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Background: Primary liver cancer (PLC), notably hepatocellular carcinoma

(HCC), stands as a formidable global health challenge, ranking as the sixth

most prevalent malignant tumor and the third leading cause of cancer-related

deaths. HCC presents a daunting clinical landscape characterized by nonspecific

early symptoms and late-stage detection, contributing to its poor prognosis.

Moreover, the limited efficacy of existing treatments and high recurrence rates

post-surgery compound the challenges in managing this disease. While

histopathologic examination remains the cornerstone for HCC diagnosis, its

utility in guiding preoperative decisions is constrained. Radiomics, an emerging

field, harnesses high-throughput imaging data, encompassing shape, texture,

and intensity features, alongside clinical parameters, to elucidate disease

characteristics through advanced computational techniques such as machine

learning and statistical modeling. MRI radiomics specifically holds significant

importance in the diagnosis and treatment of hepatocellular carcinoma (HCC).

Objective: This study aims to evaluate the methodology of radiomics and

delineate the clinical advancements facilitated by MRI-based radiomics in the

realm of hepatocellular carcinoma diagnosis and treatment.

Methods: A systematic review of the literature was conducted, encompassing

peer-reviewed articles published between July 2018 and Jan 2025, sourced from

PubMed and Google Scholar. Key search terms included Hepatocellular

carcinoma, HCC, Liver cancer, Magnetic resonance imaging, MRI, radiomics,

deep learning, machine learning, and artificial intelligence.

Results: A comprehensive analysis of 93 articles underscores the efficacy of MRI

radiomics, a noninvasive imaging analysis modality, across various facets of HCC

management. These encompass tumor differentiation, subtype classification,

histopathological grading, prediction of microvascular invasion (MVI),

assessment of treatment response, early recurrence prognostication, and

metastasis prediction.
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Conclusion:MRI radiomics emerges as a promising adjunctive tool for early HCC

detection and personalized preoperative decision-making, with the overarching

goal of optimizing patient outcomes. Nevertheless, the current lack of

interpretability within the field underscores the imperative for continued

research and validation efforts.
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1 Introduction

Primary liver cancer (PLC) remains a significant global health

burden, ranking as the sixth most common malignant tumor and

the third leading cause of cancer-related mortality worldwide (1). In

China, where liver cancer prevalence is particularly pronounced,

incidence and mortality rates reached 18.3/100,000 and 17.1/

100,000, respectively, in 2018. Projections suggest a concerning

upward trend, with anticipated increases of 50.5% and 54.9% in new

cases and deaths by 2040, respectively (2, 3). Hepatocellular

carcinoma (HCC) stands as the predominant form of PLC,

representing 70% to 85% of cases. Chronic liver disease and liver

cirrhosis are primary risk factors contributing to its development

(4). Alpha-fetoprotein (AFP) and liver ultrasound (US) are the most

widely used methods for HCC screening (5). The diagnosis and

staging of HCC involve various imaging examinations, including

US, CT, and MRI. However, due to HCC’s insidious onset and

nonspecific early symptoms, diagnosis often occurs at an advanced

stage, limiting the efficacy of potentially curative interventions and

contributing to the high recurrence rates post-surgery (6, 7). There

exists a pressing need for non-invasive methodologies capable of

predicting tumor histopathological characteristics, treatment

response, and recurrence rates to enhance early diagnosis rates

and monitor treatment efficacy effectively.

Thus, we introduce the concept of radiomics. Radiomic,

proposed by Dutch scholar Lambin in 2012 (8), harnesses high-

throughput extraction of imaging features, including shape, texture,

and intensity, to elucidate underlying tissue physiology and

pathology. By integrating these features with clinical data and

employing artificial intelligence (AI) models, radiomics adeptly

addresses the challenges posed by tumor heterogeneity, offering

promising avenues for tumor diagnosis, treatment, and prognosis

analysis, thereby improving patient survival rates and facilitating

personalized medicine. MRI, with its distinctive advantages in

radiomics such as high soft tissue contrast, absence of ionizing

radiation, and multi-parametric imaging capabilities, emerges as a

pivotal modality for HCC assessment. It enables comprehensive

visualization of tumor morphology, boundaries, internal structure,

and vascular relationships critical for surgical planning and prognosis

assessment (9). Meta-analyses consistently underscore MRI’s
02
superior sensitivity for HCC diagnosis compared to CT (10–12).

This review consolidates current research progress on MRI-based

radiomics in hepatocellular carcinoma, examining its potential

applications and future directions in clinical practice.
2 Methods

This study presents a comprehensive literature review aimed at

elucidating recent advancements in MRI-based radiomics within

the context of hepatocellular carcinoma (HCC). The review was

conducted through searches of PubMed and Google Scholar

databases. Key search terms included hepatocellular carcinoma,

HCC, liver cancer, magnetic resonance imaging, MRI, radiomics,

deep learning, machine learning, and artificial intelligence. The

inclusion criteria were as follows: ① original research and review

published between July 2018 and Jan 2025; ② literature related to

MRI radiomics or AI; ③literature related to diagnosis and

differentiation, histological grading, microvascular invasion (MVI)

assessment, surgery, ablation, transarterial chemoembolization

(TACE), external beam radiotherapy (EBRT), systematic therapy

efficacy, adverse effects of therapy, recurrence, and metastasis.

Exclusion criteria comprised non-English publications, articles

unrelated to the designated topic, those predating June 2018 or

extending beyond Jan 2025, as well as duplicate entries across both

databases. In total, 182 articles were retrieved. After screening the

titles, abstracts, and full texts, only 88 papers met the inclusion

criteria (Figure 1).

The PDFs of these 88 articles were imported into Zotero, and

two authors (Xie Xiaoyun, Chen Rong) independently reviewed the

eligibility of all papers and manually tagged them in Zotero. The

studies were categorized into eight groups: diagnostic typing,

pathological grading, microvascular invasion (MVI), surgical

prognosis, TACE prognosis, targeted therapy and immunotherapy

prognosis, adverse reactions, and recurrence and distant metastasis.

Two authors independently extracted important information such

as authors, year, number of study subjects, outcome indicators,

methods for establishing models, and model efficacy using

standardized forms, and discrepancies were resolved by

consensus (Table 1).
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3 Results

3.1 Work process of radiomics

Radiomics, an innovative approach in medical imaging analysis,

entails a systematic workflow for extracting comprehensive

quantitative information from imaging data. The fundamental

steps involved in radiomics are as follows (13–15):
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3.1.1 Image acquisition
Radiomics analyses demand high-quality image data acquired

under standardized conditions. Adherence to standardized MRI

scanning parameters, encompassing slice thickness and sequences, is

imperative to facilitate consistent radiomics analysis. Additionally,

preprocessing steps are essential to ensure data accuracy and

consistency, involving contrast adjustment, standardization of image

parameters, denoising, and correction of scanning artifacts.
FIGURE 1

Flow diagram of study selection.
TABLE 1 Representative studies evaluating MRI radiomics tools for treatment slection of hepatocellular carcinoma.

Author Year Modality Treatment
Subject number
(Train/ Valid)

Specific
Outcome Model

Best
performance

Zhang Z (45) 2022 T2WI, DWI surgery 83/37 OS LASSO C-index 0.92

Wang Y (46) 2023 AP, PVP, T2MI
locoregional
treatment 70/30

Response/
Non-response LASSO AUC 0.867

Aujay G (48) 2022 AP, PVP TARE 22
Response/
Non-response LR AUC 1

Zhao Y (49) 2023 AP, PVP, DP TACE 96/42
Response/
Non-response LR AUC O.918

Zhao Y (50) 2021 AP, PVP, DP TACE 85/37
Response/
Non-response LR AUC 0.878

Zhao Y (51) 2023 T2WI HAIC 79/33 PFS LASSO AUC 0.79

Sun Y (52) 2020 T2WI, DWI TACE 67/17 PD/NPD LASSO AUC 0.786

Ym H (54) 2022 CT RT 105/26 OS LASSO C-index 0.79

Gong XQ (56) 2023 T1WI, T2WI PD-1/PD-L1 70/38
Response/
Non-response LASSO AUC 0.898

Chen Y (57) 2021 MRI PHLF 111/33 PHLF LR AUC 0.956

Wang Q (58) 2023 TIWI PHLF 276 PHLF Machine learning
OR(subgroup1:
subroup2) 2.83:2.41

Shen PC (59) 2022 CT RILD 50/34 RILD RF, LR

RF: F1 score 0.857,
sensitivity100,
specificity 93.3%,
accuracy 94.4% LR:
F1 score 0.8,
sensitivity 66.7,
specificity 100,
accuracy 94.4%
frontiersin.org

https://doi.org/10.3389/fonc.2025.1420599
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie and Chen 10.3389/fonc.2025.1420599
3.1.2 Image segmentation
A precise and repeatable image segmentation process is

necessary for radiomics analysis, using manual, semi-automated,

or fully automatic image segmentation software to sketch tumors or

normal tissues as the region of interest (ROI) after standardized

medical imaging data has been obtained. ROI refers to a specific

area of particular interest and analysis in image analysis. Software

like MIM, ITK-SNAP, 3DSlicer, and ImageJ are frequently utilized.

Manual segmentation has the advantage of high precision but may

be disrupted by subjective factors, which is suitable for lesions with

difficult-to-detect boundaries. Semi-automatic or automatic

segmentation methods are highly reproducible and meet the

requirements for massive data segmentation for tumors with

regular shapes and clear boundaries (16).

3.1.3 Feature extraction
The core step of radiomics is the extraction of high-throughput

radiomics features. Commonly used radiomics features include ①

morphological features, such as the location, shape, size, blood

vessel distribution, and whether there are burrs and necrosis of the

tumor. ② First-order grey scale histogram features are statistical

characteristics that describe the distribution of image gray levels,

including maximum, minimum, mean, standard deviation,

variance, and so on. ③ Texture features at the second and higher

orders illustrate the link between the spatial distribution of grey

values in an image. The greyscale covariance matrix and grey scale

tour length matrix are examples of second-order texture feature

methods. Grey level region size matrix and neighborhood grey level

difference matrix are examples of higher-order texture feature

methods. ④ Filter and transform-based features. Commonly used

software for feature extraction includes IBEX, MaZda, Pyradiomics,

and CERR. Using different software in conjunction with each other

can help obtain more comprehensive radiomics features from

images (17).

3.1.4 Feature selection
Given the potentially vast number of extracted features, feature

selection and dimensionality reduction are imperative to enhance

model predictivity. The LASSO Cox regression model is the most

commonly used method. After feature selection, the final number of

radiomics features generally ranges from a few to several tens.

3.1.5 Model establishment
Model building and prediction are breakthrough points in

radiomics analysis, serving as auxiliary tools for diagnosis and

efficacy prediction. In radiomics analysis, univariate analysis often

does not yield reliable results, thus machine learning algorithms are

typically used to establish classification or prediction models, such

as support vector machine (SVM), random forest, gradient boosting

machine (GBM), or deep learning networks. The goal of the model

is to assist in early diagnosis or predict clinical outcomes of

hepatocellular carcinoma based on imaging features, such as

survival rate, recurrence risk, or treatment response.
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3.1.6 Model validation
The performance of radiomics models necessitates rigorous

evaluation through internal and external validation to ensure

their generalizability and clinical utility. Internal validation

techniques include cross-validation. Cross-validation is a

technique for assessing model performance by dividing the data

into multiple subsets and using one subset as the test set while the

rest serve as the training set in turn. While external validation

involves testing the model on independent patient cohorts. Only

validated models demonstrating high effectiveness are deemed

suitable for clinical application.
3.2 MRI-based deep learning for HCC

In recent years, with the advancement of AI technology, we

often rely on machine learning algorithms when constructing

radiomics models. Deep learning is a subfield of machine learning

that involves the use of artificial neural networks to process large

amounts of data through multiple layers of neurons. In medical

imaging, CNN is commonly used in radiological AI approaches for

analyzing image data. The development of CNN in the medical field

appeared almost at the same time as radiomics, and their progress

can bring complementarity to both sides, improving the clinical

applicability and universality of AI (18). There are also other deep

learning methods that we will not discuss in this review for the time

being. Currently, the application of deep learning is a hot topic in

the field of radiomics. Current research indicates that there is a high

level of heterogeneity among studies in the field of radiomics using

deep learning, with significant variations noted in methodology,

terminology, and outcome measures. This could lead to an

overestimation of the diagnostic accuracy of DL algorithms in

medical imaging. Despite this, deep learning still holds

tremendous potential in the field of radiomics due to its

significant advantages in image analysis. There is an immediate

need for the development of artificial intelligence-specific

EQUATOR guidelines, particularly STARD, in order to provide

guidance around key issues in this field (19).
3.3 Clinical applications of MRI-based
radiomics in hepatocellular carcinoma

MRI radiomics has a wide range of clinical applications,

including assisting in differential diagnosis, subtype classification,

pathological tissue grading, guiding the selection of treatment plans,

and predicting the possibility of recurrence and distant metastasis.

The specific details will be described in the following text.

3.3.1 Differential diagnosis and
subtype classification

Liver puncture biopsy is still the gold standard for HCC

preoperative diagnosis, however, due to the high heterogeneity of
frontiersin.org
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tumors, biopsy cannot comprehensively assess the tumor,

meanwhile, repeated operations will carry a higher risk of

complications. Currently, imaging techniques including MRI, CT,

and US are widely used to diagnose HCC. As we know, radiologists

have a strong subjective effect on how images are interpreted.

Therefore, a more objective method, such as MRI radiomics, is

needed to improve diagnostic accuracy. ZHAO et al. (20)

successfully established and validated a radiomics model based on

contrast-enhanced MRI (CE-MRI) images for preoperative

differentiation of fat-poor angiomyolipoma (fp-AML) and

hepatocellular carcinoma (HCC) in non-cirrhotic patients. GAO

et al. (21) developed a radiomics model based on unenhanced MRI

images to distinguish small hepatocellular carcinoma (S-HCC) (≤2

cm) and pre-hepatocellular carcinoma (Pre-HCC), whose

diagnostic performance significantly higher than that of

radiologists (AUC = 0.518, p<0.05). HUANG et al.’s study (22)

demonstrated that radiomics features extracted from Gd-EOB-

DTPA-enhanced MR images could be used to diagnose

preoperative dual-phenotype hepatocellular carcinoma (dual-

phenotype hepatocellular carcinoma, DPHCC) with positive CK7

and CK19.

MRI radiomics not only can differentiate early-stage tumors

from other diseases and distinguish between benign and malignant

liver lesions, it also helps distinguish subtypes of primary liver

cancer. The team led by ZHANG (23) established radiomics models

based on T2WI, AP, PVP, T2WI + AP, T2WI + PVP, AP + PVP,

and T2WI + AP + PVP sequences, with AUC values of 0.768, 0.838,

0.778, 0.880, 0.818, 0.832, and 0.884, respectively, demonstrating

radiomics’ excellent ability to distinguish HCC from non-HCC.

Similar models have also been developed by groups headed by LIU

et al. (24), HUANG et al. (25), and ZHANG et al. (23) to assist

physicians in non-invasively differentiating intrahepatic

cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC)

before surgery. Macrotrabecular-massive-type hepatocellular

carcinoma (MTM-HCC) is a highly aggressive type of

hepatocellular carcinoma, often indicating a poor prognosis. Zhu

et al.’s (26) study successfully constructed a predictive model based

on enhanced MRI radiomics to preoperatively predict MTM-HCC,

aiding in early identification and improving patient prognosis.

In recent years, DL technology has been developed and has

achieved excellent performance in the classification of hepatic

lesions. Hamm CA et al. (27) developed a proof-of concept

convolutional neural network (CNN)-based DL system and

classified 494 hepatic lesions from six categories on MRI. The

system demonstrated 92% accuracy, 92% sensitivity and 98%

specificity, and their results showed a 90% sensitivity for

classifying HCC compared to 60%/70% for radiologists.

3.3.2 Histopathological grading
Accurate histopathological grading is pivotal for guiding

treatment decisions in HCC patients. Its criteria are mainly based

on tumor size, number of tumors, degree of differentiation, tumor

growth pattern (such as whether it invades the capsule and the

vascular), presence of microvascular invasion (MVI), and presence

of satellite nodules. MRI-based radiomics features can reflect tumor

biological characteristics, such as cell differentiation, invasiveness,
Frontiers in Oncology 05
and vascular invasion, which are crucial for tumor grading and

staging, helping guide treatment plan selection. Hu et al. (28)

constructed a radiomics model based on Gd-EOB-DTPA-

enhanced MRI for distinguishing different histopathological

grades of HCC, with an AUC of 0.71 (95% CI: 0.59–0.82) in the

external validation set, indicating the potential of radiomics in

preoperative prediction of HCC differentiation levels. Yan et al.

(29) used Gd-EOB-DTPA-enhanced MRI data to extract radiomics

characteristics. To find the best features, they successively used

three feature selection techniques: Recursive Feature Elimination

with Cross-Validation (RFECV), SelectFromModel (SFM), and

SelectPercentile (SP). The combined model they developed, which

integrates radiomics features and clinical predictive factors,

demonstrated excellent performance in evaluating the grade of

HCC in the test dataset (AUC: 0.801). Additionally, multiple

studies by HAN et al. (30) and other researchers (31, 32) have

also demonstrated that the radiomics models based on Gd-EOB-

DTPA-enhanced or unenhanced MRI work well in preoperative

assessment of HCC grading.

Among them, microvascular invasion (MVI) is an important

pathological feature of HCC. which is defined as tumor cells

infiltrating endothelium-lined vascular spaces, including

microscopic vessels of the portal vein, hepatic artery, and

lymphatic vessels. It is difficult to detect in routine imaging, as a

result, its diagnosis primarily depends on postoperative histological

examination (33). According to some studies (34, 35), MVI affects

15%–57% of patients with HCC and may be regarded as a tumor

evolution process involved in the intrahepatic recurrence phase. It is

one of the strongest predictors of HCC recurrence after liver

transplantation or hepatectomy and a key risk factor for overall

survival (OS) and recurrence-free survival (RFS) of HCC patients

after treatment. Therefore, accurate preoperative prediction of MVI

in liver cancer is of great significance, helping clinicians adjust

treatment strategies promptly and improve patient prognosis.

Numerous academics have developed models, and meta-

analyses (36, 37) have demonstrated that MRI radiomics has the

potential for preoperative prediction of MVI in HCC. Meng et al.

(38) showed that CT and MRI have comparable predictive

performance for MVI in solitary HCC, but for HCC between 2-5

cm, MRI has a significant advantage over CT in predicting MVI.

Chong et al. (39) and Qu et al. (40) retrospectively analyzed HCC ≤

5cm patients and extracted Gd-EOB-DTPA-enhanced MRI

radiomics features to construct predictive models, showing good

performance. Geng et al.’s MRI radiomics model (41) demonstrated

exceptionally high effectiveness (AUC=0.948). Meng et al. (42)

extracted radiomics features from multimodal MRI images,

including arterial phase (AP), delayed phase (DP), diffusion-

weighted imaging (DWI), and fat-suppressed T2-weighted

imaging (T2WI-FS) images. The cross-modality tensor fusion

(CMTF) model they developed showed better AUC values

compared to single-modality models. Jiang et al. (43) and Zhang

et al. (44) also established predictive models for MVI in HCC

patients before surgery based on multi-parametric MRI, proving the

feasibility of multi-parametric MRI radiomics in predicting MVI.

We compared the performance of various models in predicting

HCC pathological grading and MVI in Figure 2.
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3.3.3 Treatment selection
At present, the stage of the tumor at diagnosis has a significant

impact on the therapy option for HCC. As the Barcelona Clinic

Liver Cancer (BCLC) system recommended, resection,

transplantation, or local ablation are suitable for HCC patients at

BCLC stages 0 or A. For BCLC stage B patients with good liver

function, transarterial chemoembolization (TACE) is the first-

choice treatment method. However, some patients may not

benefit from TACE, so systemic therapy can be adopted as an

alternative. While systemic therapy is the first-choice therapeutic

option for people with BCLC stage C. However, treatment options

for HCC vary in clinical practice, and because of tumor

heterogeneity, patients can have drastically variable outcomes

even within the same BCLC stage. Under these circumstances,

MRI radiomics can predict treatment efficacy and patient

prognosis by analyzing tumor morphological, textural, and

intensity features, helping to assess treatment indications and

formulate personalized treatment plans.

3.3.3.1 Surgical resection and liver transplantation

MRI radiomics features can help predict the efficacy of surgery.

Zhang et al. (45) combined clinical predictors to construct an MRI

radiomics model that effectively works in predicting the overall

survival (OS) of HCC patients after surgery. They included 120

patients and successfully constructed a model using features from

T2WI and DWI images with LASSO regression.

3.3.3.2 Local treatment

Local treatment is the preferred treatment for selected

unresectable or inoperable liver-limited diseases, including

ablation, arterial interventional treatment, or external beam

radiation therapy (EBRT). Wang et al. (46) constructed a model

based on MRI radiomics features and clinical factors to predict the

efficacy of local treatment in hepatocellular carcinoma patients,

helping further treatment planning.

Local ablation treatment involves techniques such as

radiofrequency ablation (RFA), microwave ablation (MWA), and

cryoablation, which can induce tumor necrosis. MRI radiomics can

potentially aid in assessing the adequacy of the ablation area and

predicting the risk of tumor residue or recurrence after ablation, but
Frontiers in Oncology 06
further improvement is still needed in current radiomics research

on local ablation treatment.

Arterial interventional treatment includes TAE, TACE, DEB-

TACE, and SIRT/TARE using Y-90 microspheres. For advanced

liver cancer patients, TACE is often used as the first-line treatment.

However, the efficacy of TACE in treating hepatocellular carcinoma

is not stable, with a complete necrosis rate of only 22% to 29% (47),

therefore accurately predicting the efficacy before TACE is crucial

for treatment selection. Aujay et al. (48) used MRI radiomics data to

evaluate the response of locally advanced hepatocellular carcinoma

(HCC) patients to 90Y transarterial radioembolization (TARE)

treatment, and the predictive model constructed with four

radiomics features achieved ideal results. Zhao et al. (49, 50) used

contrast-enhanced MRI (CE-MRI) tumor and peritumoral

radiomics features to establish multiple models for preoperative

prediction of HCC patient response to TACE treatment, aiding in

personalized follow-up and further treatment strategy guidance.

They also (51) combined clinical factors such as the albumin-

bilirubin (ALBI) score to construct a radiomics predictive model,

which also showed good efficacy and could serve as a biomarker to

predict the treatment effect of unresectable HCC after HAIC. While

Sun et al. (52) believed that clinical factors made no significant

difference in the model’s efficacy. Additionally, Kang et al. (53)

created a model that predicts how unresectable hepatocellular

carcinoma (HCC) will react to transarterial chemoembolization in

conjunction with molecular targeted therapy and immunotherapy

by combining preoperative multi-parametric magnetic resonance

imaging (MRI) radiomics features with clinical features (alpha-

fetoprotein and neutrophil-to-lymphocyte ratio). With AUC and

95% CIs for treatment response prediction in the training cohort

and two external validation cohorts of 0.956 (0.920-0.984), 0.895

(0.810-0.967), and 0.892 (0.804-0.957), respectively, the clinical-

radiomics combined model demonstrated the highest efficacy

among them. Radiotherapy options for unresectable HCC include

external beam radiotherapy (EBRT) and stereotactic body

radiotherapy (SBRT). In recent years, SBRT technology has

rapidly developed, making radiotherapy an increasingly important

treatment option for unresectable HCC. MRI radiomics can predict

radiotherapy efficacy through tumor radiomics features and

radiotherapy plans, guiding the selection of clinical treatment
FIGURE 2

Comparison of the performance of different models.
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plans. Huang et al. (54) studied HCC patients with portal vein

tumor thrombosis (PVTT) receiving radiotherapy, extracted two

radiomics features, established an overall survival (OS) prediction

model based on radiomics features, clinical characteristics, and

radiotherapy (RT) dose parameters, and finally proving its

predictive accuracy. Current studies are mostly based on CT

radiomics, and the effect of MRI radiomics in predicting HCC

radiotherapy efficacy remains to be further explored.

3.3.3.3 Systemic therapy

The utilization of MRI radiomics features holds potential in the

prediction of hepatocellular carcinoma (HCC) patient responses to

chemotherapy, targeted therapy, and immunotherapy, hence

facilitating the identification of optimal medications and

treatment strategies. Yu et al. (55) assessed the efficacy of

sorafenib and NK cell immunotherapy in HCC patients using

MRI radiomics. They found a significant association between

MRI characteristics and tissue biomarkers. Gong et al. (56)

demonstrated that a radiomics model utilizing multi-sequence

MRI has the capability to forecast the expression of PD-1 and

PD-L1 before surgery in patients with hepatocellular carcinoma

(HCC). This model has the potential to serve as an imaging

biomarker for immune checkpoint inhibitor (ICI) therapy.

3.3.3.4 Adverse reactions induced by treatments

Adverse responses are observed in all therapies. By accurately

forecasting the likelihood and intensity of severe adverse reactions

before treatment, we can enhance our capacity to make informed

treatment choices and minimize the occurrence of serious adverse

reactions. Chen et al. (57) investigated the occurrence of liver failure

after surgery in patients with hepatocellular carcinoma (HCC).

They developed a predictive model for posthepatectomy liver

failure (PHLF) using Gd-EOB-DTPA-enhanced MRI radiomics.

Wang et al. (58) employed unsupervised learning algorithms to

develop a model capable of detecting high-risk patients for

postoperative liver failure (PHLF) by utilizing preoperative Gd-

EOB-DTPA-enhanced MRI radiomics characteristics. Shen et al.

(59) predicted the risk of radiation-induced liver disease (RILD) in

HCC patients after stereotactic body radiotherapy (SBRT) based on

CT radiomics, including five predictors such as albumin-bilirubin

grade, difference means, intensity, V5, and V30, achieving high

sensitivity, specificity, and accuracy in both the training and

validation sets. Currently, there is no radiomics prediction of

radiotherapy adverse reactions based on MRI.

3.3.4 Recurrence and metastasis prediction
For early-stage liver cancer, surgical resection stands as the primary

treatment modality. Nonetheless, the substantial recurrence rate within

five years post-tumor excision underscores the persistent challenge of

recurrence as a leading cause of postoperative mortality. Anticipating

postoperative recurrence in HCC patients before surgery holds promise

for enhancing the identification of high-risk individuals, thereby

refining surgical strategies and clinical decision-making processes.

Gao et al. (60) encompassed 472 HCC patients and developed a

deep-learning predictive model based on multiphasic MRI radiomics
Frontiers in Oncology 07
features to predict early recurrence after HCC surgery. The integrated

model yielded an impressive area under the curve (AUC) scores of

0.911 and 0.840, with accuracies of 0.779 and 0.777, sensitivities of

0.927 and 0.769, and specificities of 0.720 and 0.779 in the training and

validation cohorts, respectively. These findings substantiate the

effectiveness of MRI radiomics in non-invasively pinpointing high-

risk individuals prone to early recurrence post-liver resection for HCC.

The results demonstrated that the models developed by Zhao et al.

(61) for Clinical-Radiomics (CR), Radiomics combined with Clinical-

Radiomics (RCR), and Deep Learning combined with RCR (DLRCR)

could predict the recurrence of HCC. With AUC, accuracy, sensitivity,

and specificity of 0.917, 0.886, 0.889, and 0.882 in the training cohort

and 0.844, 0.818, 0.800, and 0.846 in the validation cohort, respectively,

the DLRCR model outperformed all other models.

Furthermore, Li et al. (62) and Cao et al. (63) constructed

predictive models for early recurrence after HCC surgery by

integrating clinical predictors and MRI radiomics features, which are

expected to become effective tools. Notably, Glypican-3 (GPC3) is an

independent risk factor for postoperative recurrence of HCC. Chong

et al. (64, 65) revealed the utility of preoperative Gd-EOB-DTPA MRI

radiomics models in predicting GPC3-positive expression and

associated recurrence-free survival (RFS) in ≤ 5 cm hepatocellular

carcinoma, signifying their potential as preoperative biomarkers for

early recurrence in HCC patients devoid of major vascular invasion.

For patients with hepatocellular carcinoma (HCC) treated with

conventional transarterial chemoembolization (c-TACE),

preoperative assessment of HCC recurrence and metastasis is also

crucial for subsequent follow-up and treatment strategizing. Song

et al. (66) devised an integrated model merging radiomics and

clinical predictors via LASSO Cox regression, univariate and

multivariate Cox regression, and Kaplan-Meier analysis to assess

recurrence-free survival (RFS) post-c-TACE treatment among HCC

patients. Peng et al. (67) formulated and validated radiomics

machine learning (Rad-ML) models predicated on preoperative

MRI to prognosticate extrahepatic metastasis (EHM) in HCC

patients who have undergone transarterial chemoembolization

(TACE). Among them, the XGBoost-based Rad-ML model

exhibited superior predictive performance for EHM, poised to

serve as a valuable asset in HCC metastasis prediction.
3.4 Challenges in the application of MRI
radiomics in hepatocellular carcinoma

Although MRI radiomics has shown great potential in the

application of hepatocellular carcinoma, it still faces a series of

challenges in actual clinical application.

3.4.1 Imaging acquisition and standardization
Different imaging equipment and parameters may lead to

inconsistent data quality, requiring the establishment of unified data

acquisition and preprocessing standards to ensure the comparability of

data across institutions and studies. Data collection must comply with

the ACR–AAPM–SIIM TECHNICAL STANDARD FOR THE

ELECTRONIC PRACTICE OF MEDICAL IMAGING. It is essential
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to have physicians and radiographers who have undergone specialized

training. The DICOM Standard is to be used for image transactions

with the image management system. The DICOM (Digital Imaging

and Communications in Medicine) standard is a protocol that

describes how medical images and their metadata are stored and

transmitted between devices. The DICOM standard ensures

compatibility between different devices and systems, enabling

seamless sharing of medical images within and between hospitals. It

provides significant technical support for the healthcare sector,

enhancing the efficiency and quality of diagnosis and treatment (68).

Additionally, some scholars have proposed that when applying

machine learning and deep learning, since the quality of data is heavily

relied upon, it is best to adhere to the METRIC framework. The

METRIC framework primarily emphasizes Measurement Process,

Timeliness, Representativeness, Informativeness, and Consistency.

The intention of the METRIC framework is to assess the

appropriateness of a dataset with respect to a specific use case (69).

3.4.2 Image segmentation and feature stability
Radiomics features are not only influenced by image acquisition

but also by the delineation of the region of interest (ROI). Therefore,

it is essential to have experienced physicians to outline the region of

interest, ensuring accuracy and reproducibility. Many studies have

shown that the use of automatic or semi-automatic techniques can

reduce human error. However, there is a variety of ROI delineation

and feature extraction software, and currently, to address the

consistency issues between different software, Zwanenburg et al.

presented the Image Biomarker Standardization Initiative (IBSI),

comprising a uniform set of 169 standardized features. This

initiative streamlines the validation and calibration processes for

diverse radiomics software tools, tackling the disparities and

inconsistencies in radiological feature extraction methodologies

utilized across various studies and clinical environments. Building

upon this foundation, it is anticipated that more comprehensive

standards will be established in the future (70, 71).

3.4.3 Model generalizability and explainability
Tumor heterogeneity in HCC may affect the predictive accuracy of

the model, so it is important to consider this while constructing the

model. At present, most radiomics analysis studies are single-center

retrospective studies, and there are significant differences between

scanning equipment, parameters, and analysis software, as a result,

the constructed predictive models need internal and external validation

to ensure their generalizability in different populations and

clinical settings.

Radiomics models based on DL are often perceived as “black

boxes” by clinicians, accurately predicting specific clinical outcomes but

lacking interpretable explanations. To tackle this challenge, ongoing

developments in radiomics techniques aim to merge the strengths of

DL with the interpretability provided by hand-crafted methods (72).

3.4.4 Technological updates
With the rapid development of imaging technology and analysis

methods, existing radiomics models may quickly become outdated,

requiring continuous research and development. Currently, deep
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learning is a popular trend, but undoubtedly, new trends will emerge

in the future. Despite these challenges, the use of MRI radiomics in

liver cancer research is still advancing, and we anticipate overcoming

these barriers as technology and clinical experience develop.

4 Conclusion

This review summarizes the general workflow of radiomics and

the current popular deep learning methods, providing an overview

of the diagnostic and differential capabilities, as well as the

predictive abilities in pathological grading, treatment response,

and prognosis of models based on MRI radiomics and artificial

intelligence in hepatocellular carcinoma (HCC). Additionally, we

discuss some of the challenges and limitations of radiomics in

clinical applications, including the standardization of steps such as

image acquisition and feature extraction, the generalizability of

radiomics models, and the interpretability of deep learning models.

Overall, radiomics assists in analyzing the relationship between

high-dimensional quantitative imaging features and clinical data,

serving as a powerful tool for making personalized treatment

decisions for patients. To secure the prospective clinical utilization of

these models, additional investigative efforts are essential for affirming

their efficacy and for bolstering their interpretive clarity. It is imperative

to conduct prospective, extensive, and multicenter trials prior to their

clinical deployment. Utilizing sophisticated computational

methodologies, the processes preceding and succeeding the model

development must incorporate clinical and multifaceted data to

enhance the models’ interpretability.
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