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Purpose: To evaluate the dosimetric parameters and clinical outcomes of

hypofractionated stereotactic radiotherapy (HSRT) for small brain metastases

[BMs; planning target volume (PTV) ≤ 4 cm3) via coplanar volumetric modulated

arc therapy (C-VMAT).

Methods: Between March 2019 and February 2023, 68 patients with a single BM

treated with Linac-based HSRT (24–39 Gy in three fractions) via C-VMAT and a 3-

mm PTV margin were enrolled in this retrospective analysis. A frameless head–

neck–shoulder thermoplastic mask, whose immobilization accuracy is inferior to

that of specialized mask fixation systems, was used to immobilize patients.

Dosimetric parameters and clinical outcomes were evaluated.

Results: C-VMAT provided clinically satisfactory treatment plans, with median

gradient index, conformity index, homogeneity index, and PTV coverage values

of 4.30, 1.05, 1.28, and 98%, respectively. The median volumes of normal brain

tissue receiving 18 Gy, 21 Gy, and 23 Gy were 7.29 cm3, 5.33 cm3, and 4.40 cm3,

respectively. High delivery accuracy was observed, with a gamma passing rate

≥90% for all plans. As of June 2023, the median follow-up time was 9.1 months.

The intracranial objective response rate and disease control rate were 64% and

96%, respectively. The median intracranial progression-free survival was 26.9

(95% CI, 12.7–41.1) months. The 1- and 2-year local control (LC) rates were 91.5%

(95% CI, 80.1%–100%) and 83.2% (95% CI, 64.6%–100%), respectively. The 1- and

2-year intracranial control rates were 70.9% (95% CI, 55.2%–86.6%) and 51.2%

(95% CI, 32.6%–69.8%), respectively. Only four irradiated lesions progressed at

the end of follow-up. The cerebral radiation necrosis rate of all patients was 7.4%.

Conclusion: C-VMAT HSRT combined with a 3-mm PTV margin is an effective

and safe treatment modality for small BMs.
KEYWORDS

hypofractionated stereotactic radiotherapy, small brain metastases, planning target
volume margin, dosimetric parameters, clinical outcome
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1 Introduction

Stereotactic radiosurgery (SRS) is an advanced radiotherapy

modality that delivers a highly precise radiation dose to a well-

defined target volume, which achieves excellent local control (LC)

while reducing the risk of neurocognitive deterioration compared

with whole-brain radiotherapy (WBRT) for the treatment of brain

metastases (BMs) (1, 2). Furthermore, numerous reports have

indicated that hypofractionated stereotactic radiotherapy (HSRT)

offers comparable efficacy to SRS while minimizing toxicity,

especially for tumors located in or near organs at risk (OARs),

such as the brainstem, cranial nerves, and cochlea (3, 4). Technical

improvements, such as on-board image-guided radiation therapy

(IGRT), high‐definition multileaf collimators (MLCs) and

dedicated immobilization devices, have made non-invasive linear

accelerator (Linac)-based volumetric modulated arc therapy

(VMAT) a widely used delivery mode for BM HSRT (5–7).

Notably, the potential benefits of HSRT are suggested not only

for large BMs but also for small BMs (8, 9). For instance, Faccenda

et al. (9) found that Linac-based SRS treatments for small BMs with

C-VMAT were feasible and resulted in encouraging clinical

outcomes, comparable to those of other treatment approaches

involving multiple non-coplanar arcs. However, in their study,

the majority of patients (59 out of 70) received SRS (15–21 Gy in

a single fraction) rather than HSRT. Moreover, VMAT, as an

inverse planning technique, can achieve highly conformal dose

distributions by simultaneously optimizing the MLC position,

dose rate, and gantry rotation speed (10). However, excessive

modulation can introduce dose calculation uncertainties,

particularly when dealing with many small, irregular segments

(11). This issue becomes especially pronounced in the treatment

of very small BMs.

Specialized mask fixation systems, such as Qfix (12), are needed

for SRS with a single fraction to ensure treatment accuracy.

However, in our center, a conventional frameless head–neck–

shoulder thermoplastic mask was used to immobilize patients for

HSRT, and its immobilization accuracy is inferior to that of

specialized mask fixation systems. Therefore, multifraction HSRT,

typically with three fractions and an enlarged PTV border, was

applied to overcome the deficiency of the fixation system in our

center, and whether multifraction HSRT with C-VMAT and an

enlarged PTV border can satisfy the clinical and dosimetric

requirements is unknown. The present retrospective analysis

aimed to evaluate the efficacy, toxicity, and dosimetric parameters

of 3F-HSRT via C-VMAT for patients with small BMs with a 3-mm

PTV margin who were unsuitable for or refused surgical resection

and SRS.
2 Materials and methods

2.1 Patient population

This single-center, retrospective study included cancer patients

with a single small BM (PTV ≤4 cm3) and a BM that received Linac-
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based C-VMAT 3F-HSRT via a 3-mm PTV margin. Patients were

unsuitable for surgical resection and one-fraction SRS, which was

evaluated by experienced neurosurgeons and radiation oncologists.

Tumors located in or near (≤1 cm) critical normal tissues, such as

the brainstem, optic nerves, cochlea, and capsula interna, were

considered unsuitable for one-fraction SRS. Patients who refused

surgical resection and one-fraction SRS were also enrolled. Patients

were excluded if they received WBRT or SRS before HSRT. This

retrospective study was conducted in accordance with the

Declaration of Helsinki (as revised in 2013). This study was

reviewed and approved by the ethics committee of West China

Hospital, and the need to obtain individual consent for this

retrospective analysis was waived.
2.2 CT/MRI simulation, target, and organs
at risk delineation

All patients were immobilized in the supine position via a

thermoplastic mask (Sichuan Ruidi Medical Science and

Technology Co., Ltd., Chengdu, China). Magnetic resonance

imaging (MRI) and contrast CT images with both 1-mm slice

thicknesses were acquired. The GTV was defined as the contrast-

enhanced region on the T1-weighted MRI. The PTV was generated

by expanding the margin by 3 mm around the GTV in all

dimensions. A 3-mm PTV margin is commonly used in our

institution because the accuracy of thermoplastic mask

immobilization is inferior to that of specialized mask fixation

systems such as the Qfix Encompass thermoplastic mask (QFix

Inc., Avondale, PA) (13, 14). OARs include the cochlea, optic

chiasm/nerves, lenses, brainstem, basal ganglia, and eyeballs.

Three-millimeter margins were around the lenses and brainstem

to create the planning OAR volume (lenses PRV; brainstem PRV).

The normal brain tissue (NBT) was equal to the brain minus the

GTV. The median time from MRI localization to the start of

treatment was 5 days (range, 3–8 days).
2.3 Treatment planning, dose specification,
and delivery

Patients were treated with the C-VMAT delivery technique,

which consisted of two coplanar arcs that rotated clockwise from

181° to 179° and counterclockwise from 179° to 181°. The planning

isocenter was placed at the geometric center of the PTV. All

treatment plans were designed utilizing 6 MV photon beams

combined with flattening filter-free mode, which can achieve a

maximum dose rate of 1,400 monitor units (MUs)/minute. All

patients were treated at EdgeTM Linac (Varian Medical Systems,

Palo Alto, CA), which was equipped with a 120-leaf high-definition

MLC (5- and 2.5-mm leaf widths for the 28 outer and 32 central

leaves, respectively).

Normal tissue objective parameters and five concentric ring

structures were utilized in planning optimization to generate a

steep dose fall-off and highly conformal target dose. The final dose
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was calculated via an anisotropic analytical algorithm (AAA) and a 1-

mm grid size implemented in the Eclipse treatment planning system

(v13.5; Varian Medical Systems, Palo Alto, CA). To improve delivery

accuracy, a fixed-jaw technique was used for each plan with the jaw

size fixed at 3 cm×3 cm. Each C-VMAT plan was normalized such

that 100% of the prescription dose (PD) covered at least 95% of the

PTV, with a maximum dose as large as 150% of the PD accepted. The

PD was 24–39 Gy in three fractions, which were applied each other on

a working day. The Varian OBI kV-CBCT system (Varian Medical

Systems, Palo Alto, CA, USA) coupled with a robotic couch was

utilized for patient alignment in six degrees of freedom (6DOF) prior

to each treatment fraction. The setup process needed to be repeated

until the tolerance was within 0.5 mm/0.5° in 6DOF.
2.4 Dosimetric parameters and delivery
efficiency evaluation

For dosimetric analysis, parameters such as the PTV coverage,

minimal dose received by 98% of the GTV (D98%), homogeneity index

(HI), gradient index (GI), target conformity index (CI) and NBT

sparing (the mean dose (Dmean), absolute volume of NBT receiving

≥23 Gy (V23Gy), ≥21 Gy (V21Gy), and ≥18 Gy (V18Gy) were

retrospectively collected on the basis of the clinical treatment plan.

The CI (15) was defined as CI=V100%/VPTV, which indicates the ratio

of 100% isodose volume (V100%) to the volume of the PTV (VPTV).

A CI value equal to 1 corresponds to ideal conformation. A CI

greater than 1 indicates that the irradiated volume is greater than the

target volume and includes NBT. If the CI is less than 1, the target

volume is only partially irradiated (16). A particularly high CI value

may increase the risk of cognitive impairment, radionecrosis, or other

complications, while a particularly low CI value may cause a decrease

in the LC rate. Usually, a CI value of less than 1.6 and greater than

0.95 was considered acceptable for treatment at our center. HI was

defined as the ratio of the maximum dose to PD (15). GI (17) was

defined as the ratio of 50% isodose volume (V50%) to V100%. A lower

value indicates a steeper dose fall-off outside the target and better

sparing of the NBT. The beam-on time (BOT) and total number of

MUs per fraction were used to evaluate the delivery efficiency.

A high-density diode array SRS MapCHECKTM combined with

a StereoPHANTM phantom (Sun Nuclear Corporation, Melbourne,

FL, USA), which has been shown to be compliant with the

recommendation of AAPM TG-101 (18), was used for treatment

delivery accuracy evaluation. Gamma index analysis (19) was used

to verify the C-VMAT delivery accuracy with three evaluation

criteria (3%/1 mm, 2%/1 mm, and 2%/2 mm) with a 10% threshold.
2.5 Clinical efficacy and toxicity evaluation

Patients underwent brain gadolinium-enhanced MRI with 1.5-

mm slice thicknesses before, 1 month after, and then every 2–3

months after HSRT. The intracranial objective response rate (ORR)

and disease control rate (DCR) were evaluated via institutionally

modified RECIST v1.1, and the minimum target brain lesion size

was 5 mm in longest diameter. Irradiated lesion progression-free
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survival (il-PFS) was calculated from the day of radiotherapy

initiation to the day of irradiated lesion progression, death, or the

last day of follow-up. The intracranial PFS (iPFS) was calculated

from the day of radiotherapy initiation to the day of intracranial

disease progression, death, or the last day of follow-up. Given that

patients with different cancer types were enrolled, the heterogeneity

of systemic treatment and overall survival times were not included

in the analysis. Treatment-related adverse events (TRAEs) were

determined by the Common Terminology Criteria for Adverse

Events v5.0. Cerebral radiation necrosis (CRN) was diagnosed on

the basis of the following criteria: increased T1 contrast

enhancement located in the irradiated area with increased

peripheral edema on MRI and regression or stability of enhancing

areas on serial follow-up MRI without additional treatment (20).
2.6 Statistics

Quantitative variables are described as medians (ranges), means

[standard deviations (SDs)], and interquartile ranges (IQRs).

Qualitative variables were described by their respective

distribution modalities. The Kaplan−Meier method was used to

visualize survival curves.
3 Results

Between March 2019 and February 2023, 68 patients were

enrolled. The patients’ characteristics are shown in Table 1.

Among patients unsuitable for surgical resection and one-fraction

SRS, 51.3% (20/39), 25.6% (10/39), 15.4% (6/39), and 7.7% (3/39)
frontiersin.or
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TABLE 1 Patient and tumor/treatment characteristics.

Characteristics No./median (range) %

Sex

Male 35 51.5

Female 33 48.5

Age(y) 60.50 (29–84)

<65 40 58.82

≥65 28 41.18

The reason for no surgical resection and SRS

Unsuitable 39 57.4

Refused 29 42.6

Primary site of disease

lung 48 70.59

breast 10 14.70

melanoma 8 11.76

Renal cell 2 2.95

(Continued
g
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had tumors located in or near the brainstem, optic nerves, cochlea,

and capsula interna, respectively.

C-VMAT yielded clinically satisfactory treatment planning

(Table 2). The median target coverage for all plans was 98%

(range, 95–99.9%). The median CI, GI, and HI were 1.05 (range,

0.96–1.34), 4.30 (2.90–6.09), and 1.28 (range, 1.08–1.49),

respectively. The median D98% of the GTV was 34.82 Gy (range,

25.01–50.87 Gy). With respect to NBT, the median V18Gy, V21Gy,

V23Gy, and Dmean were 7.29 cm3 (range, 1.40–13.31 cm3), 5.33 cm3

(range, 0.88–9.80 cm3), 4.40 cm3 (range, 0.61–8.22 cm3), and 0.88

Gy (range, 0.35–1.57 Gy), respectively. In terms of delivery

accuracy, high gamma passing rates (GPRs) were achieved with

all GPRs >90%, regardless of the criteria. The median MUs and

BOT were 2,284.50 (range, 2,501.00–3,784.00) and 1.76 min (range,

1.13–2.91 min), respectively. The typical field arrangements and

visual comparison of dose distributions in axial, coronal, and

sagittal sections and the measured results of a representative

patient with a PTV of 0.7 cm3 are shown in Figure 1.

As of June 2023, the median follow-up time was 9.1 months

(range, 2.3–51.5 months). The intracranial ORR and DCR for all

patients were 64% (95% CI, 57.3%–71.6%) and 96% (95% CI,

87.7%–99.4%), respectively. Only four irradiated lesions

progressed at the end of follow-up, and the median IL-PFS was

not achieved (Figure 2A). The median iPFS was 26.9 (95% CI, 12.7–

41.1) months (Figure 2B). The 1-year and 2-year intracranial

control rates were 70.9% (95% CI, 55.2%–86.6%) and 51.2% (95%

CI, 32.6%–69.8%), respectively. The 1-year and 2-year LC rates

were 91.5% (95% CI, 80.1%–100%) and 83.2% (95% CI, 64.6%–
TABLE 1 Continued

Characteristics No./median (range) %

Tumors

GTV volume (cm3) 0.37 (0.06–1.26)

≤0.5 cm3 45 66.67

0.5–1 cm3 23 33.33

PTV volume (cm3) 2.39 (0.49–4.00)

≤2 cm3 24 35.29

2–3 cm3 26 38.24

3–4 cm3 18 26.47

Prescribed dose 30 (24–39)

24Gy/3f 3 4.41

27Gy/3f 4 5.88

30Gy/3f 57 83.82

36Gy/3f 3 4.41

39Gy/3f 1 1.48

Systemic treatment

TKIs 37 54.4

Chemotherapy 39 57.4

Immunotherapy 11 16.2
SRS, stereotactic radiosurgery; GTV, gross tumor volume; PTV, planning target volume.
TABLE 2 Various dosimetric parameter results.

Index Dosimetry Variable Mean (SD) Median (Range) IQR

Plan quality Normalization 96.99 (1.79) 98.00 (95.00–99.90) 95.00–99.00

GI 4.41 (0.60) 4.30 (2.90–6.09) 3.97–4.80

CI 1.08 (0.10) 1.05 (0.96–1.34) 1.00–1.15

HI 1.29 (0.09) 1.28 (1.08–1.49) 1.22–1.36

D98% 35.11 (3.68) 34.82 (25.01–50.87) 33.56–36.39

NBT sparing V18Gy 7.37 (2.34) 7.29 (1.40–13.31) 5.61–8.91

V21Gy 5.44 (1.77) 5.33 (0.88–9.80) 4.12–6.66

V23Gy 4.50 (1.51) 4.40 (0.61–8.22) 3.42–5.55

Dmean 0.89 (0.29) 0.88 (0.35–1.57) 0.65–1.03

Delivery efficiency MUs 2,286.71 (499.55) 2,284.50 (2,501.00–3,784.00) 3,356.00–3,639.25

BOT 1.76 (0.38) 1.76 (1.13–2.91) 1.47–1.94

Delivery accuracy 3%/1 mm (%) 99.58 (0.86) 100 (95.20–100) 99.60–100

2%/2 mm (%) 99.60 (0.74) 100 (95.60–100) 99.38–100

2%/1 mm (%) 99.02 (1.46) 99.65 (92.10–100) 98.60–100
SD, standard deviation; IQR, interquartile range; GI, gradient index; CI, target conformity index; HI, homogeneity index; NBT, normal brain tissue; D98%, minimal dose received by 98% of gross
tumor volume; VxGy, volume of NBT receiving ≥x Gy; Dmean, mean dose to NBT; MUs, monitor units; BOT, beam on time.
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100%), respectively. Among the 23 patients who experienced

intracranial relapse, 82% had new BMs, and 18% had both

irradiated lesion progression and new BMs. Seven patients

(10.3%) experienced grade 1–2 dizziness, five patients (7.4%)

experienced CRN with a median duration of 12 (9–24) months

after the end of HSRT, and no other TRAEs were observed.
Frontiers in Oncology 05
4 Discussion

For large BMs, the treatment mode has shifted from SRS to

HSRT, with satisfactory LC and limited CRN reported (21). In

addition, the present retrospective, single-institution series

indicated that Linac-based HSRT achieved favorable clinical
FIGURE 1

Typical arc arrangement and dosimetric results for a representative patient with small brain metastasis [gross tumor volume (GTV), 0.2 cm3; planning
target volume (PTV), 0.7 cm3]. (A) Coplanar volumetric modulated arc therapy was used in this case (181°–179° and 179°–181°). (B) Beam’s eye view
(BEV) after planning optimization with a jaw size of 3 cm×3 cm (red arrows). (C) Final spatial dose distribution. The green contour denotes the GTV.
The yellow contour denotes the PTV. (D) Dose−volume histogram (DVH) for the PTV and GTV. (E) Dose comparison between the measured and
calculated values along the X-axis. The measured and calculated dose values agree very well.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1428922
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lai et al. 10.3389/fonc.2025.1428922
efficacy with acceptable toxicity and satisfactory dosimetric

parameters. To the best of our knowledge, the present study is

the first report concerning the detailed dosimetric parameters and

clinical outcomes of Linac-based C-VMAT 3F-HSRT with a 3-mm

PTVmargin for patients with small BMs who were unsuitable for or

refused surgical resection and one-fraction SRS.

HSRT, similar to SRS, involves high doses per fraction, where a

steep dose fall-off is extremely important to reduce the dose to

surrounding NBTs or OARs. For single-target SRS, Torizuka et al.

(22) showed that the addition of a non-coplanar arc in the VMAT

plan can achieve better NBT sparing than can the addition of only

coplanar arcs. However, non-coplanar delivery techniques may

increase overall treatment time (OTT) and setup errors, especially

for conventional non-invasive thermoplastic mask immobilization,

as demonstrated by our previous studies (23, 24). In contrast, C-

VMAT eliminates the setup errors derived from couch rotation and

the need for radiotherapy staff to enter the treatment room for each

couch rotation. More importantly, each BM was small in the present

study, with a median PTV of 2.39 cm3 (range, 0.49–4.00 cm3), which

was usually approximately a sphere and corresponded to a median

diameter of 1.66 cm (range, 0.98–1.97 cm). Therefore, the C-VMAT

plan was sufficient to achieve a clinically satisfactory treatment plan

(Table 2; Figure 1). With only coplanar arcs, even when the patient’s

setup (approximately 4 min) and CBCT verification time

(approximately 2 min) were taken into consideration, each patient

could be treated within 10 min in the present study, which could

decrease the risk of intrafraction movement, as suggested by Fung

et al. (25). For small BMs, there are also other challenges associated

with the VMAT delivery technique, such as the dose calculation

uncertainty associated with small MLC segments (11) (Figure 1B;

white arrow). Interestingly, all the plans assured a GPR≥90%

(GPR≥90% with the 3%/1mm evaluation criterion is our

minimum value for the clinical usage of HSRT) for all the metrics.

The higher GPR may be explained by the use of a fixed jaw size (3

cm×3 cm) (Figure 1B; red arrows), which has been shown to

significantly improve the GPR (26).
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CRN represents the most common late toxicity after HSRT.

Several investigators have demonstrated the link between the

specific isodose of NBT and the risk of CRN for BMs treated with

HSRT. For 3F-HSRT, Minniti et al. (4, 27) reported that the 1-year

risk of CRN was up to 24% and 14% for V18Gy>30.2 cm3 and

V21Gy>20.9 cm3, respectively. In addition, another study revealed

that for BMs treated with 3F-HSRT, a V23Gy≥7 cm3 was associated

with a 10% risk of CRN (28). In the present study, most volumes of

V23Gy, V21Gy, and V18Gy were far below the abovementioned dose

−volume threshold, and only 7.4% CRN was observed. From a

dosimetric standpoint, the GTV-to-PTV margin should be

extremely tight, thus reducing the V18Gy, V21Gy, and V23Gy

volumes as much as possible. In the present study, a 3-mm PTV

margin was used, which is significantly larger than most reported

PTV expansions (typically 1–2 mm) (29–31). However, even with a

3-mm PTV margin, the irradiated volume was still limited because

of the small GTV. This might be the reason for the limited V18Gy,

V21Gy, and V23Gy volumes in the present study.

In previous reports, the 1-year intracranial LC rates were 85%–

97% for patients with small BMs (<4 cm3 in volume or ≤2 cm in

diameter) who received SRS (32–34). Similarly, in the present study,

satisfactory LC was achieved, with 1-year and 2-year LC rates of

91.5% and 83.2%, respectively, and only four irradiated lesions

(5.9%) progressed at the end of follow-up. Furthermore, new BM

was the main intracranial relapse pattern, with an incidence rate of

33.8%, which might be caused by the inadequate intracranial

efficacy of systemic treatment.

For HSRT, Dupic et al. (35) reported that the GTV D98% was a

significant predictive factor for LC, with 1-year LC rates of 91.9%

and 69.6% for D98%≥29 Gy and <29 Gy, respectively. Lucia et al.

(36) explored the impact of HI on LC in BM patients treated with

3F-HSRT and reported that an inhomogeneous target dose yielded

a higher 1-year LC rate than did a homogeneous target dose (93%

vs. 78%, p=0.005). In the present study, the median D98% of the

GTV was 34.82 Gy (IQR, 33.56–36.39 Gy), and the mean HI value

was 1.29 (SD, 0.09), which means that inhomogeneous dose
FIGURE 2

Radiation-induced lesion progression-free survival (A) and intracranial progression-free survival (B) of all patients.
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distributions were generated for most plans. These factors might

partly explain the high intracranial LC rate achieved.

However, several limitations should be considered in this study,

including its retrospective clinical design, heterogeneity of patient

characteristics, and the fact that it only represents patients treated at

a single institution, which may need to be confirmed by further

prospective and multi-institutional investigations. Furthermore, the

heterogeneity of systemic treatments could also affect the tumor

response or survival of these patients. Nevertheless, we suggest that

our study provides useful information, as it provides new insights

into the role of Linac-based C-VMAT 3F-HSRT using a 3-mm PTV

margin in treating patients with small BMs.
5 Conclusion

The use of C-VMAT in conjunction with a 3-mm PTV margin

for 3F-HSRT in the treatment of small BMs provides excellent

dosimetric results regarding target dose coverage, NBT sparing,

delivery efficiency, and accuracy and yields excellent outcomes with

acceptable toxicity. These clinical results encourage the

implementation of 3F-HSRT for patients with small BMs who are

unsuitable for or refuse surgical resection and SRS. In addition,

further studies are needed to establish the optimal dose

fractionation protocol for individual patients.
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