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Objectives: Preoperative peripheral hematological indices, including the

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),

monocyte-to-lymphocyte ratio (MLR), and prognostic nutritional index (PNI),

exhibit promise as prognostic markers for glioma. This study evaluated the

prognostic value of a combined scoring system incorporating NLR, PLR, MLR,

and PNI, and developed a nomogram to predict glioma prognosis.

Methods: Data on preoperative NLR, PLR, MLR, and PNI were collected from 380

patients with pathologically diagnosed glioma (266 in the training cohort, 114 in

the validation cohort). The Least Absolute Shrinkage and Selection Operator

(Lasso) was employed to select relevant hematological indicators and generate a

Lasso score. A nomogram was constructed utilizing Cox regression and Lasso

variable selection. This nomogram incorporated the Lasso score, age,

pathological type, chemotherapy status, and Ki67 expression to predict overall

survival (OS). Model performance was evaluated utilizing Harrell’s c-index,

calibration curves, DCA, and clinical utility (stratification into low-risk and high-

risk groups), and verified utilizing the independent validation cohort.

Results: A total of 380 glioma patients were enrolled and separated into training

(n = 266) and validation (n = 114) cohorts. The two cohorts demonstrated no

significant differences in baseline characteristics. NLR, PLR, MLR, and PNI from

the training dataset were utilized for Lasso calculation. Multivariable analysis

indicated that age, pathological grade, chemotherapy status, Ki-67 expression,

and the Lasso score were independent predictors of OS and were then included

in the nomogram. The nomogram model based on the training cohort had a C

index of 0.742 (95% CI: 0.700-0.783) and AUC values of 0.802, 0.775, and 0.815

for ROC curves at 1, 3, and 5 years after surgery. The validation cohort derived a

similar C-index of 0.734 (95% CI: 0.671–0.798) and AUC values of 0.785, 0.778,

and 0.767 at 1, 3, and 5 years, respectively. The nomogram demonstrated good

calibration in both cohorts, indicating strong agreement between predicted and

observed outcomes. The threshold probabilities for DCA at 1-, 3-, and 5-years

post-surgery in the training and validation cohorts were 0.08~k0.74, 0.25~0.80,

and 0.08~0.89, and 0.13~0.60, 0.28~0.81, and 0.25~0.88, respectively.
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Conclusions: A nomogram incorporating a Lasso score effectively predicted

prognosis in glioma patients. However, its performance did not significantly

exceed that of standard clinical nomograms.
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1 Introduction

Gliomas constitute the most prevalent intracranial tumors in

the central nervous system. Originating primarily from glial cells,

these tumors exhibit aggressive behavior, represented by

insufficiently defined boundaries and poor prognosis (1). The

2021 World Health Organization CNS5 classification system for

tumor types categorizes gliomas into four principal groups: human-

type diffuse gliomas, pediatric-type diffuse low-grade gliomas,

pediatric-type diffuse high-grade gliomas, and circumscribed

astrocytomas. Lower-grade gliomas, including diffuse astrocytic

glioma and oligodendroglioma, typically are in WHO CNS5

grades 1–2. Higher-grade gliomas are generally assigned grades

3–4, with glioblastoma representing the most frequent diagnosis (2,

3). Prognostic outcomes for glioma patients are largely contingent

upon tumor grade; individuals with lower-grade gliomas generally

experience a better prognosis; whereas, glioblastomas exhibit the

greatest degree of malignancy, comprising 48.3% of all malignant

central nervous system tumors, and carry a dismal prognosis, with a

5-year survival rate of mere 6.8% (4).

Notwithstanding advances in primary treatment modalities for

gliomas, including neurosurgery, radiotherapy, chemotherapy, and

targeted therapy, patient prognosis remains poor. The highly

invasive characteristics of high-grade gliomas and the recurrence

rate contribute to a median overall survival (OS) of only 12–18

months (5).

Accurate prognostication can facilitate stratified patient

management, enabling individualized treatment and follow-up

strategies. This personalized approach offers the potential to

enhance both patient prognosis and quality of life.

A large body of studies have evaluated the effect of preoperative

peripheral hematological indices related to nutrition, coagulation,

and inflammation on the clinical prognosis of cancer patients. The

neutrophil-to-lymphocyte ratio (NLR) was found to be an

independent predictor of OS in a study of 128 glioma patients,

with high NLR values indicating a poorer prognosis. In contrast, the

prognostic nutritional index (PNI) and platelet-to-lymphocyte ratio

(PLR) did not independently predict OS in this cohort (6).

However, He et al. demonstrated the predictive utility of PNI in

grade IV glioma patients, observing increased clinical treatment

benefit among those with higher PNI values (7). Wang et al.

analyzed preoperative inflammatory markers in glioblastoma
02
patients and found that both PLR and NLR independently

predicted OS, with higher PLR associated with a worse prognosis

(8). Sakane et al. evaluated the relationship between peripheral

hematological markers of inflammation and nutrition and the

prognosis of patients with thymic epithelial tumors after complete

resection. Their analysis indicated that the monocyte-to-

lymphocyte ratio (MLR) was an independent prognostic factor

for disease-free survival (DFS), where a higher MLR correlated

with poorer DFS (9). Increasingly, research is expanding beyond

simple correlations between tumor prognosis and inflammatory or

nutritional indices. Recent studies suggest that integrating clinical

features and inflammatory markers can generate robust clinical

prediction models. For instance, a nomogram model for predicting

glioma patient prognosis was developed by combining tumor

resection range, tumor grade, and NLR (10). Other analyses have

proposed scoring systems based on multiple peripheral blood

inflammatory markers. One such clinical prediction model

combined serum albumin and NLR scores and demonstrated

strong predictive accuracy for glioblastoma patient outcomes (11).

The prognostic value of preoperative peripheral blood

inflammatory markers and related nutritional indices in glioma

remains to be elucidated, and analyses into composite scoring

systems incorporating multiple inflammatory markers for glioma

prognosis prediction are currently absent. A thorough review of the

literature indicated no studies utilizing a combination of NLR, PLR,

MLR, and PNI scoring systems with relevant clinical indices to

construct a clinical prediction model for gliomas.

This study, therefore, sought to develop a streamlined scoring

system integrating the four inflammatory indices of NLR, PLR,

MLR, and PNI, and to establish a clinical prediction model for

glioma prognosis based on this system in conjunction with relevant

clinical characteristics. The study design is illustrated in Figure 1.
2 Methods

2.1 Participants

We conducted a retrospective analysis of clinical data from 380

glioma patients who received surgical resection at Linyi People’s

Hospital between April 2013 and September 2021. Patients were

categorized into two cohorts: a training cohort (n = 266) and a
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validation cohort (n = 114). Inclusion criteria were: (1)

histopathologically confirmed glioma diagnosis; (2) complete

clinical data available from preoperative routine blood tests and

liver function tests (including neutrophils, lymphocytes, monocytes,

platelets, and albumin); (3) no autoimmune or hematological

diseases; (4) no history of other primary malignancies; and (5) no

perioperative mortality (approximately 5–7 days before to 7–12

days after surgery). Glioma grading and diagnosis were determined

primarily utilizing the WHO classification criteria. This study was

approved by the ethics committee of Linyi People’s Hospital, and all

participants offered informed consent.
2.2 Blood examinations and data collection

Patient demographics and clinicopathological characteristics,

including sex, age, smoking and alcohol use history, initial

symptoms, extent of resection (“Partial resection” is defined as

less than 95% of the preoperative tumor volume removed, while

“Complete resection” indicated removal of 95% or more), midline

shift, tumor texture and boundaries, radiation and chemotherapy

treatments, body mass index (BMI), Karnofsky Performance Scale

score (KPS; scored 0-100, with 0 representing death from disease
Frontiers in Oncology 03
and 100 representing a normal, asymptomatic state), tumor

location, pathological classification, isocitrate dehydrogenase

status , p53 status , Ki-67 index, methylguanine-DNA

methyltransferase status, and glial fibrillary acidic protein status,

were collected for all participants. Nutritional indices were

calculated utilizing the following formulas: PNI = 10 × albumin

(g/dL) + 5 × lymphocyte count (109/L), and BMI = body weight

(kg)/height (m)2. NLR, PLR, and MLR were utilized inflammation-

based indices. Blood samples for routine assessment of neutrophil,

lymphocyte, and absolute monocyte counts, as well as serum

albumin levels, were collected seven days prior to surgery. OS was

defined as the time from the date of glioma resection to either death

or the last follow-up.
2.3 Statistical analysis

Statistical analyses were performed utilizing R (version 4.2.2).

Normally distributed variables were presented as mean ± standard

deviation and compared utilizing t-tests. Non-normally distributed

variables were presented as median and interquartile range (P25,

P75) and compared utilizing rank-sum tests. Categorical variables

were described as a percentage of cases (%) and analyzed with c2 or
FIGURE 1

Flow diagram of study design.
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Fisher’s exact tests. The complete dataset was randomly divided 7:3

into a model-training set (70%) and a model-validation set (30%)

utilizing the sample function in R.

A predictive model was developed from the training dataset.

Potential predictors of overall survival (OS) were screened utilizing

univariate Cox regression analysis, with OS representing the

dependent variable (P<0.05). Variables demonstrating non-zero

coefficients were then selected through the application of Least

Absolute Shrinkage and Selection Operator (Lasso) Cox regression.

A 10-fold cross-validation procedure determined the optimal

parameter configuration, specifically identifying coefficients based

on the lambda value corresponding to one standard error of

distance from the minimum deviation. This process also

facilitated the removal of variables with zero coefficients. The

remaining variables were subjected to multivariable Cox

regression analyses to identify independent predictors (P<0.05)

for inclusion in the predictive nomogram model. The developed

nomogram model was cross-validated, and calibration curves were

generated to determine the degree of calibration. The concordance

index (C-index) was calculated, and the model’s discriminatory

ability was further evaluated through time-dependent receiver

operating characteristic (ROC) curve analysis, calculating the area

under the curve (AUC) and other relevant indices. Clinical decision

curve analysis (DCA) was conducted to evaluate the clinical

applicability of the model and quantify the net benefit across the

range of threshold probabilities. Finally, external validation of the

constructed nomogram model was performed utilizing the

validation dataset. In addition, nomogram scores were calculated

for all study participants based on the finalized model. Optimal

cutoff values for these nomogram scores were determined in the

training set utilizing the surv_cutpoint function in the R package

survminer. With this cutoff value, all participants were stratified

into high- and low-risk groups, and Kaplan-Meier curves were

generated and compared through log-rank testing.

The Lasso Cox regression model was implemented utilizing the

“glmnet” software package. The R packages “riskRegression”,

“ggprism”, “ggplot2”, and “rms” were utilized for nomogram

creation and visualization. Clinical decision curves were analyzed

employing the “ggDCA” package, and survival analyses were

conducted with the “survminer” package. A two-sided p-value of less

than 0.05 (P<0.05) was considered significant throughout the study.
3 Results

3.1 Baseline patient characteristics

This study included 380 patients diagnosed with gliomas. This

patient population was divided into a training cohort of 266 patients

and a validation cohort of 114 patients. There were no significant

differences observed between the training and validation cohorts for

any of the recorded variables (P>0.05). The median age of the patients

in the overall cohort was 46.50 years. In the training cohort, 154

patients (57.89%) were male, and in the validation cohort, 60 patients

(52.63%) were male. Further detailed clinicopathological and

demographic information for all patients is presented in Table 1.
Frontiers in Oncology 04
3.2 Lasso score

In the training group, prognostic markers NLR, PLR, MLR, and

PNI were screened utilizing Lasso regression. Coefficients were

derived at a minimal l value of 0.00124078 (Figure 2). The Lasso

score was then calculated from these four factors utilizing the

following formula: (0.04738566 × NLR) + (-0.00196137 × PLR) +

(-0.02408566 × MLR) + (-0.07038983 × PNI).
3.3 Multifactorial Cox proportional risk
regression model

Clinicopathological characteristics of glioma patients in the

training cohort, including age, sex, midline shift, tumor pathology

type, IDH mutation status, and Lasso score, were evaluated utilizing

univariate Cox proportional hazards regression. This analysis

indicated that age, extent of resection, midline shift, tumor

pathology type, chemotherapy administration, Ki-67 expression,

and Lasso score were potential prognostic factors (all P < 0.05,

Table 2). These seven factors were further analyzed utilizing Lasso

regression, with the analytical process depicted in Figure 3. This

identified age, tumor pathology type, chemotherapy administration,

Ki-67 expression, and Lasso score as independent prognostic factors

(P = 0.01, P < 0.001, P < 0.001, P < 0.001, and P = 0.007,

respectively). Multivariable Cox proportional risks regression

further confirmed the independent prognostic value of these five

variables (Table 3).

The path model demonstrates regression coefficients calculated

from the log(Lambda) values of the 7 features in the LASSO model

(A). We implemented a 10-fold cross-validation model for

parameter selection adjustment in the LASSO model (B). The

least absolute shrinkage and selection operator (LASSO) cox

regression algorithm helped identify significant features (with

non-zero coefficients) from these parameters, while optimal

parameter configurations were established through 10-fold cross-

validation. This process determined the coefficients according to

lambda values that corresponded to one standard error of distance

from the minimum deviation of 0.12282066, finally filtering out five

variables with non-zero coefficients.
3.4 Establishment of prediction model

We developed a nomogram model drawing from the results of

the multivariate Lasso Cox proportional risk regression analyses to

estimate survival probabilities at 1-, 3-, and 5-years post-surgery for

patients with glioma (Figure 4).
3.5 Validation and use of nomogram model

To evaluate the nomogram model’s effectiveness, we employed

the C-index, ROC curves, and calibration model. For the training

cohort, the nomogram model’s ROC curves yielded AUC values of

0.802, 0.755, and 0.815 at 1, 3, and 5 years after surgery, with a C
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TABLE 1 Baseline characteristics.

[ALL] Training Validation p.overall

N=380 N=266 N=114

Age 46.50 [36.00;57.00] 47.00 [36.25;56.00] 45.50 [36.25;57.75] 0.843

Gender: 0.404

Men 214 (56.32%) 154 (57.89%) 60 (52.63%)

Women 166 (43.68%) 112 (42.11%) 54 (47.37%)

BMI 23.85 [22.03;26.71] 23.88 [22.03;26.76] 23.51 [22.03;26.69] 0.794

Kps 70.00 [60.00;70.00] 70.00 [60.00;70.00] 70.00 [60.00;70.00] 0.462

Surgical removal: 0.641

Complete resection 268 (70.53%) 190 (71.43%) 78 (68.42%)

Partial resection 112 (29.47%) 76 (28.57%) 36 (31.58%)

Midline shift: 0.289

No 214 (56.32%) 155 (58.27%) 59 (51.75%)

Yes 166 (43.68%) 111 (41.73%) 55 (48.25%)

Tumor texture: 0.541

Hard 105 (27.63%) 70 (26.32%) 35 (30.70%)

Other 113 (29.74%) 78 (29.32%) 35 (30.70%)

Soft 162 (42.63%) 118 (44.36%) 44 (38.60%)

Tumor margin: 0.851

Obscure 357 (93.95%) 249 (93.61%) 108 (94.74%)

Well-defined 23 (6.05%) 17 (6.39%) 6 (5.26%)

Blood type: 0.824

A 116 (30.53%) 82 (30.83%) 34 (29.82%)

AB 51 (13.42%) 33 (12.41%) 18 (15.79%)

B 106 (27.89%) 74 (27.82%) 32 (28.07%)

O 107 (28.16%) 77 (28.95%) 30 (26.32%)

Pathological diagnosis: 0.096

II 127 (33.42%) 97 (36.47%) 30 (26.32%)

III 164 (43.16%) 113 (42.48%) 51 (44.74%)

IV 89 (23.42%) 56 (21.05%) 33 (28.95%)

Radiotherapy: 0.070

1 148 (38.95%) 112 (42.11%) 36 (31.58%)

2 232 (61.05%) 154 (57.89%) 78 (68.42%)

Chemotherap: 0.231

1 132 (34.74%) 98 (36.84%) 34 (29.82%)

2 248 (65.26%) 168 (63.16%) 80 (70.18%)

Smoke: 0.634

No 304 (80.00%) 215 (80.83%) 89 (78.07%)

Yes 76 (20.00%) 51 (19.17%) 25 (21.93%)

Drink: 0.697

(Continued)
F
rontiers in Oncology
 05
 frontiersin.org

https://doi.org/10.3389/fonc.2025.1280395
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1280395
index value of 0.742 (95% CI: 0.700-0.783)(Figure 5A). In the

validation cohort, the ROC curves for the nomogram model at 1-,

3-, and 5-years post-surgery demonstrated AUC values of 0.785,

0.778, and 0.767, respectively, alongside a C index value of 0.734

(95% CI: 0.671-0.798)(Figure 5B). The calibration model analyzing

1-, 3-, and 5-year postoperative OS in glioma patients indicated

strong correlation between predicted outcomes and actual
Frontiers in Oncology 06
observations across both training and validation cohorts

(Figure 6). Our analysis also included calculating C-indexes

(0.734 and 0.738) for the traditional clinical nomogram model in

both cohorts, which we then compared with the C-indexes of our

current nomogram model based on the inflammatory nutritional

score. The inclusion of the Lasso score into traditional models failed

to significantly improve OS predictions.
TABLE 1 Continued

[ALL] Training Validation p.overall

N=380 N=266 N=114

No 303 (79.74%) 214 (80.45%) 89 (78.07%)

Yes 77 (20.26%) 52 (19.55%) 25 (21.93%)

IDH-1: 1.000

Negative 270 (71.05%) 189 (71.05%) 81 (71.05%)

Positive 110 (28.95%) 77 (28.95%) 33 (28.95%)

P53: 0.223

Negative 265 (69.74%) 191 (71.80%) 74 (64.91%)

Positive 115 (30.26%) 75 (28.20%) 40 (35.09%)

Ki67: 0.267

Negative 218 (57.37%) 158 (59.40%) 60 (52.63%)

Positive 162 (42.63%) 108 (40.60%) 54 (47.37%)

MGMT: 0.452

Methylated 57 (15.00%) 37 (13.91%) 20 (17.54%)

Unmethylated 323 (85.00%) 229 (86.09%) 94 (82.46%)

GFAP: 0.214

Negative 62 (16.32%) 48 (18.05%) 14 (12.28%)

Positive 318 (83.68%) 218 (81.95%) 100 (87.72%)

Tumor location: 0.353

left 190 (50.00%) 136 (51.13%) 54 (47.37%)

right 177 (46.58%) 119 (44.74%) 58 (50.88%)

right+left 13 (3.42%) 11 (4.14%) 2 (1.75%)

NLR 2.23 [1.53;3.89] 2.26 [1.57;3.89] 2.08 [1.33;3.81] 0.242

PLR 135.53 [105.31;174.73] 136.65 [105.28;175.87] 131.07 [106.97;170.28] 0.649

MLR 0.29 [0.22;0.43] 0.30 [0.23;0.44] 0.28 [0.21;0.41] 0.297

PNI 48.83 [45.40;52.01] 48.67 [45.35;51.93] 49.65 [45.70;52.04] 0.233

Lasso score -3.59 [-3.81;-3.36] -3.56 [-3.78;-3.36] -3.64 [-3.86;-3.34] 0.164
BMI, Body Mass Index; calculated as BMI =Weight (kg)/Height (m)²; KPS, Karnofsky Performance Status Score; Surgical removal: The extent of brain tumor resection. When the patient’s brain
tumor removal volume is ≥95%, it is classified as “complete resection”; when the brain tumor removal volume is <95%, it is classified as “partial resection”; Midline shift: Indicates whether the
midline of the brain exhibits a shift. “Yes” if a midline shift is present, and “No” if the midline is centered; Tumor texture: The texture of the resected tumor portion observed after surgery,
primarily classified as soft, hard, or other; Radiotherapy: Indicates whether the patient received radiotherapy following surgery. “2” indicates the patient received radiotherapy, and “1” indicates
the patient did not receive radiotherapy; Chemotherapy: Indicates whether the patient received chemotherapy following surgery. “2” indicates the patient received chemotherapy, and “1”
indicates the patient did not receive chemotherapy; IDH-1: Isocitrate dehydrogenase 1, categorized as IDH-wild type (Negative) or IDH-mutant (Positive); P53: Tumor protein 53, classified
according to its status as P53 wild type (Negative) or P53 mutant (Positive); Ki67: Ki67 expression status, categorized as “Negative (Ki67 <30%)” and “Positive (Ki67 ≥30%)”; MGMT: O-6-
Methylguanine-DNA methyltransferase, classified according to its methylation status as “Methylated” or “Unmethylated”; GFAP, Glial fibrillary acidic protein. Expression of GFAP is designated
as “Positive”, and absence of expression is designated as “Negative”; NLR, neutrophils/lymphocytes; PLR, platelets/lymphocytes; MLR, monocytes/lymphocytes; PNI, albumin (g/dL) + 5 ×
lymphocyte count (109/L); Lasso score: A blood index labeling, calculated as: Lasso score = (0.04738566 × NLR) + (-0.00196137 × PLR) + (-0.02408566 × MLR) + (-0.07038983 × PNI); P.overall:
P-value. A P-value < 0.05 is considered statistically significant.
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3.6 Therapeutic application

Clinical DCA was employed to evaluate the predictive model’s

clinical utility. The threshold probabilities of the nomogram model

in the training cohort at 1, 3, and 5 years after surgery were

0.08~0.74, 0.25~0.80, and 0.08~0.89, respectively. Corresponding

probabilities in the validation cohort were 0.13~0.60, 0.28~0.81, and

0.25~0.88, respectively (Figure 7).
3.7 Risk group survival curves

Patients across the entire cohort, as well as in the training and

validation cohorts, were stratified into high-risk and low-risk groups.

In the training cohort, 1-, 3-, and 5-year postoperative survival rates

for the high-risk group were 67.1%, 32.7%, and 22.7%, respectively,

while the low-risk group demonstrated corresponding rates of 94.2%,

78.2%, and 76.2%.While patients classified as high-risk experienced a

less favorable prognosis compared to the low-risk group, this

difference was not significant. In the validation cohort, the 1-, 3-,

and 5-year postoperative survival rates were 70.8%, 36.1%, and 24.4%

for the high-risk group and 92.9%, 76.2%, and 72.9% for the low-risk

group. For the entire cohort, these rates were 68.3%, 33.8%, and

23.3% (high-risk) and 93.8%, 77.7%, and 75.3% (low-risk),

respectively. The outcomes observed in the training group aligned

with those of the validation and entire cohorts (Figure 8).
4 Discussion

Gliomas constitute approximately 80% of primary malignant

brain tumors (12). Despite the availability of various treatment

modalities, including surgery, chemotherapy, radiotherapy, and

targeted therapy, long-term survival for patients with glioma

remains limited. While pathologic grading is crucial for guiding

treatment decisions and prognostication, patients with identical

pathologic grades can exhibit significant difference in survival

outcomes in clinical settings. This suggests that current grading
BA

FIGURE 2

Regression coefficient path model (A) generated from the log (Lambda) values of the 4 features in the LASSO model. Parameter selection
adjustment in the LASSO model 10 fold cross validation diagram (B).
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TABLE 2 Results of univariate Cox proportional risk regression analysis
of prognostic factors for glioma patients in the training cohort.

Variable Level HR(95%CI) P

Age 1.037 (1.024, 1.050) <0.001

Gender

Men reference

Women 0.948 (0.681, 1.319) 0.750

BMI 0.970 (0.926, 1.016) 0.192

Kps 1.003 (0.991, 1.014) 0.668

Surgical removal

Complete
resection reference

Partial resection 1.456 (1.026, 2.064) 0.035

Midline shift

No reference

Yes 1.471 (1.060, 2.041) 0.021

Tumor texture

Hard reference

Other 1.290 (0.837, 1.987) 0.249

Soft 0.999 (0.662, 1.508) 0.996

Tumor margin

Obscure reference

Well-defined 0.749 (0.367, 1.531) 0.429

Blood type

A reference

AB 0.921 (0.518, 1.639) 0.781

B 1.191 (0.777, 1.828) 0.423

O 1.296 (0.851, 1.974) 0.227

(Continued)
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systems may not accurately reflect the prognosis for patients with

glioma. Importantly, this study indicated a correlation between tumor

development, prognosis, and the inflammatory response. Therefore,

we sought to develop a nomogram based on hematological and

clinical tumor characteristics to facilitate individualized treatment

planning and follow-up care. The optimal markers for predicting

glioma prognosis were identified by considering relevant nutritional

and inflammatory indices in peripheral blood, alongside pathologic

grade and treatment approaches.

In 1881, the German physician Virchow pioneered the analysis

into the relationship between tumors and inflammation, a topic that

has since been the subject of extensive research (13). A growing

body of evidence indicates that inflammation plays a crucial role in

tumor invasion, metastasis, and recurrence. For instance,

inflammation has been implicated in disrupting genomic integrity

and facilitating tumor growth by increasing DNA damage in tissues

and compromising DNA repair mechanisms (14). Peripheral blood

components, including neutrophils, lymphocytes, and platelets, are

believed to be intimately involved in tumor development.

Neutrophils can contribute to tumor growth through the release

of granule proteins such as matrix metalloproteinase-9, which

degrades the extracellular matrix; vascular endothelial growth

factor (VEGF), which stimulates tumor angiogenesis; and

arginase-1, which suppresses T-cell activation and induces

immunosuppression (15). Cytotoxic T lymphocytes, the primary

lymphocytes with anti-tumor activity, exert their effects by releasing

cytotoxic particles such as perforin and granzyme, leading to the

lysis and destruction of tumor cells (16). Platelets have also been

demonstrated to facilitate the metastasis of tumor cells to distant

sites by shielding circulating tumor cells from immune surveillance

and the high shear stress of the circulatory system, as well as by

secreting ATP and promoting epithelial–mesenchymal transition in

tumor cells (17). In addition, studies have indicated an association

between high albumin levels in tumor patients, decreased immune

function, and increased mortality (18). Further research on tumor

prognostic variables, including NLR, PLR, MLR, and PNI, has

incorporated several inflammatory indices based on the

aforementioned blood component combinations. Qi et al.

reported an association between high NLR and adverse outcomes

in 214 patients with low-grade gliomas (19), while Wang et al.

identified NLR and PNI as independent prognostic factors for OS in

glioma patients (20). Another study indicated that high PLR and

MLR values correlated with poorer prognoses in tumor patients

(21); however, Yan et al. observed that, while PLR and MLR levels

differed among groups of glioma patients, these markers did not

independently predict OS (10). The prognostic value of these

inflammatory and nutritional markers in glioma therefore

remains a subject of debate, with most research focusing on the

predictive value of individual inflammatory or nutritional

indicators. Considering the potential for the mechanisms

underlying these various inflammatory and nutritional markers to

differentially affect glioma progression, we conducted an analysis

incorporating a combination of these factors.
TABLE 2 Continued

Variable Level HR(95%CI) P

Pathological diagnosis

II reference

III 3.025 (1.956, 4.676) <0.001

IV 4.947 (3.085, 7.933) <0.001

Radiotherapy

1 reference

2 0.782 (0.563, 1.086) 0.142

Chemotherapy

1 reference

2 0.632 (0.454, 0.880) 0.007

Smoke

No reference

Yes 1.035 (0.681, 1.573) 0.871

Drink

No reference

Yes 1.227 (0.821, 1.835) 0.318

IDH-1

Negative reference

Positive 0.731 (0.503, 1.062) 0.100

P53

Negative reference

Positive 1.403 (0.987, 1.993) 0.059

Ki67

Negative reference

Positive 2.001 (1.444, 2.774) <0.001

MGMT

Methylated reference

Unmethylated 0.925 (0.582, 1.469) 0.741

GFAP

Negative reference

Positive 1.015 (0.670, 1.536) 0.945

Tumor location

left reference

right 1.004 (0.719, 1.402) 0.980

right+left 1.055 (0.458, 2.426) 0.900

Lasso score 2.780 (1.815, 4.258) <0.001
Variable: predictor variable; Level: specific stratification corresponding to the predictor
variable; CI, confidence interval; P, P-value, statistically significant at P < 0.05.
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A Lasso Cox regression algorithm, which identifies correlations

between predictor variables and outcomes by shrinking the regression

coefficients of various variables, was employed in this study. This

approach to variable selection enhances the stability of the resulting

model compared with the statistical modeling approaches employed in

other studies. Because individual risk factors have limited power for

predicting tumor prognosis due to tumor heterogeneity, a nomogram

model was developed to integrate multiple risk factors, thereby

exploiting the combined predictive potential of these factors to

improve prognostic accuracy for tumor outcomes. Specifically, age,
Frontiers in Oncology 09
pathological grade, chemotherapy, Ki-67, and Lasso score were selected

as variables for constructing the nomogrammodel. This model derived

C-indexes of 0.742 and 0.734 in the training and validation cohorts,

respectively. Moreover, among the preoperative prognostic factors, the

Lasso score is the dominant factor in the nomogram, accounting for the

highest score, indicating that the Lasso score may be a highly effective

preoperative prognostic factor. Moreover, a traditional nomogram

model was constructed to assess the specific contribution of the

Lasso score to the prediction model’s performance. This traditional

model produced C-indexes of 0.734 and 0.738 in the training and

validation cohorts, respectively.

A comprehensive evaluation of the performance and clinical utility

of the Lasso score-based nomogrammodel was performed utilizing the

validation cohort. Validation results, based on the C-index and

calibration curves, demonstrated that the Lasso score-based

nomogram model exhibits stable and robust predictive effectiveness

in the validation cohort dataset. The clinical utility of the Lasso score-

based nomogram model was also rigorously verified with DCA. DCA,

which leverages the threshold probability of interpreting clinical

outcomes to derive the net clinical benefit, indicated a high net

clinical benefit associated with the Lasso score-based nomogram

(considering 1-, 3-, and 5-year postoperative values for the validation

cohort). The corresponding 1-, 3-, and 5-year threshold probabilities

were 0.13~0.60, 0.28~0.81, and 0.25~0.81, respectively.

In addition, the nomogram model constructed utilizing the Lasso

score in this study offers a mechanism for stratifying patients according

to their prognostic risks. This risk stratification capability has been

verified across all cohorts, including the independent validation cohort.

The identification of high-risk patients through this stratification allows

for closer follow-up and monitoring to detect any disease progression

to allow for subsequent individualized treatment strategies.

Compared with models constructed using single or a few

factors, our study integrates multiple hematological and clinical
BA

FIGURE 3

Regression coefficient path model (A) generated from the log (Lambda) values of the 7 features in the LASSO model. Parameter selection
adjustment in the LASSO model 10 fold cross validation diagram (B).
TABLE 3 Results of selection of variables for multivariate Cox
proportional risk regression analysis.

Variable Level HR(95%CI) P

Age 1.022 (1.008, 1.035) 0.001

Pathological diagnosis

II reference

III 2.511 (1.607, 3.924) <0.001

IV 3.940 (2.395, 6.483) <0.001

Chemotherapy

1 reference

2 0.470 (0.331, 0.667) <0.001

Ki67

Negative reference

Positive 1.838 (1.309, 2.581) <0.001

Lasso score 1.825 (1.182, 2.819) 0.007
Variable: predictor variable; Level: specific stratification corresponding to the predictor
variable; CI, confidence interval; P, P-value, statistically significant at P < 0.05.
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FIGURE 4

The nomogram model for predicting the prognosis of glioma patients at 1, 3 and 5 years after surgery. Individual scores corresponding to the
different clinical variables taken in the nomogram diagrams were summed to correspond to different total scores, which corresponded to the OS of
glioma patients at different time points at 1, 3, and 5 years postoperatively.
BA

FIGURE 5

ROC curves of the training cohort (A) and the validation cohort (B) in nomogram model about glioma patients at 1, 3, and 5 years after surgery.
BA

FIGURE 6

Calibration model of nomogram model on OS at 1, 3, and 5 years postoperatively in glioma patients in the training cohort (A), and calibration model
of column line model on OS at 1, 3, and 5 years postoperatively in glioma patients in the validation cohort (B). 45° diagonal is the calibration model
for the most optimal case (predicted probability = observed probability). The calibration model of the nomogram model regarding the OS of glioma
patients at 1, 3, and 5 years after surgery is represented by the blue, orange, and red lines.
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factors to comprehensively evaluate patients’ prognosis from

multiple dimensions, enabling us to provide more abundant and

accurate prognostic information. In contrast to other nomogram

models based on gene - level, specific protein and other indicators

(22–24), our study constructs the nomogram model using data that

can be obtained through routine clinical means. It does not rely on

complex gene - testing techniques, expensive high - end equipment,

or special experimental conditions, thus improving the clinical

practicability and feasibility of the model.

Notwithstanding its contributions, this study isnotwithout certain

limitations. First, despite the significant scale of the study population
Frontiers in Oncology 11
(N=380), its retrospective design, confined to a single institution,

introduces the possibility of selection bias. Therefore, further studies

including larger study populations and incorporating data derived

from multicenter prospective analyses are necessary to verify the

present findings. Second, peripheral blood markers associated with

inflammatory response and nutritional status are also subject to the

effect of other factors. To our knowledge, tumors and infectious

diseases exhibit similarities in their respective changes of

hematological markers (25). Increased NLR values have been

documented in bacterial and fungal infections (26, 27). Moreover,

NLR is regarded as a reliable hematological prognostic indicator in
B

C D

E F

A

FIGURE 7

Clinical decision curve analyses of nomogram model in the training cohort (A-C); clinical decision curve analyses of nomogram model in the validation
cohort (D-F). the x-axis represents the corresponding threshold probabilities, whereas the y-axis represents the net benefits. The solid orange line represents
the gain curve when all patients do not receive treatment, the solid blue line represents the net clinical gain curve when all patients are treated, and the solid
red line represents the net clinical gain curve when patients in each of the prediction thresholds of the nomogram diagram are treated.
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sepsis studies (28). Similarly, changes in NLR values have been

observed in patients diagnosed with glioblastoma (GBM), where low

preoperative NLR values have been associated with a more favorable

patient prognosis (29). Therefore, patients presenting with infectious

lesions were excluded from the inclusion criteria of this study. Further,

the systemic inflammatory state is of crucial importance to the

prognosis of patients with tumors. Specifically, it has been reported

that patients diagnosed with human immunodeficiency virus (HIV)-

associated colorectal cancer (CRC) demonstrate a worse prognosis

compared to patients diagnosed with non-HIV-associated CRC (30).

This may be attributed to declined serum albumin and lymphocyte

counts. Nevertheless, despite these limitations, we maintain that this

study offers novel insights and guidance regarding the predictive value

of inflammatory andnutritionalmarkers in relation to the prognosis of

glioma patients.

In conclusion, while the Lasso score-based nomogram model did

not significantly enhance the performance of the traditional nomogram

model, it exhibited robust performance in predicting the prognosis of

glioma patients in both the training and validation cohorts.

Considering their characteristics as non-invasive, low-cost, and

repeatable prognostic markers, the nutritional and inflammatory

indicators necessary for the construction of the Lasso score are

readily obtainable through routine hematological examinations.

Therefore, the Lasso score, derived from the nomogram model,

facilitates individualized prognostic predictions and demonstrates
Frontiers in Oncology 12
promising clinical potential for application in the management of

patients with glioma.
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