of malignancies. Resistance

mechanisms are multifaceted, often involving genetic mutations, epigenetic alterations, or

modifications in signaling pathways that protect cancer cells from cytotoxic agents. These
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mechanisms vary from tissue to tissue and within tumor types in the

same tissue. Hence, while treatments like chemotherapy, radiation,

and immunotherapy initially showed promise, the emergence of

resistant tumor cells decreased therapeutic effectiveness.

These developments increase the challenges in the application

of therapies to the most appropriate patient cohort, treatment

combination, and timing. This challenge is exemplified in

cisplatin, one of the most used chemotherapy drugs. Initially

effective in treating a variety of solid tumors, including non-small

cell lung cancer (NSCLC), ovarian, and bladder cancers, cisplatin’s

effectiveness diminishes as tumor cells develop mechanisms to

evade its cytotoxic effects. These mechanisms include enhanced

DNA repair capabilities, increased efflux of the drug, and profound

alterations in cellular metabolism promoting tumor survival (1, 2).

The reprogramming of cellular metabolism was proposed as a

common type of tumor resistance decades ago, but the complexities

and uniqueness of certain alterations in a tissue specific manner

have only been described in the last decade. Altered metabolism has

now emerged as a central factor in cancer resistance, particularly as

tumors shift metabolic reliance to sustain growth after treatment.

Based on these concepts, our lab has extensively investigated and

characterized tumor metabolic pathways in hypoxic [hypoxia-

induc ib le fac tor (HIF1a ) ] and normoxic (oxidat ive

phosphorylation) conditions (3–5). This work led to the reporting

of various metabolic components that tumor cells relied on for

survival. One metabolic pathway that gained attention for

promoting survival under treatment pressures is the kynurenine

pathway (KP) of tryptophan degradation (6, 7). By degrading

tryptophan into immunosuppressive metabolites like kynurenine,

cancer cells create an environment that suppresses the activity of

effector immune cells. This promotes the expansion of regulatory T

cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (8–10),

enabling cancer cells to escape immune surveillance and

contributing to therapy resistance.

This perspective review will explore the latest advances in

targeting metabolic crosstalk with a particular focus on inhibiting

the tryptophan-catabolized KP. We will discuss why current

therapeutic strategies aimed at disrupting this crosstalk often fail

and propose ways to enhance anti-tumor immunity and overcome

drug resistance, offering a promising pathway for developing new

cancer treatments.
The role of the kynurenine pathway in
cancer metabolism

Tryptophan (TRP) is an essential amino acid required for

protein synthesis as a precursor to serotonin and melatonin (11,

12). However, the majority of TRP (about 99%) not used for protein

synthesis—is broken down via the kynurenine pathway (KP) to

generate kynurenine (KYN) (13). The KP pathway involves rate-

limiting key enzymes, including indoleamine 2,3-dioxygenase 1

(IDO1), tryptophan 2,3-dioxygenase (TDO), and indoleamine

2,3-dioxygenase 2 (IDO2). The first step in the pathway is the
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conversion of tryptophan to N-formyl kynurenine by either IDO1,

TDO, or IDO2. N-formyl kynurenine is then rapidly converted into

kynurenine, which serves as the precursor for several biologically

active metabolites, such as kynurenic acid, xanthurenic acid, and

anthranilic acid (14).

In cancer, IDO1 is overexpressed and has been linked to poor

prognosis in several tumor types, including lung, ovarian, and

pancreatic cancers (15). Studies also showed significantly shorter

survival among patients with high expression of IDO1 or TDO2

(16). The overexpression of IDO1/TDO2 and the consequent

accumulation of KYN suppress anti-tumor immunity by

promoting the differentiation of Tregs and MDSCs, which in

turn, inhibit the activity of effector CD8+T cells and NK cells

(Figure 1A). We found that the key driver of this inhibition is the

level of reactive oxygen species (ROS)-dependent IDO1 activity,

rather than IDO1 expression (17). Cisplatin-resistant lung cancer

cells possessed higher basal levels of ROS when compared to

cisplatin-sensitive cells. Together, this immunosuppressive

environment facilitates tumor immune evasion and contributes to

the resistance of immunotherapies such as immune checkpoint

inhibitors (ICIs).

Beyond its role in immune evasion, the KP also supports cancer

cell survival and proliferation by supplying essential metabolic

intermediates. KYN can activate signaling pathways that promote

cancer cell survival, proliferation, and metastasis. KYN has been

shown to activate the aryl hydrocarbon receptor (AHR), a

transcription factor involved in cell growth and immune

regulation (18). This activation promotes tumor growth, so we

investigated inhibition in this context. Indeed, exposure to AHR

inhibitors (DMF or CH-223191) resulted in the suppression of

IDO1 activities, whereas the addition of KYN increased IDO1

activity in cisplatin-resistant cells (17).
Kynurenine–hypoxia inducible-1a –
aryl hydrocarbon receptor axis

ARNT (AHR nuclear translocator) or HIF1b (hypoxia-

inducible factor 1b) is a known binding partner of both HIF1a
and AHR (Figure 2) (19, 20). We reported that HIF1a levels are low

in cisplatin-resistant lung cancer cells. Downregulation of HIF1a
allows ARNT to preferentially bind with activated AHR rather than

HIF1, shifting the metabolic balance towards AHR-driven pathways

(17, 21). This pathway enhances immune suppression by increasing

FoxP3 (master regulator in the development and function of Tregs)

expression and creating an immunosuppressive TME. The

extensive characterization of these molecular pathways in lung

cancer has led us to promote the concept that the components of

these paths could be therapeutic targets helping eliminate

resistant cells.

Minhas et al. recently reported that IDO1 is upregulated in

response to amyloid and tau pathology in astrocytes, leading to

increased production of kynurenine (KYN); these findings are

consistent with our model (Figure 2B). This upregulation
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activates AHR and disrupts the balance between AHR and HIF1a
signaling in astrocytes, suppressing astrocytic glycolysis and

reducing lactate production. Astrocytic glycolysis is essential for

neuronal support and disrupting this metabolic pathway

contributes to neurodegeneration in Alzheimer’s disease (AD) (22).

In both cancer and neurodegeneration, the IDO1/TDO2-KYN-

AHR axis is central to metabolic alterations and immune evasion,

highlighting its significance as a therapeutic target. This disruption

of normal cellular metabolism and promotion of an immune-

suppressive environment makes the KP a possible therapeutic

target for both cancerous and neurodegenerative conditions.
Kynurenine and immune evasion:
mechanistic insights

The immune system’s ability to recognize and eliminate tumor

cells is a critical component of effective cancer therapy (ICIs and

others). In certain patients with tumors that escape immune

surveillance, treatment is not effective. One of the central

mechanisms by which tumors achieve this immune evasion is

through the induction of IDO1 activity and the subsequent depletion

of tryptophan and accumulation of kynurenine (Figure 1A) (23, 24).

Tryptophan depletion alone has significant effects on immune cell

function since T cells, particularly effector T cells, are highly sensitive to

tryptophan availability. In low tryptophan conditions, T cell

proliferation is inhibited, and cells become functionally anergic.
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Moreover, kynurenine directly inhibits T cell proliferation and

induces the differentiation of naïve T cells into Tregs, further

suppressing the immune response (25–27). Tryptophan depletion

and the r e su l t an t kynur en ine a c cumu l a t i on f avo r

immunosuppression over activation in the TME.

IDO1 and kynurenine also promote the expansion of MDSCs, a

population of immune cells that suppresses both innate and

adaptive immune responses (Figure 1A). MDSCs inhibit the

activation of effector T cells and NK cells; additionally, they

produce high levels of reactive oxygen species (ROS) and nitric

oxide, which inhibit T cell receptor signaling and promote tumor

progression (28, 29). Higher ROS levels generated by MDSCs may

also further enhance IDO1 activity.
Crosstalk between cancer cells and
immune cells in the TME

The metabolic crosstalk between cancer cells and immune cells

in the TME is a key determinant of tumor progression and therapy

resistance. By reprogramming their metabolism, cancer cells create

an environment that is hostile to immune effector cells but

supportive of immunosuppressive cells. This crosstalk can be

mediated by a variety of metabolic pathways, including glycolysis,

glutamine metabolism, and the KP.

In addition to the direct effects of TRP depletion and KYN

accumulation on immune cells, cancer cells also engage in
FIGURE 1

Molecular effects of IDO/TDO signaling. (A) The IDO1 enzyme catalyzes the conversion of tryptophan into kynurenine, an oncometabolite.
Kynurenine production contributes to an immunosuppressive tumor microenvironment (TME), facilitating cancer progression as well as suppressing
ferroptosis. (B) TDO2 can potentially compensate when IDO1 is inhibited, suggesting that effective targeting may require simultaneous inhibition of
both IDO and TDO to overcome this compensatory mechanism and reduce immunosuppression in the TME (C).
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metabolic competition with immune cells. Effector T cells, for

example, rely on glycolysis to support their rapid proliferation

and production of cytokines (30). However, in the nutrient-

deprived environment of the TME, cancer cells outcompete T

cells for glucose, limiting the availability of this critical nutrient

for immune cell function (31–33). Similarly, cancer cells’ reliance

on glutamine for the tricarboxylic acid (TCA) cycle also depletes the

available glutamine for immune cell activity.

One of the most intriguing aspects of this metabolic crosstalk is

the role of kynurenine in the ferroptosis of cancer cells, a form of

programmed cell death characterized by the accumulation of lipid

peroxides. KYN has an anti-ferroptosis effect that not only supports

cancer cell survival but also creates an environment that is resistant

to oxidative stress, further promoting immune evasion and drug

resistance. Ferroptosis is regulated by the cystine/glutamate

antiporter system (xCT), which imports cystine into cells in

exchange for glutamate (34). Cystine is then reduced to cysteine,

which is required for the synthesis of glutathione, a critical

antioxidant that protects cells from ferroptosis. Unlike apoptosis,

which is often inhibited in cancer cells, ferroptosis is regulated by

the availability of cysteine and the function of the xCT antiporter.

By disrupting the cystine/glutamate exchange, cancer cells can be

sensitized to ferroptosis, making it an interesting and promising

new target for therapy (34, 35).
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KYN has been shown to inhibit ferroptosis by upregulating the

expression of xCT, thereby enhancing cystine import and

glutathione synthesis (34, 36, 37). This protects cancer cells from

oxidative stress and ferroptosis (37). By inhibiting the kynurenine

pathway, it may be possible to disrupt this protective mechanism

and re-sensitize cancer cells to ferroptosis, offering a new avenue for

cancer therapy (Figure 1B). Preclinical studies have shown that

combining ferroptosis inducers with KP inhibitors can enhance the

anti-tumor effects of both therapies. In a recent study by Fiore et al.,

inhibition of IDO1 sensitized cancer cells to ferroptosis, leading to

increased cell death in vitro and reduced tumor growth in vivo (37)

by inducing cell death and enhancing the immune response.
Inhibition of IDO1 and TDO2: a
promising therapeutic strategy

The failure of single-agent IDO1 inhibitors, such as epacadostat,

in clinical trials highlighted the limitations of targeting a single

enzyme in the kynurenine pathway (Table 1). One of the key

challenges is the compensatory upregulation of other enzymes,

such as TDO2, which can maintain kynurenine production in the

presence of IDO1 inhibitors (Figure 1B) (26, 38). To overcome this

challenge, researchers have begun exploring the potential of dual
frontiersin.or
FIGURE 2

The IDO1-KYN-AHR axis and its role in promoting immunosuppression. (A) HIF1a and HIF1b facilitate the transcription of genes essential for glucose
metabolism and cell proliferation/survival. (B) In cisplatin-resistant cells, increased KYN serves as a ligand for AHR, which becomes activated and
translocated to the nucleus. Metabolic reprogramming in resistant cells leads to HIF1a downregulation, allowing ARNT to preferentially bind with
activated AHR. This switch to AHR-driven pathways enhances the expression of immunosuppressive genes, fostering tumor immune evasion. (C)
Targeting KYN could potentially reverse the immunosuppressive tumor microenvironment (TME), offering a therapeutic strategy to enhance
antitumor immunity.
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inhibitors targeting both IDO1 and TDO2 (Figure 1C), thereby

reducing the likelihood of compensatory metabolic pathways

sustaining kynurenine production (39, 40).

In our recent preclinical studies, dual inhibition of IDO1 and

TDO2 with the novel agent AT-0174 effectively reduced KYN levels,

increased tumor infiltration with natural killer cells, and reduced

regulatory T cells in cisplatin-resistant lung cancer models (38). In

these studies, dual inhibition of IDO1 and TDO2 as monotherapy

was similarly effective on overall survival as anti-PD1 monotherapy.

Moreover, AT-0174 was synergistic when combined with anti-PD1

therapy on significant reduction of tumor growth, enhanced

infiltration of CD8+ T cells into the TME, and improved survival

time in animal models of treatment-resistant NSCLC tumors. This

combination therapy not only reduced the immunosuppressive

effects of KYN but also promoted immune-mediated

tumor clearance.

These mechanisms were further substantiated in an aggressive

model of glioblastoma where AT-0174 monotherapy increased

natural killer cell infiltration, reduced Treg cells in tumor tissues,

and was synergistic with Temozolomide (TMZ), an alkylating

agent, in significantly prolonging animal survival (41).

Glioblastoma is a highly aggressive brain cancer with limited

treatment options and rapid resistance development to TMZ.

These results suggest that AT-0174 administered at the time of

Temozolomide initiation may, through synergistic mechanisms, aid

in immune-mediated elimination of emergent tumor variants with

resistance to Temozolomide, thereby improving patient survival.

In another study of high-grade serous carcinoma (HGSC), which

is known to exhibit poor outcomes due to therapy resistance and an

immunosuppressive TME, Crump et al. reported that HGSC tumors

are driven predominantly by TDO2 in promoting tumor progression

and immune evasion via kynurenine (KYN) production. High IL6

levels, linked to poor prognosis, correlate with elevated KYN in

patient samples. Dual inhibition of IDO1/TDO2 using AT-0174

reduced tumor growth, diminished tumor-associated macrophages
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(TAMs), and suppressed PD-L1 expression. Cisplatin in combination

with AT-0174 extended survival in preclinical models (42).

Together, these studies highlighted the potential of metabolic

reprogramming of the TME to overcome immunotherapy

resistance and provide a basis for advancing dual IDO1/TDO2

inhibitors in clinical settings.
Clinical trials

The first dual IDO1 and TDO2 inhibitor Phase I clinical trial

(NCT03306420) was completed with 15 enrolled patients with

advanced solid tumors (43). Another potent dual-inhibitor, AT-0174,

is currently being tested across multiple sites in an initial clinical trial

(ACTRN12623000956606), evaluating the efficacy in patients also with

advanced metastatic solid cancers with promising preliminary results

(Figure 3) (44). M4112, another IDO1/TDO2 inhibitor, did not present

any serious safety concerns at doses up to 800 mg twice daily, though

the best overall response observed was stable disease in nine patients

(60%) with a progression-free survival of 3.7 months; it is noteworthy,

however, that most of these patients had tumor types that are typically

unresponsive to immunotherapy (43, 45). Unfortunately, due to the

early termination of the study, neither the maximum tolerated dose

(MTD) nor the recommended phase 2 dose (RP2D) was established.

Another limitation of this study was that patient tumor biopsies were

not obtained, but now, a KYN antibody is commercially available that

could have been used to conduct immunohistochemistry staining.

Therefore, neither changes in IDO/TDO expression nor changes in the

tumor microenvironment could be evaluated. The termination of this

study points to the potential for the appropriate patient cohort to have

been investigated, possibly by characterizing patient KYN levels prior

to treatment.

While the final results from the ACTRN trial are still pending,

findings from the NCT trial suggest that dual inhibition of IDO1

and TDO2 may enhance the effectiveness of immunotherapies by
TABLE 1 IDO1 and TDO therapies in clinical development.

Drug name Target Description/Effects

Epacadostat (INCB024360) IDO1
Studied with ICIs (such as pembrolizumab and nivolumab) for advanced melanoma tumors; failed to meet primary

endpoints and trials were suspended

Indoximod (1-methyl-
D-tryptophan)

IDO1 Acts as a tryptophan mimetic, evaluated for breast cancer and melanoma (alongside other therapies)

Linrodostat (BMS-986205) IDO1
Tested in combination with nivolumab for non-small lung, head, and neck cancers; stopped in Phase III trials dur to

industry challenges

Navoxiimod (GDC-0919) IDO1 Assessed in early-phase clinical trials (as a monotherapy and with other agents) for advanced solid tumors

PF-06840003 IDO1 Went through clinical trials for safety and efficacy against advanced malignancies

KHK2455 IDO1 Investigated for potential in treating advanced solid tumors (both along and with other treatments)

M4112
IDO1/
TDO2

Demonstrated safety and efficacy as a monotherapy in Phase I trials, though plasma kynurenine levels were not significantly
reduced in a steady state

AT-0174
IDO1/
TDO2

Showed significant tumor growth suppression in platinum-resistant non-small lung cancer models, especially with anti-PD-
1 therapy
Green denotes IDO1 inhibitors. Blue denotes IDO1/TDO2 inhibitors.
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reversing the immunosuppressive environment created by the KP.

Therefore, further research into the pharmacodynamics, safety, and

efficacy of dual inhibitors in combination with immune checkpoint

inhibitors (ICIs) is of prime importance and warrants

further investigation.
Inhibition of the kynurenine pathway
combined with immune
checkpoint blockade

Immune checkpoint inhibitors, such as anti-PD1 and anti-

CTLA4 antibodies, have revolutionized the treatment of certain

cancers by unleashing the immune system to attack tumor cells.

However, many patients do not respond to these therapies,

particularly those with tumors that have developed mechanisms

of immune evasion. One of the primary mechanisms of immune

evasion is the upregulation of the kynurenine pathway, which

suppresses the activation and proliferation of effector immune

cells (10, 46).

By combining KP inhibitors with immune checkpoint blockade,

it may be possible to enhance the effectiveness of immunotherapy in

these resistant tumors. Inhibiting the KP restores tryptophan levels

and reduces the accumulation of immunosuppressive metabolites,

thereby allowing effector T cells to proliferate and attack the tumor.

Preclinical studies from our group and others have demonstrated

that dual inhibition of IDO1 and TDO2, especially when combined

with anti-PD1 therapy, can significantly improve survival in mouse

models of lung cancer (47, 48). This combination therapy not only
Frontiers in Oncology 06
reduces tumor growth but also enhances the immune response,

leading to durable tumor regression.
Future directions

While the KP represents a promising therapeutic target, it is

unlikely that a one-size-fits-all approach will be effective for all

patients. The expression of IDO1, TDO2, and other enzymes in the

kynurenine pathway varies widely among different tumor types and

even among patients with the same type of cancer (49–52). Testing

(e.g. KYN levels) and additional characterization of expression

levels in sensitive and resistant tumor types is warranted among

all patient populations. Therefore, personalized approaches that

tailor therapy based on specific metabolic tumor profiles are likely

to be more effective in improving outcomes. Biomarker-driven

approaches could help identify patients who are most likely to

benefit from KP inhibitors and other combination therapies. Future

clinical trials should evaluate the use of new and existing tests to

assess biomarkers, such as IDO1/TDO2 expression and kynurenine

levels, to guide treatment decisions. Another logical combination

treatment could involve the use of AHR inhibitors to suppress

IDO1 activities.

While preclinical studies have demonstrated the potential of

targeting the KP to overcome drug resistance, translating these

findings into clinical practice will require carefully designed trials.

One of the key challenges in clinical translation is identifying the

optimal combination of therapies that can effectively target the

kynurenine pathway while minimizing toxicity. Combining IDO1/
FIGURE 3

A historical timeline tracing research milestones on the physiology of IDO and TDO. It highlights key discoveries in the understanding of these
enzymes’ roles, particularly in immune regulation and cancer, and the development of inhibitors targeting IDO/TDO pathways to explore
therapeutic potential.
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TDO2 inhibitors with ICIs has shown promise in preclinical

models, but the safety and efficacy of this combination need to be

validated in clinical trials.
Conclusion

Mechanisms of cancer resistance mediated by metabolic

alterations point to the kynurenine pathway as a critical metabolic

axis in the TME that supports cancer cell survival and immune

evasion. By targeting and decreasing the metabolic crosstalk between

cancer cells and immune cells, particularly through dual inhibition of

IDO1 and TDO2, new therapeutic strategies can be developed to

overcome drug resistance and improve patient outcomes. These

targets can not only be used to identify tumors that may be

sensitive to inhibitors but also offer the potential for combining

kynurenine pathway inhibition with immune checkpoint blockade as

a promising approach to treating resistant cancers. As research into

the metabolic vulnerabilities of cancer cells continues to evolve, the

kynurenine pathway will likely remain a key target for future

therapeutic interventions.
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