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Innovative applications and
future trends of multiparametric
PET in the assessment of
immunotherapy efficacy
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Jinan, China, 2Graduate School, Shandong First Medical University, Jinan, China
Background: The integration of multiparametric PET (Positron Emission

Tomography.) imaging and multi-omics data has demonstrated significant

clinical potential in predicting the efficacy of cancer immunotherapies.

However, the specific predictive power and underlying mechanisms

remain unclear.

Objective: This review systematically evaluates the application of

multiparametric PET imaging metrics (e.g., SUVmax [Maximum Standardized

Uptake Value], MTV [Metabolic Tumor Volume], and TLG [Total Lesion

Glycolysis]) in predicting the efficacy of immunotherapies, including PD-1/PD-

L1 inhibitors and CAR-T therapy, and explores their potential role in improving

predictive accuracy when integrated with multi-omics data.

Methods: A systematic search of PubMed, Embase, and Web of Science

databases identified studies evaluating the efficacy of immunotherapy using

longitudinal PET/CT data and RECIST or iRECIST criteria. Only original

prospective or retrospective studies were included for analysis. Review articles

and meta-analyses were consulted for additional references but excluded from

quantitative analysis. Studies lacking standardized efficacy evaluations were

excluded to ensure data integrity and quality.

Results:Multiparametric PET imaging metrics exhibited high predictive capability

for efficacy across various immunotherapies. Metabolic parameters such as

SUVmax, MTV, and TLG were significantly correlated with treatment response

rates, progression-free survival (PFS), and overall survival (OS). The integration of

multi-omics data (including genomics and proteomics) with PET imaging

enhanced the sensitivity and accuracy of efficacy prediction. Through

integrated analysis, PET metabolic parameters demonstrated potential in

predicting immune therapy response patterns, such as pseudo-progression

and hyper-progression.
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Conclusion: The integration of multiparametric PET imaging and multi-omics

data holds broad potential for predicting the efficacy of immunotherapies and

may support the development of personalized treatment strategies. Future

validation using large-scale, multicenter datasets is needed to further advance

precision medicine in cancer immunotherapy.
KEYWORDS

multiparametric positron emission tomography, immunotherapy, tumor
microenvironment, prognostic prediction, multi-omics integration
1 Introduction

The introduction of immune checkpoint inhibitors (ICIs) has

revolutionized cancer treatment, significantly improving outcomes in

patients with advanced-stage cancer by enhancing immune

surveillance to combat tumor growth. These therapies have proven

effective in prolonging progression-free survival (PFS) and overall

survival (OS), but evaluating their efficacy presents unique challenges.

Traditional imaging techniques like Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI) typically measure changes

in tumor size, which may not accurately reflect the therapeutic

response in the context of immunotherapy. This is particularly true

for immune-related phenomena such as pseudoprogression and

hyperprogression, where tumor volume may not change

immediately or may increase before a subsequent reduction,

complicating response evaluation.

Multiparametric PET/CT has emerged as a powerful tool in

assessing treatment efficacy by providing functional insights into

tumor metabolism and immune responses within the tumor

microenvironment (TME). Unlike conventional imaging, PET/CT

can capture early metabolic alterations and immune cell infiltration,

offering a more comprehensive picture of treatment effects before

morphological changes are visible (1, 2). Key semi-quantitative

parameters like SUVmax, MTV, and TLG reflect shifts in

metabolic activity and can identify early signs of treatment

response, while PET-derived markers such as PD-L1 expression

and CD8-positive T cell infiltration offer further insights into the

immunological dynamics of the TME (3–5).

This review examines the role of multiparametric PET/CT in

evaluating immunotherapy outcomes, with a focus on PET-derived

metabolic parameters and immune responses to inform clinical

decision-making (Table 1). It also discusses the limitations of

traditional imaging in detecting immune-related changes and

reviews the RECIST and iRECIST criteria for evaluating

immunotherapy responses. Concepts such as pseudoprogression

and hyperprogression will be discussed within this context,

highlighting the potential of PET/CT to detect these atypical

patterns of tumor response, thus offering a more accurate early

assessment of immunotherapy efficacy.
02
2 Materials and methods

2.1 Literature search strategy and
inclusion criteria

A comprehensive literature search was conducted across

PubMed, Embase, Web of Science, and the Cochrane Library for

studies published from 1925 to April 2024. The search included

terms such as “multiparametric PET,” “SUVmax,” “MTV,” “TLG,”

“immunotherapy,” “CAR-T therapy,” “RECIST,” and “iRECIST.”

Eligible studies involved adult cancer patients receiving

immunotherapy with longitudinal [18F] FDG PET/CT scans, and

used RECIST or iRECIST criteria for tumor evaluation and

response assessment.
2.1.1 Inclusion criteria
Eligible studies involved adult cancer patients receiving

immunotherapy, with longitudinal PET/CT scans performed.

Studies were required to report both morphological and

metabolic response data, evaluated using RECIST or iRECIST

criteria, and to include clinical outcomes such as PFS or OS.

2.1.2 Exclusion criteria
Studies were excluded if they did not use standardized RECIST

or iRECIST criteria, had inadequate imaging quality or incomplete

patient data, were non-clinical (e.g., animal or in vitro studies), or

had small sample sizes (n < 30) or insufficient follow-up.
2.2 Data extraction and quality assessment

Key data extracted included patient baseline characteristics,

PET imaging metrics (e.g., SUVmax, MTV, TLG), multi-omics

data, efficacy evaluation standards (RECIST or iRECIST), and

survival outcomes (e.g., PFS, OS). Two independent reviewers

conducted data extraction and quality assessment using the

Newcastle-Ottawa Scale (NOS) to ensure methodological rigor

and reliability.
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2.3 Limitations and potential biases

While RECIST and iRECIST are essential for assessing tumor

progression, several limitations and biases should be acknowledged.

Variations in the quality of [18F]FDG PET/CT imaging—such as

differences in scan resolution, imaging protocols, and patient

preparation—can affect the consistency of results. Methodological

discrepancies, including variations in lesion size measurement

and timing of evaluations, may also hinder result comparability.

Additionally, selection bias is a concern as studies often focus

on specific cancer types or treatment regimens, potentially

overrepresenting immunotherapy responders. Lastly, distinguishing

pseudoprogression from true progression remains challenging, as

immune-related changes in the tumor microenvironment can lead to

false positives, misclassifying immune responses as tumor progression.
3 The role of PET/CT imaging in
tumor immunotherapy

3.1 The role of multiparametric PET in
assessment standards

Multiparametric PET imaging, including key metrics such as

SUVmax, MTV, and TLG, plays a crucial role in assessing tumor

metabolism and immune responses within the TME during

immunotherapy. While SUVmax reflects the peak metabolic activity,

it does not capture intratumoral heterogeneity, whereasMTV and TLG

provide a more comprehensive view of the tumor’s metabolic burden

and are recognized as significant prognostic factors in lung cancer

immunotherapy. These metrics help in monitoring immune-related

changes, such as pseudo-progression and hyper-progression, thus

offering more accurate treatment response assessments.

The TME is central to the efficacy of immunotherapies like PD-

1/PD-L1 inhibitors and CAR-T cell therapies, influencing immune

activation and tumor progression through complex feedback

mechanisms (as illustrated in Figure 1). These mechanisms affect

treatment outcomes, and integrating PET with molecular and

immunological data can optimize therapeutic strategies and

improve patient outcomes.
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In lung cancer immunotherapy, whole-body MTV has been

shown to predict prognosis, with higher MTV values correlating

with more aggressive tumors and greater likelihood of disease

progression. For example, baseline total MTV on PET is a

predictor of overall survival (AUC=0.64), and mid-treatment

MTV is a stronger prognostic marker for survival and

progression-free survival (AUCs of 0.83 and 0.82, respectively).

These findings highlight the value of residual TMTV after 6–8

weeks of immune checkpoint inhibitor therapy as an independent

prognostic indicator (6).

Studies also show that PET/CT imaging parameters are

associated with immune therapy outcomes. For instance, Seban

et al. (2020) found that blood inflammatory markers, such as the

Derived Neutrophil-to-Lymphocyte Ratio (dNLR), Platelet-to-

Lymphocyte Ratio (PLR), and C-reactive Protein (CRP), correlated

with PFS and OS in Non-Small Cell Lung Cancer (NSCLC) patients

undergoing immunotherapy or chemotherapy. Specifically, high

dNLR, SII, and SLR were independent prognostic factors for PFS

and OS in the immunotherapy cohort (7). Furthermore, Monaco

et al. (2020) found that baseline MTV is an independent predictor of

response to ICIs. Patients achieving disease control (complete

response, partial response, or stable disease) had significantly lower

median MTV values compared to those with progressive disease (77

vs. 160.2, p = 0.039). Additionally, lower MTV and TLG values were

associated with improved OS (p = 0.03 and 0.05, respectively) (8).

Similarly, Ito et al. (2020) demonstrated that melanoma patients with

MTV values above the median had significantly shorter OS compared

to those with values below the median. Themedian OS for all patients

was 14.7 months, with MTV serving as a strong independent

prognostic factor (p = 0.001). Patients with MTV above the median

had a median survival of 10.8 months, while those with MTV below

the median had a median survival of 26.0 months (9).
3.2 Development and application of novel
PET radiotracers

The growth and survival of cancer cells are driven by their

unique metabolic features, particularly the Warburg effect, where

cells preferentially undergo aerobic glycolysis even in the presence
TABLE 1 Summary of clinical data related to immunotherapy.

Types
of Immunotherapy

Efficacy Indicators PET: SUVmax PET: TLG

PD-1/PD-L1 Inhibitors OS、PFS An increase in SUVmax is associated with
therapeutic efficacy.

The change in TLG is associated with
immune response assessment.

CAR-T Cell Therapy Complete Remission (CR)、Partial
Remission (PR)

SUVmax cannot directly predict
therapeutic outcomes.

No significant change in TLG was observed.

Immune
Checkpoint Inhibitors

PFS
Duration of Response (DOR)

SUVmax is correlated with the type of response. A decrease in TLG is associated with
tumor progression.

Cytokine Therapy Immune Cell Infiltration
Cytokine Levels

Elevated SUVmax is associated with enhanced
immune response.

An increase in TLG suggests active
immune response.

Vaccine Therapy Antigen-Specific Immune Response There is a correlation between SUVmax and
therapeutic efficacy.

The predictive value of TLG for therapeutic
efficacy is limited.
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of oxygen (10). This metabolic shift results in increased glucose

uptake and lactate production, a hallmark that can be detected using

[18F]FDG PET imaging. While [18F] FDG is widely used to assess

tumor metabolism, it has limitations in evaluating immunotherapy

efficacy, particularly in distinguishing between pseudoprogression

and true progression. To address these challenges, there is growing

interest in developing novel PET radiotracers that target immune-

related biomarkers, which can provide more specific and dynamic

insights into tumor immune responses and progression during

immunotherapy.

Recent advancements have led to the development of PET

radiotracers targeting key immune markers such as PD-L1, CD8+

T cells, and regulatory T cells (Tregs). These tracers enable non-

invasive visualization of immune activity within the TME,

providing valuable information on immune cell infiltration,

activation, and response to therapy (11).

An overview of these tracers is provided in Table 2.
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3.2.1 PD-L1-targeted PET radiotracers
PD-L1 expression is a critical factor in determining response to

ICIs. PET tracers targeting PD-L1, such as [68Ga]-NOTA-WL12,

have demonstrated promising results in predicting immunotherapy

efficacy. For instance, Zhou et al. (2021) conducted the first human

study to evaluate [68Ga]-NOTA-WL12 as a non-invasive PET

radiotracer for in vivo detection of tumor PD-L1 expression. A

strong positive correlation was observed between tumor uptake

(SUVpeak) and PD-L1 immunohistochemistry (r = 0.9349; P =

0.002), which suggesting that PD-L1 PET could help predict the

response to pembrolizumab in combination with chemotherapy.

However, a limitation of this study was the reliance on

immunohistochemistry from a single lesion, without addressing

expression variability across multiple lesions (12).Similarly, Liu

et al. (2022) demonstrated that [68Ga] Ga-NOTA-Nb109

effectively detected PD-L1 expression in NSCLC xenografts,

supporting its potential as a tool for patient selection in
TABLE 2 Overview of the application of PET tracers in immunotherapy.

PET Tracers Indicated
Therapy

Mechanism
of Action

Potential
Applications

Preclinical
Research Progress

Clinical Trial Progress

[18F] FDG Cancer
Immunotherapy

Metabolically
Active
Tumor Cells

Monitoring Tumor
Metabolic Activity

Effective Monitoring of
Tumor Metabolism

Clinical Research Phase: Evaluation of
Tumor Metabolic Monitoring

[18F] FLT Cancer
Immunotherapy

Cell Proliferation Monitoring Tumor
Cell Proliferation

Effective Monitoring of
Proliferating Tumor Cells

In Clinical Trials: Used for
Proliferating Tumors

Anti-CD25
Antibody-
Tagged Tracers

Immune
Cell Monitoring

Immune
Cell Activity

Monitoring Treg
Cell Activity

Successful Treg Cell Labeling Preclinical Research: Evaluation of
Treg Cell Monitoring

[11C] choline Cancer
Immunotherapy

Cell
Membrane
Synthesis

Monitoring Tumor Cell
Membrane Synthesis

Used for Monitoring Tumor
Cell Membrane Synthesis

Currently in Early Clinical Trial Phase

[18F] FMISO Cancer
Immunotherapy

Hypoxic
Microenvironment

Monitoring Tumor
Hypoxic Regions

Successful Identification of
Hypoxic Microenvironment

Ongoing Clinical Trials for
Hypoxic Labeling
FIGURE 1

The feedback mechanisms between immunotherapy and the tumor microenvironment.
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immunotherapy. These findings highlight how PD-L1-targeted PET

can guide personalized treatment by identifying patients who are

likely to benefit from PD-L1-targeted therapies (13).

3.2.2 CD3 and CD8+ T cell-targeted
PET radiotracers

CD3 and CD8+ T cells play a central role in the immune

response against tumors, making them key targets for monitoring

the effects of immunotherapy. In a study by Benjamin M. Larimer

et al. (2020), CD3-targeted PET radiotracers demonstrated a strong

correlation between high radiotracer uptake and tumor volume

reduction in a mouse model undergoing anti-CTLA-4 therapy. This

suggests that CD3 PET imaging could be a promising tool for

evaluating the therapeutic efficacy of immunotherapy (14). Michael

D. Farwell et al. (2022) conducted a phase 1 human PET imaging

study using an anti-CD8 radiolabeled mini-antibody, [89Zr] Df-

IAB22M2C. The study successfully visualized the distribution of

CD8+ T cells in both tumors and reference tissues of patients with

metastatic solid tumors, demonstrating the potential of this

approach for predicting early responses to immunotherapy (15).

This work provides critical technical support for the quantitative

monitoring of CD8+ T cells and facilitates the early evaluation of

immune therapy responses during treatment.

3.2.3 Emerging immune-related PET radiotracers
Tregs are known to suppress immune responses and contribute

to immune evasion by tumors. Therefore, imaging the density of

Tregs within the TME can provide crucial information on the

tumor’s ability to evade immune surveillance. Novel PET

radiotracers targeting Tregs, such as those using antibodies

against specific Treg markers, are being developed to assess

immune suppression in tumors. For instance, Elevated Treg levels

are associated with metastatic spread to tumor-draining lymph

nodes (TDLNs), underscoring the importance of Treg-targeted PET

radiotracers for assessing immunotherapy efficacy (16).

TAMs, which are key contributors to immune suppression and

tumor progression in the tumor microenvironment, represent a

promising target for monitoring the effectiveness of immune-based

therapies. Lee et al. (2021) further confirmed that PET radiotracers

labeled with anti-CD25 antibodies bind specifically to Tregs and

enable successful imaging in murine models. The interleukin-2

receptor a chain (IL-2Ra; CD25) is a promising target for

immune therapy and radioimmunotherapy in lymphomas.

Immuno-PET can aid in visualizing CD25 expression in vivo.

Biodistribution studies demonstrated high tumor uptake of 89Zr-

CD25 IgG (8.7 ± 0.9%ID/g), surpassing both blood (5.2 ± 1.6%ID/g)

and other organ uptakes (0.7 to 3.5%ID/g) (17). Several PET

radiotracers designed to label M1 and M2 macrophages are

currently undergoing preclinical evaluation (18). The targeting T

cell metabolic activity, including [18F]FDG or 18F-fluoro-thymidine

(FLT), holds significant potential for assessing early responses to

immunotherapy (19).
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3.3 PET imaging in the evaluation of
pseudo-progression and true progression
during immunotherapy

Traditional tumor response criteria, such as RECIST, are

limited in distinguishing pseudo-progression from true

progression in cancer patients undergoing immunotherapy.

Pseudo-progression refers to temporary tumor growth due to

immune cell infiltration and inflammation, which does not reflect

true tumor progression (20). To address this, newer criteria like

iRECIST and irRC have been developed to better differentiate these

phenomena, incorporating confirmatory imaging and a more

nuanced approach to the appearance of new lesions. A

retrospective study by Masatoyo Nakajo et al. evaluated the

predictive value of both the European Organization for Research

and Treatment of Cancer (EORTC) and PERCIST criteria in

predicting PFS in patients with advanced or metastatic gastric

cancer treated with nivolumab (21). PET/CT, particularly [18F]

FDG PET, is increasingly used to evaluate metabolic responses

during immunotherapy, providing an early indication of treatment

effects and helping differentiate pseudoprogression from true

progression. Studies show that FDG-PET/CT can predict long-

term prognosis, detect secondary progression, and identify

immune-related adverse events (irAEs), which may precede

clinical symptoms (22).

3.3.1 High progression disease (HPD) in NSCLC
In NSCLC, HPD is associated with poorer outcomes and higher

mortality, and it remains a significant challenge in immunotherapy.

HPD, occurring in about 9% of advanced cancer patients and 29%

of head and neck cancer patients treated with PD-1/PD-L1

inhibitors, may result from abnormal immune responses or

immune dysregulation in the tumor microenvironment (23, 24).

Identifying HPD requires a multidimensional approach, combining

tumor growth patterns, biomarker profiles, and the patient’s

immune status, with PET imaging and ctDNA analysis providing

valuable predictive data for early identification.

3.3.2 Distinguishing pseudo-progression from
hyper-progression in lung cancer: insights from
SUVmax trends, EGFR mutations, and PD-
L1 expression

Based on the findings regarding pseudo-progression and hyper-

progression, this review first explores the differences in the trends of

SUVmax variations between patients with pseudo-progression and

hyper-progression (Figure 2).

Furthermore, we delve deeper into the relationships between

SUVmax, immune response types, EGFR mutation status, and PD-

L1 expression, comparing the differences between pseudo-

progression and hyper-progression patients (Figure 3). High

SUVmax values are frequently observed in EGFR-mutated cases,

supporting the hypothesis that PD-L1 expression promotes an
frontiersin.org
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inflammatory tumor microenvironment, enhancing glucose

metabolism and FDG uptake. Lower SUVmax values are typically

seen, reflecting reduced immune-related metabolic activity.

3.3.2.1 SUVmax trends in pseudo-progression and
hyper-progression

SUVmax trends during immunotherapy typically follow two

distinct patterns: pseudo-progression and hyper-progression. In

pseudo-progression, the early phase (0–2 months) is marked by a

mild increase in SUVmax, primarily due to transient immune

activation and inflammation. This mimics tumor progression but

does not reflect true tumor growth. During the plateau phase (2–4

months), SUVmax stabilizes or slightly declines, indicating

resolution of immune-mediated inflammation without evidence

of actual tumor progression. In the late phase (4–6 months), a

significant decline in SUVmax suggests an effective therapeutic

response, reflecting reduced metabolic activity and immune-

mediated tumor control.

In contrast, hyper-progression is distinguished by a rapid and

sustained increase in SUVmax over the 0–6 month period, indicating

unchecked tumor metabolic activity and aggressive growth. Unlike

pseudo-progression, hyper-progression lacks a plateau phase, with the

continuous rise in SUVmax reflecting tumor-driven metabolic

processes and accelerated proliferation rather than immune-

mediated inflammation.
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3.3.2.2 Biological mechanisms and clinical implications

The distinct SUVmax trends in pseudo-progression and hyper-

progression highlight their biological differences with important

clinical implications. In pseudo-progression, early SUVmax

increases reflect immune cell infiltration and inflammation

induced by ICIs. This transient activation, captured by FDG-PET,

stabilizes or declines over time, signifying immune-mediated tumor

suppression by T cells and cytokines.

In hyper-progression, SUVmax rises continuously, reflecting

aggressive tumor proliferation driven by oncogenic alterations such

as EGFR mutations, MDM2 amplification, or TP53 mutations.

FDG-PET imaging captures sustained metabolic hyperactivity,

independent of immune involvement. These divergent patterns

emphasize the necessity of longitudinal SUVmax monitoring to

differentiate between immune activation and true tumor

progression, enabling precise therapeutic decision-making.
3.3.2.3 Role of EGFR mutations, SUVmax and
PD-L1 expression

Elevated SUVmax in pseudo-progression aligns with findings

that immune-related metabolic activity can mimic tumor

progression. Conversely, moderate SUVmax in hyper-progression

more reliably reflects true tumor proliferation, distinguishing it

from pseudo-progression. In pseudo-progression, EGFR mutations
FIGURE 3

The correlations between SUVmax and immune response type, genetic mutations (EGFR), and PD-L1 expression.
FIGURE 2

The differences in the trend of SUVmax variations between patients with pseudo-progression and hyper-progression.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1530507
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiao et al. 10.3389/fonc.2024.1530507
may drive heightened immune responses, contributing to higher

SUVmax values due to increased immune cell recruitment. In

hyper-progression, EGFR mutations are likely oncogenic drivers

that accelerate tumor growth, independent of immune activity. PD-

L1-positive tumors amplify immune responses, increasing

metabolic activity detectable on FDG-PET (higher SUVmax),

while PD-L1-negative tumors exhibit lower SUVmax levels,

correlating with reduced immune-related metabolic activity.

3.3.2.4 Clinical implications for treatment strategies

Integrating SUVmax, EGFR mutation status, and PD-L1

expression provides a comprehensive framework for distinguishing

pseudo-progression from hyper-progression in lung cancer. Elevated

SUVmax with EGFR mutations and PD-L1 positivity suggests

immune-related metabolic activity, where continued immunotherapy

may be beneficial despite radiological progression. In contrast, a

moderate SUVmax combined with tumor progression markers is

indicative of actual tumor growth, thereby necessitating the

consideration of alternative therapeutic strategies. This approach is

crucial for refining immunotherapy, and large-scale clinical trials are

needed to validate and optimize this diagnostic framework.

4 Multiparametric PET and radiomics

In recent years, the rapid development of artificial intelligence

(AI) and radiomics technologies has substantially enhanced the

application of PET in the quantification of tumor heterogeneity and

the prediction of treatment responses. Radiomics, an emerging

imaging technology, involves the extraction and quantification of

high-dimensional features from medical images, offering a powerful

tool for elucidating the histological and molecular characteristics of

tumors. These features not only enable the assessment of tumor

morphology and metabolic activity but also provide insights into

the underlying biological heterogeneity, which may not be visible

through conventional imaging.

Radiomic features (RF) are primarily categorized into first-order

statistical features, such as SUV, MTV, and TLG, as well as higher-

provide statistical features, including texture analysis. First-order

features offer quantitative measurements of tumor metabolic activity

and spatial distribution, while higher-order features, such as texture

analysis, capture complex patterns that describe the tumor's internal

structure and heterogeneity, helping to assess its spatial relationships

and uniformity. Numerous studies have demonstrated that these

radiomic features correlate with tumor histological subtypes, genetic

mutations (EGFR, KRASmutations), and immune biomarkers (PD-L1

expression) (25). For example, MTV and TLG, as imaging-derived

quantitative metrics, have been shown to be prognostic indicators for

clinical outcomes in various cancers, including NSCLC, and can

effectively predict patients’ responses to immunotherapy and targeted

therapies. Iravani et al. (2020) found that FDG PET-based texture

features could effectively distinguish between EGFRmutations in exons

19 and 21, with an AUC of 0.86, sensitivity of 0.84, specificity of 0.73,

and accuracy of 0.78 (26–28).

While radiomics provides detailed quantitative data about tumor

characteristics, the integration of AI takes this analysis a step further,
Frontiers in Oncology 07
enabling automated interpretation of complex patterns in imaging

data. AI algorithms are capable of automatically extracting texture

features from PET scans and classifying tumor subtypes, such as

distinguishing between adenocarcinoma and squamous cell

carcinoma. Furthermore, AI facilitates the analysis of complex

relationships between imaging features, genetic mutations, and

immune-related biomarkers, thereby assisting clinicians in identifying

potential driver mutations and optimizing patient stratification and

personalized treatment strategies (29). The convergence of AI and

radiomics is not only advancing tumor classification but also holds

significant promise in the context of immunotherapy. For instance, AI-

enhanced multiparametric PET analysis has shown potential in

predicting the long-term efficacy of immunotherapy, identifying

patients most likely to benefit from treatment, and optimizing

individualized treatment regimens (30).

It is important to note that multimodal radiomics research is

expanding the clinical utility of PET imaging. For example, Zhou

et al. (2022) developed the Deep Radiomics Bevacizumab Efficacy

Predicting Model (DERBY), which, after incorporating

histopathological features, demonstrated robust accuracy for

predicting tumor response in an external validation cohort (AUC

0.83, 95% CI [0.75-0.92], sensitivity 80.4%, specificity 76.8%). DERBY

also showed prognostic value, with responders exhibiting significantly

longer progression-free survival (9.6 vs 6.3 months, p = 0.002) and

overall survival (27.6 vs 18.5 months, p = 0.010) compared to non-

responders (31, 32). This study highlights the significant potential of

combining multiparametric PET with AI and radiomics, which not

only enhances tumor assessment accuracy but also plays a critical role

in precision medicine. With continued advancements in data

acquisition, computational capabilities, and analytical algorithms,

these multimodal approaches are expected to increasingly influence

the management of a wide range of tumor types and therapeutic

strategies in the near future.
5 Integration of multiparametric PET
imaging and multi-omics data

5.1 Integration of multi-omics and PET
imaging for precision oncology

The integration of multiparametric PET imaging with multi-

omics data, including genomics, proteomics, and metabolomics,

has transformed cancer research by offering a more holistic

understanding of tumor biology. This convergence of imaging

and molecular data provides a comprehensive view of tumor

characteristics, enabling precise treatment planning and

personalized therapeutic strategies.

Genomic data, such as driver mutations (e.g., EGFR and ALK

in non-small cell lung cancer), plays a pivotal role in guiding

targeted therapies, influencing patient responses and shaping

treatment decisions (33). Proteomics, which investigates protein

expression and interactions within both tumor cells and their

microenvironment, provides valuable insights into immune evasion,

tumor progression, and therapeutic resistance. This understanding is
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crucial for predicting responses to immunotherapy and other targeted

treatments, emphasizing the importance of the tumor immune

microenvironment in clinical decision-making. By combining these

omics layers with PET imaging, clinicians can achieve a more accurate

and individualized approach to cancer treatment.
5.2 Metabolic heterogeneity and machine
learning in predicting cancer
treatment responses

The integration of PET imaging withmulti-omics data, particularly

genomics, proteomics, and metabolomics, provides a comprehensive

approach to understanding tumor metabolic heterogeneity and

predicting therapeutic responses. AI plays a crucial role in leveraging

the synergies between PET imaging parameters and molecular data to

enhance the precision of treatment planning. Emerging evidence has

shown a strong correlation between PET imaging features and specific

genomic alterations. For instance, EGFR mutations are frequently

associated with increased SUVmax, reflecting higher metabolic

activity in certain tumor subtypes. Moreover, MTV and TLG, which

quantify overall metabolic activity and heterogeneity, are valuable for

predicting responses to immunotherapy (34).

Proteomic andmetabolomic data provide the biological context for

these imaging parameters, offering deeper insights into how different

tumor subtypes respond to treatments. The combination of these

multi-omics platforms with immunotherapy data can help identify

biomarkers that guide clinical decision-making, allowing for more

precise and individualized therapeutic strategies.

Machine learning models are further enhancing the integration of

PET imaging and multi-omics data. The MONDRIAN study, for

example, demonstrated the potential of machine learning algorithms

in predicting early-stage NSCLC patients’ responses to stereotactic

body radiation therapy (SBRT). These algorithms also help identify

features of the tumor microenvironment, predict responses to

immunotherapy, and evaluate mechanisms of immune resistance

(35). By refining treatment response predictions, machine learning

technologies provide robust support for tailoring individualized

treatment plans, improving clinical outcomes in cancer therapy.
5.3 Impact of multi-omics integration on
clinical outcomes

The integration of multiparametric PET imaging with multi-

omics data is increasingly recognized as a promising strategy in

clinical oncology. This approach enhances the predictive accuracy

of therapeutic responses, particularly for immunotherapy, in

cancers such as lung cancer and melanoma. By combining

imaging data with genomic, proteomic, and metabolomic

information, it offers deeper insights into tumor biology,

facilitates the identification of novel biomarkers, and supports

earlier diagnosis and precision treatment (36).

In cancers such as lung cancer and melanoma, this integrated

approach has demonstrated significant clinical success, improving

patient stratification and enabling more targeted and personalized
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therapies. As these methodologies continue to evolve, clinicians will

be better equipped to tailor treatments that maximize treatment

efficacy, minimize adverse effects, and ultimately enhance

patient outcomes.
6 Advances, challenges, and
perspectives on the integration of
multiparametric PET imaging and
multi-omics data in immunotherapy

In recent years, considerable progress has been made in integrating

multiparametric PET imaging with multi-omics data in the context of

cancer immunotherapy. PET imaging provides critical metabolic and

functional insights into tumors, serving as a robust tool for monitoring

and predicting therapeutic responses. Furthermore, multi-omics

analysis, which includes genomics, proteomics, and metabolomics,

enhances the molecular context provided by PET, thereby facilitating

the development of personalized treatment strategies. This synergistic

integration supports the prediction of immunotherapy efficacy,

refinement of patient stratification, and identification of specific

biomarkers for precision medicine (37). For instance, SUVmax has

been closely associated with tumor mutational burden (TMB), and

higher TMB correlates with improved responses to ICIs (38).

Additionally, features of the TME, such as immune cell infiltration

and immunosuppressive states, can be inferred from PET-derived

metabolic characteristics, including elevated FDG uptake, which may

serve as an early indicator of immunotherapy response.
6.1 Discovery of biomarkers

The integration of PET imaging with multi-omics data has led

to the identification of several promising biomarkers associated

with immunotherapy outcomes. For example, the combination of

genomic data (PD-L1 expression, EGFR mutations) with PET

imaging features can help predict which patients are likely to

respond favorably to PD-1/PD-L1 inhibitors (39–41). Proteomic

analyses have also revealed biomarkers related to immune evasion

mechanisms within the TME, allowing for more precise patient

stratification. Specific immune evasion-related proteins, such as

CTLA-4, TIM-3, and LAG-3, have been shown to correlate with

therapeutic efficacy, thereby contributing to improved patient

selection and the personalization of treatment regimens.
6.2 Application of machine learning models

Machine learning, particularly deep learning, has become

instrumental in the integration of multiparametric PET imaging

and multi-omics data. Deep learning algorithms can automatically

extract complex patterns from imaging data and combine these

with genomic, proteomic, and other omics data to predict responses

to immunotherapy. For instance, certain deep learning models have

been developed to predict immune cell infiltration within the TME
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based on PET imaging features, thereby providing insight into the

potential efficacy of immunotherapy.
6.3 Challenges in data integration

Despite the vast potential of integrating multiparametric PET

imaging with multi-omics data, several challenges remain in the

data integration process. Different data types, including imaging

data, genomic data, and proteomic data, exhibit significant

variations in their formats, scales, and analysis methodologies.

One of the major hurdles is the effective standardization and

preprocessing of data, which are essential to ensure compatibility

and consistency across heterogeneous data sources. Furthermore,

variations in data quality and accuracy, arising from the use of

different imaging equipment, technological platforms, and

databases, pose significant challenges. Addressing these issues and

ensuring the reliability and consistency of data are crucial for the

successful clinical integration of multi-omics data.

Although studies have demonstrated the potential of combining

PET imaging with multi-omics data, differences in technological

methods, analytical tools, and evaluation criteria across studies have

led to inconsistencies in data integration and model standardization.

This variability not only impairs reproducibility across platforms but

also limits the comparability and validation offindings across different

research endeavors. Therefore, developing standardized data

processing methodologies and protocols for cross-platform data

integration, along with rigorous model validation, will be essential

for advancing research in this field.
6.4 Cost and technical barriers

The acquisition and processing of multiparametric PET imaging

and multi-omics data are resource-intensive and demand significant

technical expertise. The high cost associated with PET imaging

equipment and multi-omics platforms limits their widespread use in

resource-constrained clinical settings. Moreover, multi-omics data

analysis requires substantial computational resources and

sophisticated algorithms, presenting a considerable technical barrier

to clinical adoption. Reducing costs, optimizing workflows, and

developing more accessible, efficient data processing tools will be

critical for enabling the broader clinical application of

these technologies.
6.5 Future directions

Looking forward, advancements in high-resolution PET imaging

and improved multi-omics data processing techniques hold the

potential to enhance data precision and integration efficiency.

Future research efforts should focus on the multidimensional

integration of genomic, proteomic, and metabolic biomarkers to

identify biological features closely associated with immunotherapy

outcomes, thereby enabling the development of more precise

therapeutic strategies.
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In conclusion, the combination of multiparametric PET imaging

with immunotherapy, alongside the integration of multi-omics data,

represents a promising frontier in precision cancer treatment. PET

imaging effectively quantifies tumor metabolic activity and

heterogeneity, showcasing its potential in assessing immunotherapy

responses. With the advent of artificial intelligence, PET imaging has

transcended traditional analysis methods, allowing for precise

predictions of immunotherapy efficacy and fostering personalized

treatment approaches. Additionally, the integration of PET with

genomic data deepens our understanding of the tumor immune

microenvironment, aids in the discovery of novel biomarkers, and

offers non-invasive, dynamic assessments of treatment responses, thus

informing the optimization of immunotherapy. Despite ongoing

challenges related to standardization and interdisciplinary

collaboration, the integration of multiparametric PET imaging with

multi-omics data, driven by machine learning and artificial intelligence,

is poised to play a transformative role in the future of precisionmedicine.
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