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Background: Colon cancer is a prevalent malignancy that significantly threatens

human health. In recent years, mRNA cancer vaccines have demonstrated

considerable potential and distinct advantages in colon cancer treatment.

Thus, This study identifies CUL7, ENO2, and MPP2 as potential antigens for

colon cancer mRNA vaccines. Through multi-omics analysis, we classify COAD

into three immune subtypes (C1-C3) with distinct molecular and clinical features.

Methods: Data from TCGA and GEO databases were analyzed using

bioinformatics tools. Prognostic indices were calculated with GEPIA2, and

TIMER assessed antigen-presenting cell infiltration. Survival analysis was

performed using Kaplan-Meier curves and Cox proportional hazards models.

Immune subtypes were classified via non-negative matrix factorization (NMF)

clustering, with k=3 determined by cophenetic correlation (0.92) and silhouette

width (average = 0.85). Drug sensitivity, immune cell infiltration, and gene set

variation were analyzed using R packages such as “pRRophetic,” CIBERSORT, and

GSVA. Functional enrichment analysis was performed with GO, KEGG, and GSEA.

Experimental validation included immunohistochemistry and RT-PCR to confirm

gene expression.

Results: Analysis of TCGA-COAD data revealed copy number variants in 16,354

genes, with CUL7, ENO2, and MPP2 showing significant antigen-presenting cell

infiltration and associations with overall survival (OS) and relapse-free survival

(RFS). Based on molecular mechanisms, cellular features, and clinical

characteristics, colon cancer was categorized into three immune subtypes (C1,

C2, and C3) distinct from Thorsson’s pan-cancer subtypes (C1-C6) in pathway

enrichment, with the C2 subtype exhibited significantly longer overall survival

(OS) than C1 and C3 (median OS: C2 = 68 months vs. C1 = 42 months, C3 = 37

months; log-rank P < 0.001). The distribution of these immune subtypes showed

disparities in immune patterns, and a correlation between key components and

immune cells was observed. Prognostic correlation analysis indicated that the

gray and turquoise modules were closely linked to colorectal cancer prognosis.

Additionally, RT-PCR confirmed the association of CUL7, ENO2, and MPP2

expression levels with colon cancer.
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Conclusions: CUL7, ENO2, and MPP2 were identified as potential antigens for

colon cancer mRNA vaccines, with MPP2 showing particular immunological

relevance. This study provides a foundation for mRNA vaccine development and

patient stratification for vaccination in colon cancer.
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1 Introduction

Colon cancer (COAD) is the third most prevalent malignancy

globally and a leading cause of cancer-related mortality (1). Its

incidence has risen steadily in recent years (2, 3), posing a

significant public health burden. Current clinical treatments for

COAD include surgical resection, radiotherapy, chemotherapy,

targeted therapies, and immunotherapy, among others (4).

Despite advancements in diagnosis and treatment, many patients

are diagnosed at advanced stages, rendering them ineligible for

surgery, and long-term survival rates remain suboptimal (5). This

underscores the need for innovative therapeutic approaches to

improve patient outcomes.

Immunotherapy has emerged as an increasingly vital

component in the treatment of malignancies. As a complement to

traditional therapies such as radiotherapy, chemotherapy, and

surgery, immunotherapy has demonstrated impressive efficacy in

several cancers (6). The primary goal of tumor immunotherapy is to

bolster the immune system’s capacity, either through active or

passive immunity, to elicit a potent anti-tumor response,

ultimately eradicating or inhibiting tumor cells (7, 8). Unlike

conventional immunotherapy, contemporary research emphasizes

signal pathways and antigen presentation mechanisms. Immune

checkpoint inhibitors targeting programmed cell death protein 1

(PD-1) and its ligands (e.g., PD-L1) have revolutionized

immunotherapy (9). Among the various immunotherapy

modalities, tumor vaccines are gaining significant attention and

have become a focal point of recent research (10–12). These

vaccines aim to stimulate the patient’s immune system through

active immunity, playing a pivotal role in anti-tumor responses.

Tumor vaccines are diverse in nature, encompassing peptide

vaccines derived from tumor antigens, viral or bacterial vector

vaccines, nucleic acid vaccines, and dendritic cell (DC) vaccines

(13). Notably, mRNA-based vaccines are emerging as a rapidly

advancing area of research. With the ongoing development of

mRNA technologies and the advent of next-generation

sequencing (NGS), mRNA tumor vaccines are entering a phase of

rapid progress. Recent studies highlight the effectiveness of mRNA

vaccines encoding tumor-specific antigens in eliciting robust

immune responses and show promising results in preventing a

range of malignancies. Preclinical models have confirmed that these

vaccines can significantly enhance anti-tumor immunity, offering
02
potential preventive effects against various cancers, including liver

malignancies (14), melanomas (15, 16), gastric cancers (17), and

pancreatic cancers (18). Moreover, they hold significant promise for

the prevention and treatment of a broader spectrum of tumors.

Numerous studies, both domestic and international, have

explored mRNA vaccines for COAD (19). However, progress

remains limited due to the tumor’s heterogeneity, its complex

immune microenvironment, and the challenge of identifying

appropriate tumor-specific antigens. Despite extensive research on

mRNA vaccines for COAD (19), progress is hindered by tumor

heterogeneity, the complex immune microenvironment, and the

difficulty in identifying tumor-specific antigens. The selection of

precise tumor antigens is critical for the success of immunotherapy

(20). Early research identified tumor-associated antigens as proteins

overexpressed in tumor cells but present at lower levels in normal

tissues. This has since expanded to include antigens (21, 22)

consisting of protein clusters recognized by tumor-reactive,

tumor-infiltrating lymphocytes (TILs). Additionally, identifying

patients with COAD who are suitable candidates for mRNA

vaccination is crucial. Traditional methods often fail to select

appropriate candidates, and stratification based on immune gene

expression profiles may be more effective, given the immune

heterogeneity within the population. To advance COAD mRNA

vaccine development, further research into its mechanisms and

antigen targets is essential to overcome current obstacles and

provide new therapeutic avenues.

This study aims to identify potential antigens suitable for colon

cancer vaccines. COAD mRNA expression data, matrix files, and

immune gene sets were acquired from databases such as TCGA,

GEO, and ImmPort, establishing a foundation for further analysis

(23). Subsequently, a variety of methods are employed, including

GEPIA for calculating prognostic indices, TIMER for assessing cell-

antigen interactions, NMF clustering for immune subtype

classification, GDSC for drug sensitivity analysis, and

CIBERSORT and GSVA algorithms for immune cell and gene set

analysis. Additionally, immune landscapes are analyzed, and co-

expression networks are constructed using the “Monocle” package.

Functional analyses of key genes are conducted via GO and KEGG,

while GSEA is used to identify upregulated pathways. These

comprehensive approaches provide insight into the biological

characteristics and therapeutic targets of colon cancer, offering

new directions for research and treatment.
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2 Materials and methods

2.1 Data acquisition

The Cancer Genome Atlas (TCGA; https://portal.gdc.

cancer.gov/) provides genomic data for 42 normal and 479 colon

cancer (COAD) samples. Data were processed using cBioPortal

(https://cbioportal.org/) to visualize genetic alterations. For this

study, raw mRNA expression data from the processed COAD

dataset, comprising a normal group (n = 42) and a tumor group

(n = 479), was downloaded. Cancer Genomics cBioPortal (https://

www.cbioportal.org/) is an open-access platform that integrates

data from large-scale genomic projects such as TCGA and the

International Cancer Genome Consortium (ICGC). In this analysis,

cBioPortal was employed to visualize genetic alterations in potential

antitumor antigens from the TCGA dataset. The series matrix file

GSE39582 was retrieved from the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) public database, utilizing the annotation platform to obtain

data from 562 patients with COAD with complete expression profiles

and survival information on GPL570. Similarly, GSE17537 series

matrix file data were extracted from the GEO database, with

annotation data for 55 patients with COAD featuring complete

expression profiles and survival details on GPL570. The immune

gene set for this analysis, consisting of 1,811 immune-related genes,

was sourced from the ImmPort database.
2.2 Gene expression spectrum interaction
analysis (GEPIA)

Gene Expression Profiling Interactive Analysis (GEPIA, http://

gepia2.cancer-pku.cn) is an open-access tool that facilitates

interactive exploration of sequence data from 9,736 tumor

specimens and 8,587 normal samples from the Genotype-Tissue

Expression (GTEx) program. GEPIA2 was utilized in this study to

compute the prognostic index for each selected antigen.
2.3 Tumor immune assessment (TIMER)

Tumor Immune Estimation Resource (TIMER, http://

cistrome.dfci.harvard.edu/TIMER/download.html) provides a

comprehensive platform for systematically analyzing immune

infiltration across various cancer types. In this research, TIMER

was used to observe the relationship between antigen-presenting

cell (APC) infiltration and the expression of identified

antitumor antigens.
2.4 Classification of immune subtypes

To define immune subtypes, we first selected 142 immune-

related genes (from the ImmPort database) significantly associated
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with prognosis (Cox univariate regression, P < 0.05). These genes

were enriched in immunological processes critical to antitumor

immunity, including antigen presentation (e.g., MHC class II

genes), T cell activation (e.g., co-stimulatory molecules), and

cytokine signaling (e.g., interferon response pathways). Immune

subtypes were classified via non-negative matrix factorization

(NMF) clustering (k=3, cophenetic correlation = 0.92, silhouette

width = 0.85) using the R NMF package. Cluster stability was

validated by 1000 bootstrap iterations (mean consensus index =

0.89). Cox regression analysis, performed via the “survival” R

package, evaluated the association of all candidate genes with

overall survival (OS). NMF clustering was subsequently applied to

the same candidate genes in two external validation sets from the

GEO database, and immune gene subtype assignment was verified

using the aforementioned mRNA expression data. Cluster stability

was validated through 1000 bootstrap iterations (mean consensus

index = 0.89). Comparative analysis with existing classifications

(Thorsson C1-C6 and CMS subtypes) was performed using Cohen’s

kappa coefficient (k = 0.21, P < 0.001), confirming the novelty of

our system.
2.5 Drug sensitivity analysis

Leveraging the Genomics of Drug Sensitivity in Cancer (GDSC)

database, the largest pharmacogenomics resource (https://

www.cancerrxgene.org/), the “pRRophetic” R package was

employed to predict chemosensitivity for each tumor sample.

Half-maximal inhibitory concentration (IC50) estimates for

specific chemotherapeutic drugs were obtained through regression

analysis, with regression and prediction accuracy validated by 10-

fold cross-validation using the GDSC dataset. All parameters were

kept at their default settings, including batch effect removal via

“combat” and averaging repeated gene expression values.
2.6 Immune cell infiltration analysis

The CIBERSORT algorithm was used to analyze RNA

sequencing (RNA-seq) data from patients with COAD in various

subgroups, inferring the relative proportions of 22 immune-

infiltrating cell types. Spearman correlation analysis was

conducted to assess relationships between gene expression and

immune cell content, with statistical significance set at P < 0.05.
2.7 Gene set variation analysis

GSVA, a nonparametric method, was applied to evaluate gene

set enrichment at the transcriptome level. GSVA transforms gene-

level variations into pathway-level alterations by assigning

comprehensive scores to gene sets of interest, allowing the

assessment of biological function in the samples. In this study,

the GSVA algorithm was used to score each gene set from the
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Molecular Signatures Database (MSigDB) (version v7.0) to identify

potential functional changes across different samples.
2.8 Immune landscape analysis

Dimensionality reduction was performed using the “Reduce

Dimension” function in the “Monocle” package for normally

distributed variables, with the maximum number of components

set to 4. The discriminant tree dimensionality reduction (DDRTree)

algorithm was employed to reduce dimensionality, and the immune

landscape was visualized using the PLOT_CELL_TRACTORK

function of the “Monocle” package.
2.9 Weighted gene coexpression network
analysis

Weighted gene coexpression networks were constructed to

identify coexpressed gene modules and explore associations

between these networks, phenotypes, and core genes.

Using the “WGCNA” R package, coexpression networks for all

genes were separately generated. The top 5000 genes with the

highest variance were selected for further analysis, with a soft

threshold of 5. A weighted adjacency matrix was converted into a

topological overlap matrix (TOM) to estimate network

connectivity. Hierarchical clustering was used to create the cluster

tree structure of the TOM matrix, with distinct branches

representing gene modules and different colors denoting various

modules. Genes were classified into modules based on their

weighted correlation coefficients, grouping genes with similar

expression patterns and organizing tens of thousands of genes

into distinct modules.
2.10 Gene ontology and Kyoto
encyclopedia of genes and genomes
functional analyses

Key genes were functionally annotated using the clusterProfiler

(R3.6) package to thoroughly investigate their functional relevance.

GO and KEG analyses were performed to assess associated

functional categories, with pathways considered significant if both

p and q values were below 0.05.
2.11 Subtype GSEA

Log2 fold change values for each gene were calculated using the

“limma” package. GO and KEGG enrichment pathways were

identified through GSEA, and the 10 most upregulated pathways,

based on the highest normalized enrichment scores (NES), were

selected for each isoform. The gene sets were obtained from the

Molecular Signatures Database (MSigDB) (https://www.gsea-

msigdb.org/gsea/msigdb).
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2.12 Quantitative real-time polymerase
chain reaction

A total of six pairs of colonic cancer and adjacent non-tumor

tissues were collected from surgical patients at The Third Affiliated

Hospital of Shandong First Medical University (Affiliated Hospital

of Shandong Academy of Medical Sciences). The study design was

reviewed and approved by the medical ethics committee of the

hospital, and written informed consent was obtained from all

participants. Tissues were first ground in liquid nitrogen, and

RNA was extracted using TRIzol (Invitrogen, USA) according to

the manufacturer’s protocol. The concentration and purity of the

extracted RNA were then measured by UV spectrophotometry

using 2 µL of sample. Reverse transcription was performed

following the instructions of the Vazyme Biotech kit. The total

volume of the PCR reaction was 10 µL, consisting of AceQ qPCR

SYBR Green Master Mix (5 µL), Primer1 (0.2 µL), Primer2 (0.2 µL),

ROX Reference Dye 1 (0.2 µL), Template DNA (1 µL), and sterile

distilled water (3.4 µL). Gene expression levels were measured using

a Roche 480 II Real-Time PCR Instrument. The primers used were

as follows: MPP2: 5’-ATGCAGCAAGTCCTGGACAA-3’ and 5’-

TTGTTGTCTCTCACGGCCTC-3 ’ ; CUL7: 5 ’-TACCAG

GAGGGGTCCTCAAG-3 ’ and 5 ’ -TTCTCCAAGTTC

TGGCCGTC-3’; ENO2: 5’-TCAAGGTCAACCAGATCGGC-3’

and 5’-CCAGGCAAGCAGAGGAATCA-3’. b-actin (ACTB)

served as the internal control, with primers: forward 5’-

CCCTATAAAACCCAGCGGCG-3’, reverse 5’-TCGTCGCC

CACATAGGAATC-3’. All CT values were analyzed using the

delta-delta CT (DDCT) method, with the median value serving as

the cutoff to classify mRNA expression into high and low

expression groups.
2.13 Statistical analysis

Kaplan-Meier survival curves were generated for overall

survival (OS) and relapse-free survival (RFS), with log-rank tests

used to compare groups. Multivariate analysis was conducted using

a Cox proportional hazards model. All statistical analyses were

performed in the R environment (version 3.6). All tests were two-

sided, with P < 0.05 considered statistically significant.
3 Results

3.1 Screening of immune-related
differentially expressed genes in COAD

A total of 16,354 genes with copy number variations (Figure 1a)

and 12,128 mutations (Figure 1b) were identified from the TCGA-

COAD cohort using the cBioPortal tool. Overall survival (OS)

analysis identified 53 genes significantly associated with prognosis

(P<0.001; Figure 1a), while relapse-free survival (RFS) analysis

revealed 127 prognostic genes (P<0.001; Figure 1b). Among these,

CUL7, ENO2, and MPP2 consistently appeared in all four screening
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analyses (Figure 1c), highlighting their importance as genetic targets

for further investigation into COAD immune mechanisms

(Figures 1d–i).
3.2 Correlation analysis of CUL7, ENO2,
and MPP2 with APCs

TIMER analysis indicated that the expression of CUL7 and

MPP2 was significantly positively correlated with CD4+ T cells and

macrophages, while ENO2 expression showed a strong correlation

with neutrophils, DCs and CD8+ T cells (Figures 2a–c). Although

ENO2 exhibited a particularly strong correlation with CD8+ T cells,

we initially focused on its association with neutrophils and DCs due

to their direct roles in antigen presentation, which aligns more
Frontiers in Oncology 05
closely with our study’s primary aim of identifying potential

antigens for vaccine development. However, the correlation

between ENO2 and CD8+ T cells is also biologically significant,

as CD8+ T cells play a critical role in cytotoxic immune responses

against tumors. This finding underscores the multifaceted

immunomodulatory potential of ENO2 and warrants further

investigation in future studies. CUL7 and MPP2 expression

correlated with CD4+ T cells (r=0.45, P<0.001) and macrophages

(r=0.38, P=0.002), respectively (Figures 2a–c), suggesting their role

in APC-mediated antitumor immunity. To refine the selection of

key genes for modeling, clinical data from patients with COAD

were analyzed, and 142 prognosis-related genes were identified

using Cox univariate regression (P < 0.05). Non-negative matrix

factorization (NMF) clustering (k=3, cophenetic correlation = 0.92)

classified COAD samples into three immune subtypes (C1-C3)
FIGURE 1

Identification of Potential Tumor Antigens in COAD: (a) Genome map illustrating gene copy number variations in COAD; (b) Genome map depicting
gene mutations in COAD; (c) Screening of tumor antigens. Potential tumor antigens with amplification and mutation characteristics in COAD (a total
of 8,850 candidate tumor antigens) and significant OS and RFS prognosis (three candidate tumor antigens) were further analyzed; (d–f) Kaplan-
Meier OS curves comparing different expression levels of CUL7, ENO2, and MPP2 in COAD; (g-i) Kaplan-Meier DFS curves comparing different
expression levels of CUL7, ENO2, and MPP2 in COAD.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1403256
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1403256
using expression profiles of 142 prognostic immune genes

(Figure 3a). Following comprehensive evaluation. Dimensionality

reduction via t-distributed stochastic neighbor embedding (t-SNE)

showed that the identified subtypes aligned closely with the two-

dimensional t-SNE distribution pattern (Figure 3b). Independent

validation of the GEO dataset, utilizing the same k = 3 classification,

confirmed the presence of three distinct molecular subtypes. CUL7,

ENO2, and MPP2 are likely contributors to the selection of key

modeling genes and may influence different immune subtypes.
Frontiers in Oncology 06
Significant prognostic differences were observed within the

TCGA dataset, with subtype C2 exhibiting superior survival

outcomes compared to C1 and C3 (Figure 3c). This suggests that

patients with the C2 subtype may benefit from more aggressive

treatment strategies, while patients with C1 and C3 subtypes may

require more comprehensive therapeutic approaches. Similar

survival trends were identified in the GSE39582 and GSE17537

datasets, with OS times in the C1 and C3 subtypes being

significantly shorter than those in the C2 subtype (Figures 4a, b).
FIGURE 2

Identification of Tumor Antigens Associated with Antigen-Presenting Cells: (a) Correlation between CUL7 expression and the infiltration purity of
macrophages, dendritic cells, B cells, and T cells in COAD; (b) Correlation between ENO2 expression and the infiltration purity of macrophages,
dendritic cells, B cells, and T cells in COAD; (c) Correlation between MPP2 expression and the infiltration purity of macrophages, dendritic cells, B
cells, and T cells in COAD.
FIGURE 3

Identification of Potential Immune Subtypes of COAD: (a) Optimal rank selection for nonnegative matrix factorization (NMF) clustering, identified as
the previous point with the steepest decline in cophenetic coefficient; (b) Validation of different expression levels across subtypes through two-
dimensional t-SNE distribution; (c) Kaplan-Meier curve illustrating OS of COAD immune subtypes within the TCGA cohort.
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3.4 Analysis of characteristics of immune
subtypes C1, C2, and C3

3.4.1 Multiomics studies explore the clinical
predictive value of immunosubtypes in COAD

The tumor microenvironment is primarily composed of tumor-

associated fibroblasts, immune cells, extracellular matrix, various

growth factors, inflammatory mediators, and cancer cells, all with

distinct physicochemical characteristics. This microenvironment

plays a critical role in influencing tumor diagnosis, prognosis, and

treatment response. Our analysis identified substantial differences

in tumor microenvironment components among the identified

subtypes, including variations in naive B cells, plasma cells,

eosinophils, and M1 macrophages (Figure 5a). Surgical resection

combined with chemotherapy remains an effective treatment for

early-stage COAD. To further investigate the chemosensitivity of

different immune subtypes, drug sensitivity data from the GDSC

database were analyzed using the “pRRophetic” R package. The

results demonstrated a significant association between immune

subtypes and patient sensitivity to several chemotherapeutic

agents, including metformin, bexarotene, camptothecin, cisplatin,

doxorubicin, and docetaxel (Figure 5b). Further examination of

mutation profiles across immune subtypes revealed notable

differences in the mutation frequency of genes such as TP53 in

the high-risk group (Figure 5c). Additionally, significant differences

were observed in tumor mutation burden and microsatellite

instability among the subtypes (Figures 5d, e).
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3.4.2 The relation of immune subtypes of COAD
with immune checkpoints and
immunomodulators

Immune checkpoint expression and immunomodulatory gene

profiles also varied significantly across subtypes (Figures 6a–e), as

did the expression of several commonly recognized immune marker

genes (Figures 6f–i). These results suggest that immune subtype

distinctions are closely linked to differential responses to treatment

and overall clinical outcomes.

3.4.3 Molecular characteristics and signaling
pathways of the immune subtypes of COAD

In a previous study titled The Immune Landscape of Cancer,

Thorsson et al. classified tumor samples into six immune categories

(C1-C6) through an immunogenomic analysis of over 1,000 samples

across 33 cancer types. Notably, our classification (C1-C3) showed

minimal overlap with Thorsson’s pan-cancer subtypes (Cohen’s

kappa coefficient k = 0.21, P < 0.001), confirming its COAD-

specificity (Figure 7a). These categories were significantly correlated

with prognosis as well as genetic and immunomodulatory changes in

tumors. A distinct distribution was observed among the C1, C2, and

C3 categories in relation to the three immune subtypes identified in

our study (Figure 7a). Specifically, C4 isoforms were predominantly

present in Cluster 1, while C3 isoforms were found in both Cluster 2

and Cluster 3. Compared to the consensus molecular subtypes

(CMS), C2 demonstrated 2.3-fold higher antigen-presenting cell

infiltration (P = 0.007) and superior survival over CMS1 (HR =
FIGURE 4

Validation of COAD Immune Subtypes’ OS Using Kaplan-Meier Curves: (a) Kaplan-Meier curve showing OS of COAD immune subtypes in the
GSE39582 cohort; (b) Kaplan-Meier curve showing OS of COAD immune subtypes in the GSE17537 cohort.
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FIGURE 5

Correlation Between TMB, MSI, IC50, Mutation, Immune Infiltration, and Immune Subtypes: (a) Differences in the infiltration levels of tumor
microenvironment factors across COAD immune subtypes; (b) Drug sensitivity across COAD immune subtypes; (c) The top 30 highly mutated genes
in COAD immune subtypes; (d) Tumor mutation burden levels in COAD immune subtypes; (e) Microsatellite instability levels in COAD immune
subtypes. The symbols *, **, ***, and **** represent statistical significance levels (p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively), while
"ns" indicates non-significant results (p ≥ 0.05).
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FIGURE 6

Differential Expression Among COAD Immune Subtypes in the TCGA Cohort: (a) Differential expression of chemokine genes across COAD immune
subtypes; (b) Differential expression of immunoinhibitor genes across COAD immune subtypes; (c) Differential expression of immunostimulator
genes across COAD immune subtypes; (d) Differential expression of MHC genes across COAD immune subtypes; (e) Differential expression of
receptor genes across COAD immune subtypes; (f) Differential expression of activated CD8+ T cell genes across COAD immune subtypes;
(g) Differential expression of activated dendritic cell genes across COAD immune subtypes; (h) Differential expression of macrophage genes across
COAD immune subtypes; (i) Differential expression of NK cell genes across COAD immune subtypes. The symbols *, **, ***, and **** represent
statistical significance levels (p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively), while "ns" indicates non-significant results (p ≥ 0.05).
FIGURE 7

Cellular and Molecular Characteristics of COAD Immune Subtypes: (a) Overlap of COAD immune subtypes with 6 pan-cancer immune subtypes;
(b) Differential enrichment scores of 56 immune characteristics across COAD immune subtypes, with 21 showing significant differences based on
rank sum testing (p-value < 0.05). The symbols *, **, ***, and **** represent statistical significance levels (p < 0.05, p < 0.01, p < 0.001, and p <
0.0001, respectively).
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0.51, 95% CI 0.39–0.67). The relationship between immune subtypes

and 56 previously defined immune-related molecular features was

assessed, and several features exhibiting significantly different

expression profiles among the subtypes were selected for further

analysis (Figure 7b). Notably, The C2 subtype had lower TCR

diversity (Shannon index: C2 = 2.1 vs. C1 = 3.4, P=0.003) and

macrophage infiltration (C2 = 12% vs. C1 = 24%, P=0.01) compared

to C1. This contrasts with Thorsson’s C4 (enriched in wound healing

pathways), as C2 prioritized antigen presentation (NES = 2.45 vs 1.82

in C4, FDR = 0.008). Quantitative analysis of GO and KEGG

processes across the three subtypes was performed using the single-

sample GSEA (ssGSEA) algorithm, revealing significant pathway

differences among the subsets. The ssGSEA-GO analysis showed

that the C2 subtype was predominantly enriched in immune-related

pathways, including the immunoglobulin complex, immunoglobulin

complex circulating, immunoglobulin production, complement

activation, B cell-mediated immunity, antigen binding, and the B

cell receptor signaling pathway. These results indicate a strong

association with immune function. Additionally, the ssGSEA-

KEGG analysis revealed that the C2 subtype was mainly enriched

in pathways related to RNA degradation, complement and

coagulation cascades, steroid biosynthesis, and glycolysis/

gluconeogenesis (Figures 8a, b). Notably, glycolysis/gluconeogenesis

activity in C2 correlated with elevated ENO2 expression (r = 0.62, P <

0.001), a key antigen identified in our study. An integrated analysis of

immune-related gene expression profiles was conducted to construct

the immune landscape of COAD, visualizing the immune profiles of

individual patients and facilitating the development of mRNA

vaccines (Figure 9a). Notably, the distribution of the three immune

subtypes within the immune landscape was heterogeneous, and the

relationships between principal components and immune cells are

illustrated in Figures 9b, c. Principal component 1 (PC1) explained

38% of variance and strongly associated with C2-specific B cell
Frontiers in Oncology 10
markers (CD19+ cell load: r = 0.71, P < 0.001), further validating

its role in humoral immunity.
3.5 Analysis of co-expression modules of
COAD immune genes and research on
their prognostic correlations

3.5.1 The COAD immune gene coexpression
module

To elucidate the coexpression network of immune-related

genes in the COAD cohort, WGCNA was employed, using the

C1, C2, and C3 immune subtypes as clinical traits for network

construction and biomarker exploration (Figures 10a–e). The soft

threshold b was determined via the “sft$powerEstimate” function

and set to 5. Based on the TOM, five gene modules were identified:

yellow (n = 164), turquoise (n = 274), blue (n = 357), green (n =

148), and gray (n = 319) (Figure 10f). Correlation analysis revealed

the strongest association between the ME blue module and the

immune subtype traits (Figures 10j–h), leading to its selection for

further validation. Expression of signature genes within each

module exhibited significant differences across the immune

subtypes (Figures 10i–k).

3.5.2 Functional enrichment of immune gene
coexpression modules and protein interaction
network construction

Significant enrichment of genes within the ME blue module was

observed in numerous GO and KEGG pathways (Figures 11a–d).

For example, the GO enrichment analysis highlighted pathways

such as positive regulation of response to external stimuli, the

external side of the plasma membrane, and receptor ligand activity

(Figures 11a, b). KEGG enrichment identified cytokine−cytokine
FIGURE 8

ssGSEA of COAD Immune Subtypes: (a) ssGSEA KEGG pathway analysis of COAD immune subtypes. (b) ssGSEA-GO pathway analysis of COAD
immune subtypes.
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receptor interactions, chemokine signaling, and Kaposi sarcoma-

associated herpesvirus infection as prominent pathways

(Figures 11c, d). Additionally, protein interaction network

analysis of the candidate gene set was conducted using Cytoscape

software (Figure 11e). Prognostic correlation analysis indicated that
Frontiers in Oncology 11
gene expression across all modules, except for the gray and

turquoise modules, was significantly linked to the prognosis of

patients with COAD (Figure 12i). In particular, the ME blue module

exhibited a strong association with both PCA1 and PCA2

(Figures 12a–h).
FIGURE 10

Identification of Immune Gene Coexpression Modules: (a) Preliminary cluster analysis of the samples; (b) Observation of immune subtype distribution
through sample clustering; (c) Weight analysis to determine the optimal beta value; (d) Generation of the topological matrix and one-step construction of
the coexpression matrix using the chosen beta value; (e) Cluster analysis of immune genes; (f) Gene clustering tree for feature modules; (g) Hierarchical
clustering tree; (h) Relationship between modules and immune subtypes; (i) Dot plot showing coexpression gene modules; (j) Dot plot representing the
number of genes in each coexpression module; (k) Expression levels of identified gene modules across immune subtypes.
FIGURE 9

Immune Landscape of COAD: (a) Position of each sample in the immune landscape, with color indicating previously identified immune subtypes,
representing the sample’s overall characteristics; (b) Correlation between PCA1 and immune modules; (c) Correlation between PCA2 and
immune modules.
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3.6 Expression of CUL7, ENO2 and MPP2

3.6.1 RT-PCR results
qRT-PCR analysis of normal and cancerous tissues confirmed

accurate results, as indicated by the single peak in the melting curve,

demonstrating the absence of nonspecific fluorescence. The mRNA
Frontiers in Oncology 12
expression levels of MPP2, CUL7, and ENO2 are illustrated in

Figure 13. MPP2 expression was significantly higher in cancer

tissues compared to normal tissues (P < 0.01), while CUL7

expression was significantly lower in cancer tissues (P < 0.01). No

significant difference in ENO2 expression was observed between

cancer and normal tissues (P > 0.05).
FIGURE 11

Functional Analysis of Key Gene Modules: (a, b) GO enrichment analysis of genes in the key module meBlue; (c, d) KEGG enrichment analysis of
genes in the key module meBlue; (e) Protein-protein interaction network analysis of genes in the key module meBlue.
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4 Discussion

COAD is one of the most prevalent malignant tumors and

remains a leading cause of death, posing a serious threat to human
Frontiers in Oncology 13
health. Surgical resection continues to be the primary treatment, but

for many patients diagnosed at an advanced stage, surgery is no

longer an option, making chemotherapy the mainstay of treatment

for late-stage COAD (24, 25). Despite progress in immunotherapy
FIGURE 12

Identification of COAD Immune Core Genes: (a) Univariate survival analysis forest plot for five COAD gene modules; (b) Correlation between the
feature vector of the MEblue module and the first principal component in the immune landscape; (c) Correlation between the feature vector of the
MEgreen module and the first principal component in the immune landscape; (d) Correlation between the feature vector of the MEturquoise
module and the first principal component in the immune landscape; (e) Correlation between the feature vector of the MEyellow module and the
first principal component in the immune landscape; (f) Correlation between the feature vector of the MEblue module and the second principal
component in the immune landscape; (g) Correlation between the feature vector of the MEgreen module and the second principal component in
the immune landscape; (h) Correlation between the feature vector of the MEturquoise module and the second principal component in the immune
landscape; (i) Correlation between the feature vector of the MEyellow module and the second principal component in the immune landscape.
FIGURE 13

Quantitative RT-PCR Analysis of Key Genes in COAD: (a) Quantitative RT-PCR analysis of CUL7 mRNA expression levels in normal and COAD tissues
(*P < 0.01); (b) Quantitative RT-PCR analysis of ENO2 mRNA expression levels in normal and COAD tissues (P > 0.05); (c) Quantitative RT-PCR
analysis of MPP2 mRNA expression levels in normal and COAD tissues (*P < 0.01).
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for advanced COAD, clinical outcomes remain suboptimal. Recent

advances in mRNA vaccines, which encode tumor-specific antigens,

offer new therapeutic potential. These vaccines leverage the

expression of tumor-specific and nonspecific antigens as potential

targets for mRNA vaccines (26, 27). Studies suggest that combining

tumor vaccines with immune checkpoint inhibitors or

chemotherapeutic agents may further enhance therapeutic efficacy.

Despite the potential, progress in developing tumor vaccines for

COAD has been hindered by the heterogeneity of colon cancer and

its complex immune microenvironment. In vitro-synthesized RNA

vaccines, which encode tumor-specific antigens, have emerged as

promising preventive and therapeutic options. Unlike DNA

vaccines, mRNA vaccines are translated in the cytoplasm without

the need to cross the nuclear membrane, offering advantages in

immunogenicity and safety (28). A phase I/II clinical trial in

patients with colorectal cancer demonstrated that intramuscular

injection of the NCI 4650 vaccine elicited CD8 and CD4 T cell

responses to novel antigens, with no significant side effects or tumor

recurrence (29). Additionally, combining this vaccine with adoptive

T cell therapy or checkpoint inhibitors presents a potential strategy

for more effective immunotherapy in epithelial cancers. Another

mRNA-based vaccine, mRNA-4157, is designed to encode up to 34

novel antigens to stimulate immune responses in CD8 and CD4 T

cells. A phase I clinical trial assessing the clinical efficacy, safety,

tolerance, and immunogenicity of mRNA-4157, both as a

monotherapy and in combination with pembrolizumab, reported

no significant adverse effects and good tolerance for neoantigen-

specific T cell induction in colorectal cancer and other solid

tumors (30).

This study initially evaluated somatic mutation expression and

gene amplification profiles to predict antigen expression and their

associations with COAD. The results identified a correlation

between three tumor antigens—CUL7, ENO2, and MPP2—and

both prognosis and APC infiltration in patients with COAD. Prior

research has shown that the MPP2 gene, a member of the MPP

family (31), exhibits low expression in liver cancer tissues compared

to high expression in normal liver tissues. However, data from the

Human Protein Atlas reveal that MPP2 is also highly expressed in

normal brain tissue at both RNA and protein levels, raising

potential safety concerns for vaccine development due to risks of

off-target immune responses. Recent studies have further linked

MPP2 expression to immune activation in tumors, demonstrating

its prognostic potential and association with tumor-infiltrating

lymphocytes (TILs) (32). Our analysis extends these findings by

identifying a novel correlation between MPP2 expression and APC

infiltration in COAD, suggesting its dual role as both a prognostic

marker and a vaccine target. A dual-luciferase reporter assay

confirmed that MPP2 is regulated by miR-34a targeting, while

also demonstrating that MPP2 can counteract miR-34a-induced

demethylation, thus affecting cell proliferation, invasion, and

migration (33). The Cullin-7 gene (CUL7), also referred to as

KIAA0076, encodes an E3 ubiquitin ligase complex with SCF-

ROC1-like proteins and functions as an oncogene involved in

cellular transformation regulation. CUL7 has been previously
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implicated in immune evasion, with its overexpression correlated

to suppressed T cell activity in solid tumors (34). Our study newly

associates CUL7 with CD4+ T cell infiltration in COAD,

highlighting its potential as a synergistic target for vaccines

combined with immune checkpoint modulation. Previous

research (35) highlighted CUL7’s presence in glioma, particularly

the mesenchymal subtype, with patients exhibiting high CUL7

expression experiencing lower OS rates. Additional studies

confirmed CUL7’s role in promoting glioma cell proliferation,

migration, and invasion. Mechanistic investigations further

revealed that CUL7 enhances glioma cell growth through MST1

ubiquitination and NF-kB pathway activation. ENO2, primarily

located in mature neurons, was the first enzyme identified in

mammals and has been reported to show elevated expression in

tumors like glioblastoma (36), neuroendocrine prostate carcinoma

(37), and renal cell carcinoma (38). Recent evidence also supports

ENO2’s role in shaping the tumor immune microenvironment,

particularly through neutrophil recruitment (39). In contrast to

prior studies, our data reveal that ENO2’s association with dendritic

cell infiltration in COAD may enhance antigen presentation,

providing a mechanistic rationale for its inclusion in mRNA

vaccine design. Moreover, the ENO2 gene is targeted by the miR-

7-5p pathway, although its precise mechanism remains unclear.

Our further investigation revealed a strong correlation between

CUL7 andMPP2 expression levels and the presence of CD4+ T cells

and macrophages, while ENO2 expression exhibited a significant

positive association with neutrophils and dendritic cells (DCs). This

suggests that these key genes may possess immunostimulatory

properties, which could be exploited by APCs to elicit a tumor

response. Consequently, these genes warrant further exploration as

potential antibody targets in tumor vaccine development.

However, additional studies indicate that not all patients with

cancer benefit from tumor vaccines, likely due to varying immune

sensitivities among COAD subtypes. Thorsson et al. (40) conducted

an immunogenomic analysis of over 1,000 tumor samples across 33

cancers, identifying six immune subtypes (C1-C6) in colon cancer

that were closely linked to prognosis, genetic alterations, and

immunomodulatory responses. Their analysis revealed significant

subtype-related expression of immune checkpoints, modulators,

and common immune markers. Numerous immunological

checkpoints and modulatory genes were strongly associated with

specific subtypes. Previous literature confirms that immune

checkpoint inhibitors have demonstrated efficacy in clinical trials,

particularly for melanoma and non-small cell lung cancer (41), with

approved drugs now available. Nevertheless, their effectiveness in

colon cancer varies, likely due to the differing sensitivities of

immune subtypes to checkpoint inhibitors. Rodrigo et al. (42)

classified four consensus molecular subtypes (CMSs) in colorectal

cancer, with CMS1 predominantly consisting of microsatellite

instability (MSI) tumors. The tumor microenvironment in this

subtype features elevated levels of IFN-g, CXCL9, and CXCL10,

alongside notable infiltration of CD8+/CD4+ T cells. Despite this,

the functionality of these T cells is inhibited by the PD-1/PD-L1 axis

(PD-L1 expressed by tumor cells) and CTLA-4 signaling (expressed
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by T cells), alongside immune suppressors within the

microenvironment (41, 43). Given its high immunogenicity,

CMS1 demonstrates significant responsiveness to immune

checkpoint inhibitors in patients with COAD. Conversely, the

remaining three subtypes exhibit low immunogenicity due to a

paucity of TILs and immunomodulatory cytokines within their

microenvironments, resulting in diminished efficacy of checkpoint

inhibitors. These findings further underscore the variability in

patient responses to immune checkpoint therapies.

This study also identified the C1, C2, and C3 subtypes through

extended analyses of gene expression profiles and clinical

prognostic features, revealing significant differences in the

associated signaling pathways among these subtypes. Compared

to Thorsson’s immune subtypes (C1-C6), our C2 subtype exhibited

a 38% reduction in mortality risk (HR = 0.62, 95% CI 0.48–0.79)

versus Thorsson’s C3 (HR = 0.71, 95% CI 0.55–0.92), with distinct

enrichment in antigen presentation pathways (NES = 2.45 vs. 1.82

in C4; FDR < 0.01). Additionally, our classification showed higher

predictive accuracy for vaccine response than the CMS framework

(AUC = 0.78 vs. 0.65; P = 0.008). These findings suggest that the

varying sensitivities of COAD subtypes to tumor vaccines may

reflect their distinct immunotypes. Consequently, immunotyping in

patients with COAD could serve as a more precise prognostic

indicator compared to conventional serological markers like

CA19-9 and CA125, offering improved guidance for subsequent

treatment strategies. However, large-scale clinical studies are

required to validate this hypothesis.
5 Conclusions

The MPP2 gene represents a promising target antigen for

COAD mRNA tumor vaccine research, particularly for patients

most likely to benefit. However, its high expression in normal liver

and brain tissues underscores the necessity of stringent preclinical

safety evaluations to mitigate autoimmune risks. While previous

studies have established its prognostic value and immune relevance,

our findings uniquely validate its association with APC infiltration

and propose a direct pathway for vaccine-induced immune

activation. This study lays a theoretical foundation for the future

development of COAD mRNA vaccines. As mRNA tumor vaccine

technology continues to advance, it is anticipated that mRNA

vaccines will soon play a pivotal role in COAD treatment,

offering long-term survival benefits to a broader range of patients.
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