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University of Coimbra, Portugal

REVIEWED BY

Ruiqi Li,
University of Texas Southwestern Medical
Center, United States
Jie He,
Zhejiang University School of Medicine, China

*CORRESPONDENCE

Yuhai Cao

haiyang_1422@126.com

Yang Dong

23121546@qq.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 30 January 2024
ACCEPTED 28 January 2025

PUBLISHED 11 March 2025

CITATION

Han Y, Huang M, Xie L, Cao Y and Dong Y
(2025) The value of intratumoral and
peritumoral radiomics features based on
multiparametric MRI for predicting
molecular staging of breast cancer.
Front. Oncol. 15:1379048.
doi: 10.3389/fonc.2025.1379048

COPYRIGHT

© 2025 Han, Huang, Xie, Cao and Dong. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 March 2025

DOI 10.3389/fonc.2025.1379048
The value of intratumoral and
peritumoral radiomics features
based on multiparametric
MRI for predicting molecular
staging of breast cancer
Yuxuan Han1†, Manxia Huang1†, Lizhi Xie2, Yuhai Cao1*

and Yang Dong1*

1Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China,
2GE Healthcare, MR Research China, Beijing, China
Purpose: A model for preoperative prediction of molecular subtypes of breast

cancer using tumor and peritumor radiomics features from multiple magnetic

resonance imaging (mMRI) sequences, combined with semantic features.

Materials and methods: A total of 254 female patients with pathogically confirmed

breast cancer were enrolled in this study. Preoperative mMRI, including T2-

weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced MRI (DCE) sequences, covered the entire breast. To analyze

the MRI semantic features of different molecular subtypes of breast cancer and

identify independent predictive risk factors. Thirty-three binary classificationmodels

were established based on the radiomic features of different sequences and

peritumoral ranges. The best radiomics model was selected by comparing the

performance of the above radiomics models. At the same time, the best sequence

and peritumoral extent were extracted from the target features, the radiomics score

was calculated, and independent risk factors were predicted. Finally, a nomogram

was established for preoperative prediction of Triple-Negative Breast Cancer

(TNBC), Hormone Receptor (HR) positive and HER2 negative (HR+/HER2−), and

HER2+ molecular staging types of breast cancer.

Results: Tumor length, edge enhancement, and peritumoral edema were

independent risk factors for predicting the different molecular types of breast

cancer. The best MRI sequence was DCE and the best peritumoral margin was 6

mm. The AUC of the nomogram based on the optimal sequence(DCE) and

optimal peritumoral range (6 mm) combined with independent risk factors were

0.910, 0.909, and 0.845, respectively.

Conclusion: The nomogram based on independent predictors combined with

intratumoral and peritumoral radiomics scores can be used as an auxiliary

diagnostic tool for molecular subtype prediction in breast cancer.
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• Preoperative prediction of molecular subtypes of breast

cancer is very important.

• Intratumoral and peritumoral radiomics features of breast

cancer contain useful information.

• Nomogram may provide a tool for the prediction of

molecular subtypes of breast cancer.
Introduction

Breast cancer has become the most common cancer in women,

is responsible for the largest number of cancer-related deaths, and is

gradually increasing (1, 2). Molecular subtypes are used to

determine the important basis of treatment. Hormone receptor-

positive type (Estrogen Receptor (ER)+ or Progesterone Receptor

(PR)+) can be treated with endocrine therapy, Human Epidermal

growth factor Receptor2 (HER2)+ can be treated with targeted

therapy with anti-HER2 monoclonal antibody, and all receptor

deficiency types, namely triple negative type, are mainly treated

with chemotherapy (3, 4). Preoperative non-invasive prediction of

breast cancer molecules is an important indicator of the biological

behavior and prognosis of breast cancer and provides valuable

information for the formulation of neoadjuvant chemotherapy

regimens and prognosis of breast cancer.

Currently, immunohistochemistry using surgical specimens is

the main method for molecular subtyping of breast cancer, and is

determined by the expression of ER, PR, and HER2. However,

preoperative biopsy is invasive and time consuming. Due to the

tumor heterogeneity, a sampling bias exists. Radiomics may provide

a non-invasive method for the preoperative prediction of molecular

subtypes of breast cancer and has become a hot topic in medical

imaging research.

Radiomics research on breast cancer has made some progress,

but the optimal sequence used to establish radiomics models for

breast cancer molecular typing has not been fully compared (5, 6).

Magnetic Resonance Imaging (MRI) signals in the peritumoral

region of breast cancer can provide complementary imaging

information to the intratumoral region, which can be used to

evaluate microenvironmental characteristics such as peritumoral

angiogenesis, lymphangiogenesis activity, lymphatic and vascular
eviations: mMRI, multiple Magnetic Resonance Imaging; T1WI, T1-

hted Imaging; T2WI, T2-Weighted Imaging; Fat Sat T2WI, FS T2-

hted Imaging; DWI, Diffusion Weighted Imaging; DCE-MRI, Dynamic

rast-Enhanced MRI; ER, Estrogen Receptor; PR, Progesterone Receptor;

2, Human Epidermal growth factor Receptor-2; HR, Hormone Receptor;

C, Triple-Negative Breast Cancer; BI-RADS, Breast Imaging Reporting And

System; VOI, Volume of Interest; AUC, Area Under Curve; CI, Confidence

val; OR, Odds Ratio; LASSO, Least Absolute Shrinkage and Selection

ator; ROC, Receiver Operating Characteristic; Rad-score, Radiomics Score;

Immunohistochemistry; FISH, Fluorescence In Situ Hybridization; TE,

Time; TR, Repetition Time; EGFR, Epidermal Growth Factor Receptor;

Polymerase Chain Reaction.
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invasion, tumor tissue stromal reaction, and lymphocyte infiltration

immune response (7, 8). However, the optimal peritumoral region

for the evaluation of molecular subtypes of breast cancer has not

been clarified (9). There is still room for further research on

radiomics of the molecular subtypes of breast cancer.

The aim of this study was to explore the optimal MRI sequence

and peritumoral range for the establishment of a predictive model

for molecular classification of breast cancer, combined with the risk

predictors in Breast Imaging Reporting And Data System (BI-

RADS) evaluation of breast cancer, and to establish a radiomics

nomogram, which can provide a reference for radiomics research

on molecular classification of breast cancer.
Materials and methods

Patients and MRI acquisition

Approved by the ethics committee of our institution, this study

retrospectively collected 363 female breast cancer patients who were

admitted to our hospital between January 2019 and December 2021

and confirmed by postoperative pathology. Finally, we included 254

women who met the criteria for this study and were randomly divided

into two datasets (178 in the training set and 76 in the validation set) at

a ratio of 7:3 in the binary classification analysis. The inclusion and

exclusion criteria for these cases are listed in Supplementary Table 1.

All patients were scanned with three MRI scanners, including one 1.5

T MRI scanner (General Electric Signa HDxt) and two 3.0 T MRI

scanners (General Electric Discovery MR 750 W and Siemens Verio).

All patients were in the prone position and scanned using a matching

bilateral breast-dedicated coil. All patients underwent T1-Weighted

Imaging (T1WI), Fat Sat T2-Weighted Imaging (FS-T2WI),

Diffusion-Weighted Imaging (DWI), and Dynamic Contrast-

Enhanced (DCE) MRI examinations. Detailed parameters are listed

in Supplementary Table 2.
Analysis of MRI semantic features

MRI images were analyzed according to BI-RADS 2013 of the

American College of Radiology by two radiologists with 3 years and

15 years of experience in breast MRI diagnosis, respectively. In cases

of disagreement, a third radiologist (with 15 years of experience in

breast MRI) made the final decision. The content and methods of

the analysis are shown in Supplementary Table 2.
Radiomics analysis

Segmentation of breast cancer lesions
The FS-T2WI, DWI, and DCE images were imported into 3D

Slicer (version 4.10.2) software and completed by two radiologists

with 3 years and 15 years of imaging diagnosis experience,

respectively. Three different Volume Of Interest (VOI) models

were constructed by the following methods (Figure 1): Tumor

model; The combined model of tumor and peritumoral: the range
frontiersin.org
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was selected to expand 3 mm, 6 mm, 9 mm, and 12 mm, which was

represented by “com-;” Peritumoral model: denoted by “peri-.”

Radiomics feature extraction
The “radiomics” module in the open-source software 3D Slicer

was used to preprocess and segment the images. Four categories

were extracted from intratumoral and peritumoral VOI, including

shape features, first-order features, texture features, and higher-

order statistical features. A total of 1,130 quantitative radiomics

features (ICC >0.75) and detailed features are shown in

Supplementary Table 4, which were in accordance with the Image

Biomarkers Standardization Organization (IBSI) standard (10).

Before feature extraction, the MR Images of each sequence of all

patients were resampled and voxels with different original sizes in

medical images were normalized to the same size (11).

Dimensionality reduction of radiomics features
Upload 1,130 features of the above-mentioned documents to

the Yizhun–Darwin intelligence platform (http://premium.

darwin.yizhun-ai.com/). To prevent the effect of size differences

between features on feature selection, minimum and maximum

normalizations were used to normalize the feature size, and all pixel

values were normalized to 0 and 1. To avoid dimension disasters, we

used two methods to gradually select the optimal features. First, the

percentile selection method was used to select the top 10% of the most

important features for classification. The variable with the highest

correlation was then selected using the minimum redundancy

maximum association, and redundant features with strong correlations

between features were removed. After dimension reduction, 10 key

features were retained for subsequent model training under the DCE,

T2WI, and DWI sequences, as shown in Figure 2.

Construction of radiomics model
A logistic regression classifier was used to establish the radiomics

model. First, an Optimization Function was constructed. The

function of the Optimization Function is to adjust the

corresponding parameters such that the Loss Function becomes
Frontiers in Oncology 03
increasingly smaller. The calculation method is usually the

derivative of the Loss Function with respect to parameter. Through

multiple-cycle training, the Loss Function value tends to be

minimized, and the prediction effect tends to be the best. A

receiver operating characteristic (ROC) curve was used to evaluate

the prediction efficiency of the model. The area under the curve

(AUC), 95% confidence interval (CI), accuracy, sensitivity, and

specificity were also calculated. The flowchart is shown in Figure 3.
Nomogram

Correlation analysis of the clinical information, MRI semantic

features, and molecular subtypes of breast cancer was performed.

Variables with statistically significant differences were included in

univariate and multivariate logistic regression analyses to screen for

independent predictors to distinguish the three groups of breast

cancer molecular subtypes. The radiomics score (Rad-score) was

calculated using Least Absolute Shrinkage and Selection Operator

(LASSO) regression to construct the nomogram.
Histopathological analyses

The expression of ER, PR, and HER2 in each patient was

recorded using immunohistochemistry (IHC) and Fluorescence In

Situ Hybridization (FISH). Ki-67 expression was defined as 14%,

≥14% as high expression, and <14% as low expression.
Statistical methods

SPSS 26.0 software and R software (version 4.1.2) were used for

statistical analyses. The count data were analyzed using the chi-

square test or Fisher’s exact probability method, and the

measurement data were analyzed using the Kruskal–Wallis test.

Univariate and multivariate logistic regression analyses were used to
FIGURE 1

Sketch of the breast cancer ROI on DCE-MRI images using 3D-Slicer software. (A) A 46-year-old female patient with triple-negative breast cancer.
(B) The red area represents the ROI of the tumor body. (C) ROIs of the tumor bodies and peritumoral and peritumoral regions in different ranges.
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FIGURE 2

Ten target features based on DCE sequences. (A–C) represent the dimensionality reduction results of TNBC, HR+/HER2−, and HER2+ breast
cancer, respectively.
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identify the independent predictors of the molecular subtype of

breast cancer. The results were expressed as odds ratios (ORs) and

95% confidence intervals (CIs), and the regression coefficients of the

regression model were displayed using the nomogram. AUC was

calculated to evaluate the diagnostic efficacy of the nomogram. P

value of less than 0.05 was considered statistically significant.

Results

Clinical data of the patients

A total of 363 breast cancer patients were included in this study,

and 254 breast cancer patients were finally included, including 148

cases of HR+/HER2− breast cancer, 57 cases of HER2+ breast cancer,

and 49 cases of Triple-Negative Breast Cancer (TNBC). The clinical

and pathological details of the three breast cancer subtypes are

provided in Supplementary Table 5.

Analysis of MRI semantic features

There were significant differences between the molecular

subtypes of breast cancer and tumor location, length, margin,

enhancement characteristics, and peritumoral edema (P <0.05)

(Supplementary Table 3).

As shown in Table 1, tumor length, edge enhancement, and

peritumoral edema were independent risk factors for TNBC (P =

0.004, 0.005, and 0.032, respectively). Tumor length, edge

spiculation, and peritumoral edema were independent risk factors

for HR+/HER2− breast cancer (P = 0.002, 0.005, and 0.001,

respectively). Peritumoral edema was an independent risk factor

for HER2+ breast cancer (P = 0.039).

The diagnostic efficacy of MRI semantic features in identifying

molecular subtypes of breast cancer is as follows: The AUC of

TNBC was 0.78 (95%CI: 0.70–0.85). The AUC of HR+/HER2− was

0.74 (95%CI: 0.66–0.82). The AUC of HER2+ was 0.58 (95%CI:

0.50–0.67).
Frontiers in Oncology 05
Radiomics model

Radiomics model of tumor based on
different sequences

A logistic regression classifier was used to establish a prediction

model. A total of 1,130 features were extracted from the T2WI, DWI,

and DCE sequences. After dimensionality reduction, 10 target features

were retained for each sequence. In the task of identifying TNBC, HR

+/HER2−, and HER2+ breast cancer, the top-ranked features in

radiomics feature coefficients were Wavelet-LLH_glszm_ LargeArea

HighGrayLevelEmphasis, log-sigma-4-0-mm-3D_glcm_JointEnergy,

and log- s i gma-4-0-mm-3D_g ldm_Large dependence

HighGrayLevelEmphasis.

Table 2 shows that in the task of predicting molecular subtypes

of breast cancer, the logistic regression model based on DCE

radiomics features had the best prediction performance, with

AUC values of 0.80, 0.78, and 0.76 in the training set and AUC

values of 0.78, 0.79, and 0.72 in the validation set. For TNBC and

HR+/HER2− breast cancer, the radiomics feature prediction

model based on DWI outperformed the radiomics feature

prediction model based on T2WI. Conversely, for HER2+ breast

cancer, the radiomics feature prediction model based on T2WI

demonstrated superior performance compared with the model

based on DWI.
Radiomics model of different peritumoral ranges
based on DCE sequence

Under the DCE sequence, 1,130 features were extracted from each

peritumoral region, combined with intratumoral radiomics features,

and 10 target features were retained after dimensionality reduction. In

the task of identifying TNBC, HR+/HER2−, and HER2+ breast

cancer, the top-ranked features in the radiomics feature coefficients

were log-sigma-4-0-mm-3D_ngtdm_Contrast, log-sigma-6-0-mm-

3D_glcm_ldn, and wavelet-LHL_glcm_Correlation.

Table 3; Figure 4 show the prediction performance of

peritumoral features obtained with different peritumoral region
FIGURE 3

Flowchart of radiomics methods.
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TABLE 1 Analysis of semantic features of clinical radiology in different molecular subtypes of breast cancer.

Univariate analysis Multivariate analysis

OR (95%CI) P-value OR (95%CI) P-value

TNBC vs. no TNBC

Location 0.016* 0.114

Upper Uter 1 1

Lower Outer 0.630 (0.233–1.704) 0.363 0.723 (0.245–2.137) 0.723

Upper Inner 0.213 (0.077–0.589) 0.003 0.285 (0.098–0.829) 0.021

Lower Inner 0.341 (0.095–1.230) 0.100 0.316 (0.079–1.259) 0.102

Other Regions 1.229 (0.497–3.041) 0.656 1.020 (0.360–2.887) 0.970

Tumor length <0.001* 0.004*

≤2 cm 1 1

>2 cm 5.832 (2.900–11.728) 3.285 (1.465–7.367)

Burr on edge 0.056

No 1

Yes 0.491 (0.237–1.018)

Edge enhancement <0.001* 0.005*

No 1 1

Yes 4.746 (2.217–10.161) 3.504 (1.459–8.418)

Peritumoral edema <0.001* 0.032*

No 1 1

Yes 5.027 (2.603–9.709) 2.357 (1.078–5.157)

HR+/HER2− vs. others

Location 0.042* 0.059

Upper Outer 1 1

Lower Outer 1.425 (0.638–3.186) 0.388 1.450 (0.579–3.627) 0.428

Upper Inner 2.716 (1.411–5.230) 0.003 2.606 (1.243–5.460) 0.011

Lower Inner 2.217 (0.907–5.421) 0.081 2.587 (0.955–7.005) 0.062

Other Regions 1.571 (0.678–3.637) 0.292 2.637 (0.978–7.108) 0.055

Tumor length <0.001* 0.002

≤2 cm 1 1

>2 cm 0.227 (0.133–0.388) 0.380 (0.203–0.711)

Burr on edge 0.001* 0.005*

No 1 1

Yes 2.532 (1.447–4.431) 2.470 (1.313–4.646)

Edge enhancement 0.008* 0.144

No 1 1

Yes 0.368 (0.176–0.769) 0.524 (0.221–1.246)

Peritumoral edema <0.001* 0.001*

No 1 1

Yes 0.179 (0.101–0.320) 0.305 (0.156–0.569)

(Continued)
F
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sizes (3 mm, 6 mm, 9 mm, and 12 mm) in the training and

validation sets. Among the three groups of breast cancer

molecular subtypes, the AUC of the 6 mm peritumor model was

the highest (training set: 0.82, 0.79, and 0.76; validation set: 0.80,
Frontiers in Oncology 07
0.80, and 0.78, respectively). Moreover, after combining tumor and

peritumoral features, it was found that the AUC of the combination

model with peritumoral 6mm was the highest (training set: 0.92,

0.86, and 0.84; validation set: 0.85, 0.84, and 0.82). Among the
TABLE 2 Diagnostic performance of different MR sequence radiomics models in differentiating molecular subtypes of breast cancer.

Training set Validation set

AUC (95%CI) Sens. Spec. Acc. AUC (95%CI) Sens. Spec. Acc.

TNBC vs. no TNBC

T2WI 0.73 (0.64–0.82) 0.64 0.74 0.67 0.68 (0.53–0.84) 0.84 0.53 0.78

DWI 0.73 (0.64–0.82) 0.66 0.74 0.67 0.72 (0.58–0.86) 0.68 0.73 0.69

DCE 0.80 (0.72–0.88) 0.64 0.82 0.67 0.78 (0.62–0.93) 0.69 0.80 0.71

HR+/HER2− vs. others

T2WI 0.75 (0.67–0.82) 0.82 0.55 0.67 0.67 (0.54–0.8) 0.59 0.80 0.71

DWI 0.70 (0.63–0.78) 0.74 0.61 0.67 0.75 (0.64–0.86) 0.75 0.73 0.74

DCE 0.78 (0.71–0.85) 0.66 0.78 0.73 0.79 (0.69–0.9) 0.75 0.80 0.78

Her-2+ vs. others

T2WI 0.75 (0.67–0.82) 0.60 0.90 0.67 0.64 (0.47–0.80) 0.93 0.41 0.82

DWI 0.75 (0.66–0.83) 0.60 0.83 0.65 0.55 (0.39–0.72) 0.62 0.59 0.61

DCE 0.76 (0.68–0.84) 0.75 0.70 0.74 0.72 (0.57–0.86) 0.62 0.82 0.66
Sens. stands for sensitivity. Spec. stands for specificity. Acc. stands for accuracy.
TABLE 1 Continued

Univariate analysis Multivariate analysis

OR (95%CI) P-value OR (95%CI) P-value

Her-2+ vs. others

Location 0.558

Upper Outer 1

Lower Outer 0.960 (0.382–2.410) 0.931

Upper Inner 0.800 (0.385–1.662) 0.550

Lower Inner 0.823 (0.298–2.271) 0.707

Other Regions 0.332 (0.093–1.194) 0.091

Tumor length 0.119

≤2 cm 1

>2 cm 1.605 (0.886–2.907)

Burr on edge 0.041* 0.077

No 1 1

Yes 0.491 (0.248–0.972) 0.536 (0.268–1.071)

Edge enhancement 0.421

No 1

Yes 0.682 (0.268–1.733)

Peritumoral edema 0.019* 0.039*

No 1 1

Yes 2.069 (1.124–3.806) 1.915 (1.033–3.551)
*P indicates that the difference is statistically significant.
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radiomics models, it had the best performance in identifying TNBC

(training set: 0.92, validation set: 0.85).
Nomogram

Radiomics score calculation results
The Com-6 mm radiomics model had the best performance in

predicting the molecular subtypes of breast cancer, and the

radiomics score was calculated based on the combined model.

A total of 2,260 highly reproducible features were analyzed by

univariate regression analysis and the LASSO algorithm, and ten-fold
Frontiers in Oncology 08
cross-validation was used. Finally, 14, 14, and 13 optimal features

with nonzero coefficients were selected for TNBC, HR+/HER2−, and

HER2+ breast cancer, respectively (Table 4 and Figure 5).

Construct the nomogram
1. To identify TNBC breast cancer

Independent predictors (tumor length, edge enhancement, and

peritumoral edema) combined with the Rad-score were used to

construct a nomogram. The AUC of the constructed nomogram in

the training and validation sets were 0.848 (95%CI: 0.778–0.918)

and 0.910 (95%CI: 0.840–0.979), respectively (Figure 6). The Rad-

score was calculated using Equation 1.
TABLE 3 Diagnostic efficacy of DCE-MRI peritumoral and tumor + peritumoral combined radiomics models in differentiating molecular subtypes of
breast cancer.

Training set Validation set

AUC (95%CI) Sens. Spec. Acc. AUC (95%CI) Sens. Spec. Acc.

TNBC vs. no TNBC

Peritumoral

Peri-3 mm 0.80 (0.71,0.89) 0.64 0.82 0.68 0.80 (0.67,0.93) 0.76 0.80 0.77

Peri-6 mm 0.82 (0.74,0.90) 0.67 0.85 0.71 0.80 (0.67,0.92) 0.69 0.80 0.71

Peri-9 mm 0.79 (0.70,0.87) 0.76 0.71 0.75 0.76 (0.60,0.91) 0.85 0.67 0.82

Peri-12 mm 0.76 (0.65,0.86) 0.84 0.62 0.80 0.75 (0.61,0.89) 0.60 0.73 0.62

Tumor + Peritumoral

Com-3 mm 0.90 (0.84,0.95) 0.81 0.85 0.82 0.81 (0.68,0.93) 0.84 0.60 0.79

Com-6 mm 0.92 (0.86,0.98) 0.94 0.79 0.92 0.85 (0.76,0.94) 0.77 0.73 0.77

Com-9 mm 0.83 (0.74,0.91) 0.90 0.65 0.85 0.80 (0.66,0.94) 0.92 0.67 0.87

Com-12 mm 0.82 (0.75,0.90) 0.80 0.74 0.79 0.77 (0.63,0.92) 0.82 0.60 0.78

HR+/HER2− vs. others

Peritumoral

Peri-3 mm 0.81 (0.75,0.87) 0.82 0.65 0.72 0.78 (0.67,0.89) 0.88 0.60 0.71

Peri-6 mm 0.79 (0.72,0.85) 0.64 0.80 0.73 0.80 (0.70,0.89) 0.81 0.71 0.75

Peri-9 mm 0.78 (0.71,0.85) 0.78 0.66 0.71 0.77 (0.66,0.87) 0.72 0.71 0.71

Peri-12 mm 0.77 (0.70,0.84) 0.61 0.78 0.71 0.74 (0.63,0.85) 0.84 0.58 0.69

Tumor + Peritumoral

Com-3 mm 0.80 (0.74,0.87) 0.80 0.73 0.76 0.83 (0.74,0.93) 0.66 0.91 0.81

Com-6 mm 0.86 (0.80,0.91) 0.78 0.83 0.81 0.84 (0.74,0.93) 0.72 0.89 0.82

Com-9 mm 0.80 (0.73,0.86) 0.78 0.71 0.74 0.80 (0.69,0.90) 0.78 0.82 0.81

Com-12 mm 0.78 (0.72,0.85) 0.61 0.83 0.73 0.76 (0.65,0.87) 0.78 0.71 0.74

Her-2+ vs. others

Peritumoral

Peri-3 mm 0.77 (0.7,0.84) 0.62 0.90 0.68 0.73 (0.59,0.86) 0.83 0.59 0.78

Peri-6 mm 0.76 (0.67,0.84) 0.62 0.80 0.66 0.78 (0.66,0.90) 0.63 0.88 0.69

(Continued)
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FIGURE 4

ROC curves of DCE-MRI peritumoral and tumor + peritumoral radiomics models for differentiating molecular subtypes of breast cancer (A, B) TNBC
peritumoral model training and validation sets; (C, D) TNBC tumor + peritumoral model training and validation sets; (E, F) HR+/HER2− peritumoral
model training and validation sets; (G, H) HR+/HER2− tumor + peritumoral model training and validation sets; (I, J) HER2+ peritumoral model
training and validation sets; (K, L) HER2+ tumor + peritumoral model training and validation sets.
TABLE 3 Continued

Training set Validation set

AUC (95%CI) Sens. Spec. Acc. AUC (95%CI) Sens. Spec. Acc.

Peritumoral

Peri-9 mm 0.73 (0.64,0.82) 0.58 0.83 0.63 0.70 (0.56,0.83) 0.65 0.76 0.68

Peri-12 mm 0.73 (0.64,0.81) 0.54 0.85 0.61 0.64 (0.50,0.77) 0.52 0.82 0.58

Tumor + Peritumoral

Com-3 mm 0.81 (0.72,0.88) 0.87 0.63 0.81 0.75 (0.62,0.86) 0.70 0.71 0.70

Com-6 mm 0.84 (0.73,0.90) 0.83 0.67 0.80 0.82 (0.70,0.93) 0.58 0.87 0.60

Com-9 mm 0.77 (0.70,0.85) 0.62 0.90 0.68 0.73 (0.59,0.86) 0.83 0.59 0.78

Com-12 mm 0.76 (0.67,0.84) 0.54 0.85 0.61 0.70 (0.56,0.83) 0.85 0.47 0.77
F
rontiers in Oncolo
gy 09
“Peri-” represents peritumoral features. “Com-” represents the combination of tumor and peritumoral features. Sens. stands for sensitivity. Spec. stands for specificity. Acc. stands for accuracy.
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Radscore = −53:55967 + ( − 0:299255) � A1 + 9:4466084� A2 + 0:008827� A3

+32:181428� A4 + 0:3764279� A5 + 0:00446� A6 + 0:7899561� A7

+( − 0:057933)� A8 + ( − 0:390269)� A9 + ( − 0:65764)� A10

+13:439343� A11 + 0:0024224� A12 + 0:0005826� A13

+( − 0:000000269)� A14

(1)

2. To identify HR+/HER2− breast cancer
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Independent predictors (tumor length, edge spiculation, and

peritumoral edema) combined with the Rad-score were used to

construct a nomogram. The AUC of the constructed nomogram in

the training and validation sets were 0.834 (95%CI: 0.776–0.892)

and 0.909 (95%CI: 0.839–0.978), respectively (Figure 6). The Rad-

score was calculated using Equation 2.

Radscore = 38:7805996 + ( − 7:315145)� B1 + ( − 11:58611)� B2

+( − 0:431533)� B3 + ( − 33:671521)� B4 + 0:514326� B5

+0:078149� B6 + ( − 1:034987)� B7 + ( − 0:093055)� B8

+0:456248� B9 + 1:435092� B10 + ( − 0:027667)� B11

+( − 0:193637)� B12 + 0:229736� B13 + 0:020340� B14

(2)

3. To identify HER2+ breast cancer

An independent predictor (peritumoral edema) combined with

the Rad-score was used to construct a nomogram. The AUC of the

constructed nomogram in the training and validation sets were

0.802 (95%CI: 0.730–0.873) and 0.845 (95%CI: 0.742–0.948),

respectively (Figure 6). The Rad-score was calculated using

Equation 3.

Radscore = 0:8623712 + ( − 0:207434)� C1 + 0:0319403� C2 + 0:0130694

�C3 + 0:4562349� C4 + ( − 0:4332202)� C5 + 0:02348109

�C6 + ( − 0:6628339)� C7 + ( − 0:000004)� C8

+( − 0:01680067)� C9 + ( − 0:01701304)� C11 + 0:00295915

�C12 + ( − 0:4477343)� C13

(3)
TABLE 4 Radiomics features and coefficients after LASSO
dimensionality reduction.

Radiomics feature Coefficient

TNBC

original_shape_Sphericity (A1) −0.299255

log-sigma-4-0-mm-3D_glcm_Idn (A2) 9.4466084

log-sigma-6-0-mm-3D_gldm_DependenceVariance (A3) 0.0088827

log-sigma-6-0-mm-3D_glcm_Idn(A4) 32.181428

log-sigma-6-0-mm-3D_firstorder_Skewness (A5) 0.3764279

plus original_shape_Maximum2DDiameterRow (A6) 0.000446

plus log-sigma-2-0-mm-3D_glcm_Correlation (A7) 0.7899561

plus log-sigma-2-0-mm-3D_firstorder_Kurtosis (A8) −0.057933

plus log-sigma-2-0-mm-
3D_glszm_SmallAreaLowGrayLevelEmphasis (A9)

−0.390269

plus wavelet-HLL_firstorder_Skewness (A10) −0.65764

plus wavelet-LHL_glcm_Idn (A11) 13.439343

plus wavelet-HLH_glcm_ClusterShade (A12) 0.0024224

plus wavelet-HHL_glszm_GrayLevelNonUniformity (A13) 0.0005826

plus original_glszm_LargeAreaHighGrayLevelEmphasis (A14) −0.00000269

HR+/HER2−

log-sigma-2-0-mm-3D_glcm_Idn (B1) −7.315145

llog-sigma-2-0-mm-
3D_glszm_SmallAreaLowGrayLevelEmphasisn (B2)

−11.58611

log-sigma-4-0-mm-3D_firstorder_Skewness (B3) −0.431533

log-sigma-6-0-mm-3D_glcm_Idn (B4) −33.971521

wavelet-LHL_glcm_Correlation (B5) 0.514326

wavelet-LHL_firstorder_Skewness (B6) 0.078149

wavelet-LLL_glcm_Idmn (B7) −1.034987

wavelet-LLL_firstorder_Kurtosis (B8) −0.093055

original_glcm_Imc2 (B9) 0.456248

plus original_shape_Elongation (B10) 1.435092

plus wavelet-LLH_glcm_Idmn (B11) −0.027667

plus wavelet-LLH_glcm_Idn (B12) −0.193637

plus wavelet-
LLL_gldm_LargeDependenceLowGrayLevelEmphasis (B13)

0.229736

(Continued)
TABLE 4 Continued

Radiomics feature Coefficient

HR+/HER2−

plus wavelet-LLL_firstorder_Kurtosis (B14) 0.020340

HER2+

original_shape_Elongation −0.207434

log-sigma-2-0-mm-3D_glcm_Idn 0.0319403

log-sigma-2-0-mm-3D_firstorder_Kurtosis 0.0130694

log-sigma-2-0-
mm-3D_glszm_SmallAreaLowGrayLevelEmphasis

0.4562349

wavelet-LHL_glcm_Correlation −0.4332202

wavelet-LLL_firstorder_Kurtosis 0.02348109

original_glcm_Imc2 −0.6628339

plus log-sigma-2-0-mm-3D_glcm_ClusterShade −0.000004

plus log-sigma-4-0-mm-3D_firstorder_Kurtosis −0.01680067

plus wavelet-LHL_firstorder_Skewness −0.01701304

plus wavelet-LHH_firstorder_Skewness 0.03400333

plus wavelet-HHH_firstorder_Kurtosis 0.00295915

plus wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis −0.4477343
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Discussion

This study aimed to investigate the performance of radiomics

and nomogram models based on multiple MRI sequences for the

noninvasive prediction of molecular subtypes of breast cancer.

We analyzed the semantic features of breast cancer on MRI and

found that edge spiculation, edge enhancement, and peritumoral

edema correlated with the molecular subtype of breast cancer.

Previous studies have also found that tumor edge enhancement is

closely related to the overexpression of vascular endothelial growth

factor and tumor hypoxia, which is common in fast-growing

tumors and is related to tumor size, grade, ER and/or PR

expression, Ki-67 expression, lymph node status, and DNA S-

phase percentage (12, 13). TNBC is the most aggressive breast

cancer. We also conclude that edge enhancement is a predictor.

Tumor edge spiculation is associated with positive ER and PR

expression, negative HER2 and Epidermal Growth Factor Receptor

(EGFR) expression, and lymph node metastasis (14), and we believe

that it is a predictor of HR+/HER2− breast cancer. Peritumoral

edema is mainly caused by increased endothelial permeability of

tumor neovascularization and peritumoral cytokine release, and is

commonly seen in triple-negative breast cancer and HR-deficient

breast cancer (15–17). We support the conclusion that peritumoral

edema is a positive predictor for TNBC and HER2+ subtype breast

cancer, and a negative predictor for HR+/HER2− subtype breast

cancer. The results of this study not only support the conclusions of

previous studies but also transform the traditional qualitative

analysis method of semantic features into a quantitative analysis

method. By constructing the nomogram model, the weight

proportion of the semantic features in the construction of the

prediction model was accurately quantified.

Studies have reported that DCE sequences reflect more detailed

biological information of tumors by analyzing the hemodynamic

characteristics of tumors (17, 18), and that texture features are

correlated with the levels of multiple biomarkers, such as estrogen

receptor (ER), progesterone receptor (PR), and HER2 (19, 20). Our
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study compared radiomics models based on T2WI, DWI, and DCE

sequences, and the results showed that the DCE-based model had

the highest diagnostic efficiency (AUC = 0.910), especially in the

differentiation of TNBC and non-TNBC breast cancer, which may

be related to the higher heterogeneity of TNBC breast cancer. The

heterogeneity of tumor morphology and contrast enhancement in

the DCE sequence can better reflect pathophysiological

characteristics, such as tumor proliferation and angiogenesis (21).

The AUC result of this validation set was better than that of

previous models established to differentiate TNBC from non-

TNBC breast cancer, such as the study by Zhang et al. (22) (AUC

=0.879) and Zhang et al. (23) (AUC = 0.890), which reflects that we

have a superior model scheme.

In addition to the tumor body, the radiomics features of the

surrounding areas of breast cancer are also of great significance.

Based on DWI images, Fan et al. (24) explored the relationship

between radiomics features of tumors and their surrounding areas

and molecular subtypes of breast cancer, and found that the model

established when the peritumoral area was 5 mm had the best

prediction performance. Zhang et al. (22) used peritumoral

radiomics features based on DCE-MRI to establish a molecular

classification model for breast ductal carcinoma in situ. The best

peritumoral area was 6 mm for differentiating between TNBC and

non-TNBC, HR+/HER2−, and non-HR+/HER2−. The optimal

peritumoral area for distinguishing HER2+ cells from non-HER2

+ cells was 8 mm. Hao et al. (8) studied the distance of 4 mm around

the tumor and established a preoperative molecular classification

model of breast cancer. Based on DCE-MRI images, we compared

various peritumoral ranges (3 mm, 6 mm, 9 mm, and 12 mm) and

established multiple radiomics logistic regression models. We found

that the peritumoral 6 mm radiomics feature model had the best

performance in identifying molecular subtypes of breast cancer, and

the performance was better than that of previous studies. In

addition, our study included a variety of histological types of

breast cancer, and the conclusions were more generalized

and applicable.
A B

FIGURE 5

Selection of radiomics features using LASSO algorithm. (A) LASSO coefficient curve of radiomics features, each colored line represents the
coefficient of each feature, and the unimportant feature coefficients were compressed to zero by adjusting l; (B) Tenfold cross-validation was used
to select the best performance radiomics feature map: the lower abscissa is the Log (l) value, and the upper abscissa is the number of features after
LASSO dimension reduction corresponding to the Log (l) value.
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In this study, the proportion of high-order features extracted

from T2WI, DWI, and DCE sequences for the differentiation of the

three groups of breast cancer molecular subtypes was much higher

than that of the low-order features. Higher-order features reflect the

consistency between texture roughness and tumor texture images,

which is beneficial for better predicting the heterogeneity within the

tumor and the subtle differences in gray texture features, and
Frontiers in Oncology 12
provides more information for the evaluation of breast cancer

molecular typing diagnosis. As an important part of high-order

features, wavelet transform analyzes the local time and spatial

frequency, extracts high-frequency and low-frequency signals in

the image extensively and effectively, and reflects the texture

changes of the image more carefully and comprehensively. The

Gabor transform performed by the Gabor filter based on the wavelet
A

B

C

FIGURE 6

Nomograms. (A) to identify TNBC breast cancer. The nomogram was composed of peritumoral edema, rim enhancement, tumor length and
radiomics score. Peritumoral edema: 0 = absent, 1 = present; Ring enhancement: 0 = no, 1 = yes; Tumor length: 0 = ≤2 cm, 1 = >2 cm. (B) to
identify HR+/HER2− breast cancer. The nomogram was composed of peritumoral edema, tumor length, spiculation sign, and radiomics score.
Peritumoral edema: 0 = absent, 1 = present; Tumor length: 0 = 2 cm, 1 = >2 cm; Spiculation: 0 = none, 1 = yes. (C) to identify HER2 + breast
cancer. The nomogram consisted of peritumoral edema and radiomics score. Peritumoral edema: 0 = none, 1 = presence.
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transform can be used to solve the lack of localization-analysis

ability of the Fourier transform and the analysis ability of non-

stationary signals.

Previous studies have also found that wavelet features contain

more detailed information about breast cancer and are a key

component in radiomics model construction (25). Braman et al.

(26) found that Gabor features are of great significance in the

molecular classification of breast cancer, which can improve the

ability to distinguish HER2+ from other breast cancers (such as

TNBC). In this study, wavelet features demonstrated good predictive

power for HER2+ breast cancer and can be used to quantify tumor

heterogeneity comprehensively and broadly at different spatial scales

and directions. In this study, the wavelet features demonstrated good

predictive power for HER2+ breast cancer and can be used to

quantify tumor heterogeneity comprehensively and broadly at

different spatial scales and directions. The mixture of a variety of

low- and high-order features has heterogeneous information

complementary values for distinguishing the molecular subtypes of

breast cancer. Niu et al. (27) found that shape features could

distinguish TNBC from other molecular types of breast cancer. In

this study, shape feature-sphericity was also of great significance in

identifying TNBC. It is the only low-order feature retained after the

LASSO dimension reduction, and its absolute value of the feature

coefficient is at the 8th place.

In recent years, an increasing number of studies have developed

nomograms to intuitively assist the clinical decision-making process

and make the treatment strategy for breast cancer patients more

convenient, accurate, and personalized. Kim et al. (28) developed a

nomogram based on MRI and clinical-pathological variables to

predict breast cancer Polymerase Chain Reaction (PCR), which

showed higher efficiency than a single clinical-pathological model.

Yu et al. (29) developed a nomogram combining radiomics and

clinical features for preoperative prediction of axillary lymph node

metastasis and disease recurrence risk in early breast cancer. Decision

curve analysis showed that the clinical-radiomics nomogram had

better predictive performance than clinical or radiomics alone. In this

study, a nomogram based on semantic features and tumor +

peritumoral 6 mm radiomics score was constructed to identify

molecular subtypes of breast cancer, and the diagnostic efficiency

was significantly higher than that of MRI semantic feature analysis

and radiomics model alone. In this study, the Rad-score had the

widest predictive score and the largest contribution in the nomogram

and was the most important independent factor for the identification

of molecular subtypes of breast cancer. Clinicians can perform

nomogram analyses based on individual differences and available

information, which provides methodological information for the

prediction of molecular subtypes of breast cancer.

This study has several limitations. First, it should be noted that

the retrospective nature of the study introduces a certain degree of

selection bias. Second, it is important to acknowledge that this study

was conducted at a single center, which may limit the

generalizability of the findings. Therefore, future multicenter

studies are required to validate the radiomics model proposed in

this study. Lastly, while peritumoral radiomics models were
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successfully established using DCE sequences, similar models

utilizing T2WI and DWI sequences have not been developed.

Although the DCE sequence outperforms T2WI and DWI

sequences in predicting breast cancer molecular subtypes without

compromising the final results, it is also essential to consider

experimental integrity. In future research endeavors, we aim to

delve deeper into extracting valuable information from the T2WI

and DWI sequences.
Conclusions

The nomogram based on independent predictors combined

with intratumoral and peritumoral radiomics scores can be used as

an auxiliary diagnostic tool for the molecular subtype prediction of

breast cancer.
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11. Carré A, Klausner G, Edjlali M, Lerousseau M, Briend-Diop J, Sun R, et al.
Standardization of brain MR images across machines and protocols: bridging the gap
for MRI-based radiomics. Sci Rep. (2020) 10:12340. doi: 10.1038/s41598-020-69298-z

12. Yetkin D, Akpınar MG, Durhan G, Demirkazik FB. Comparison of clinical and
magnetic resonance imaging findings of triple-negative breast cancer with non-triple-
negative tumours. Polish J Radiol. (2021) 86:e269–e76. doi: 10.5114/pjr.2021.106137

13. Jeh SK, Kim SH, Kim HS, Kang BJ, Jeong SH, Yim HW, et al. Correlation of the
apparent diffusion coefficient value and dynamic magnetic resonance imaging findings
with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging: JMRI.
(2011) 33:102–9. doi: 10.1002/jmri.22400

14. Angelini G, Marini C, Iacconi C, Mazzotta D, Moretti M, Picano E, et al. Magnetic
resonance (MR) features in triple negative breast cancer (TNBC) vs receptor positive
cancer (nTNBC). Clin Imaging. (2018) 49:12–6. doi: 10.1016/j.clinimag.2017.10.016

15. Santucci D, Faiella E, Cordelli E, Calabrese A, Landi R, de Felice C, et al. The
impact of tumor edema on T2-weighted 3T-MRI invasive breast cancer histological
characterization: A pilot radiomics study. Cancers. (2021) 13(18):4635. doi: 10.3390/
cancers13184635

16. Baltzer PA, Yang F, Dietzel M, Herzog A, Simon A, Vag T, et al. Sensitivity and
specificity of unilateral edema on T2w-TSE sequences in MR-Mammography
considering 974 histologically verified lesions. Breast J. (2010) 16:233–9.
doi: 10.1111/j.1524-4741.2010.00915.x

17. Costantini M, Belli P, Distefano D, Bufi E, Matteo MD, Rinaldi P, et al. Magnetic
resonance imaging features in triple-negative breast cancer: comparison with luminal
and HER2-overexpressing tumors. Clin Breast Cancer. (2012) 12:331–9. doi: 10.1016/
j.clbc.2012.07.002

18. Cheon H, Kim HJ, Kim TH, Ryeom HK, Lee J, Kim GC, et al. Invasive breast
cancer: prognostic value of peritumoral edema identified at preoperative MR imaging.
Radiology. (2018) 287:68–75. doi: 10.1148/radiol.2017171157

19. Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R, et al.
MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study.
Lancet (London England). (2007) 370:485–92. doi: 10.1016/S0140-6736(07)61232-X

20. Leithner D, Wengert GJ, Helbich TH, Thakur S, Ochoa-Albiztegui RE, Morris
EA, et al. Clinical role of breast MRI now and going forward. Clin Radiol. (2018)
73:700–14. doi: 10.1016/j.crad.2017.10.021

21. Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, et al. Quantitative MRI
radiomics in the prediction of molecular classifications of breast cancer subtypes in the
TCGA/TCIA data set.NPJ Breast Cancer. (2016) 2:16012–. doi: 10.1038/npjbcancer.2016.12

22. Zhang S, Wang X, Yang Z, Zhu Y, Zhao N, Li Y, et al. Intra- and peritumoral
radiomics model based on early DCE-MRI for preoperative prediction of molecular
subtypes in invasive ductal breast carcinoma: A multitask machine learning study.
Front Oncol. (2022) 12:905551. doi: 10.3389/fonc.2022.905551

23. Zhang Y, Chen JH, Lin Y, Chan S, Zhou J, Chow D, et al. Prediction of breast
cancer molecular subtypes on DCE-MRI using convolutional neural network with
transfer learning between two centers. Eur Radiol. (2021) 31:2559–67. doi: 10.1007/
s00330-020-07274-x

24. Fan M, He T, Zhang P, Cheng H, Zhang J, Gao X, et al. Diffusion-weighted
imaging features of breast tumours and the surrounding stroma reflect intrinsic
heterogeneous characteristics of molecular subtypes in breast cancer. NMR Biomed.
(2018) 31(2):3869. doi: 10.1002/nbm.v31.2

25. Li C, Song L, Yin J. Intratumoral and peritumoral radiomics based on functional
parametric maps from breast DCE-MRI for prediction of HER-2 and Ki-67 status. J
Magn Reson Imaging: JMRI. (2021) 54:703–14. doi: 10.1002/jmri.27651

26. Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, et al. Association
of peritumoral radiomics with tumor biology and pathologic response to preoperative
targeted therapy for HER2 (ERBB2)-positive breast cancer. JAMA Netw Open. (2019) 2:
e192561. doi: 10.1001/ jamanet work open.2019.2561

27. Niu S, Jiang W, Zhao N, Jiang T, Dong Y, Luo Y, et al. Intra- and peritumoral
radiomics on assessment of breast cancer molecular subtypes based on mammography
and MRI. J Cancer Res Clin Oncol. (2022) 148:97–106. doi: 10.1007/s00432-021-03822-0

28. Kim SY, Cho N, Choi Y, Lee SH, Ha SM, Kim ES, et al. Factors affecting
pathologic complete response following neoadjuvant chemotherapy in breast cancer:
development and validation of a predictive nomogram. Radiology. (2021) 299:290–300.
doi: 10.1148/radiol.2021203871

29. Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, et al. Development and validation of
a preoperative magnetic resonance imaging radiomics-based signature to predict axillary
lymph node metastasis and disease-free survival in patients with early-stage breast cancer.
JAMA Netw Open. (2020) 3:e2028086. doi: 10.1001/jamanetworkopen.2020.28086
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1379048/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1379048/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21708
https://doi.org/10.1016/j.breast.2011.07.008
https://doi.org/10.1007/s10549-013-2647-2
https://doi.org/10.1007/s10549-013-2647-2
https://doi.org/10.1148/radiol.2016160261
https://doi.org/10.1007/s00330-022-08539-3
https://doi.org/10.1007/s13402-021-00634-9
https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.1016/j.ejrad.2019.03.015
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.5114/pjr.2021.106137
https://doi.org/10.1002/jmri.22400
https://doi.org/10.1016/j.clinimag.2017.10.016
https://doi.org/10.3390/cancers13184635
https://doi.org/10.3390/cancers13184635
https://doi.org/10.1111/j.1524-4741.2010.00915.x
https://doi.org/10.1016/j.clbc.2012.07.002
https://doi.org/10.1016/j.clbc.2012.07.002
https://doi.org/10.1148/radiol.2017171157
https://doi.org/10.1016/S0140-6736(07)61232-X
https://doi.org/10.1016/j.crad.2017.10.021
https://doi.org/10.1038/npjbcancer.2016.12
https://doi.org/10.3389/fonc.2022.905551
https://doi.org/10.1007/s00330-020-07274-x
https://doi.org/10.1007/s00330-020-07274-x
https://doi.org/10.1002/nbm.v31.2
https://doi.org/10.1002/jmri.27651
https://doi.org/10.1001/ jamanet work open.2019.2561
https://doi.org/10.1007/s00432-021-03822-0
https://doi.org/10.1148/radiol.2021203871
https://doi.org/10.1001/jamanetworkopen.2020.28086
https://doi.org/10.3389/fonc.2025.1379048
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	The value of intratumoral and peritumoral radiomics features based on multiparametric MRI for predicting molecular staging of breast cancer
	Highlights
	Introduction
	Materials and methods
	Patients and MRI acquisition
	Analysis of MRI semantic features
	Radiomics analysis
	Segmentation of breast cancer lesions
	Radiomics feature extraction
	Dimensionality reduction of radiomics features
	Construction of radiomics model

	Nomogram
	Histopathological analyses
	Statistical methods

	Results
	Clinical data of the patients
	Analysis of MRI semantic features
	Radiomics model
	Radiomics model of tumor based on different sequences
	Radiomics model of different peritumoral ranges based on DCE sequence

	Nomogram
	Radiomics score calculation results
	Construct the nomogram


	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


