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Introduction: Glioma segmentation is vital for diagnostic decision-making,

monitoring disease progression, and surgical planning. However, this task is

hindered by substantial heterogeneity within gliomas and imbalanced region

distributions, posing challenges to existing segmentation methods.

Methods: To address these challenges, we propose the DeepGlioSeg network, a

U-shaped architecture with skip connections for continuous contextual feature

integration. The model includes two primary components. First, a CTPC

(CNN-Transformer Parallel Combination) module leverages parallel branches of

CNN and Transformer networks to fuse local and global features of glioma images,

enhancing feature representation. Second, the model computes a region-based

probability by comparing the number of pixels in tumor and background regions

and assigns greater weight to regions with lower probabilities, thereby focusing on

the tumor segment. Test-time augmentation (TTA) and volume-constrained (VC)

post-processing are subsequently applied to refine the final segmentation outputs.

Results: Extensive experiments were conducted on three publicly available

glioma MRI datasets and one privately owned clinical dataset. The quantitative

and qualitative findings consistently show that DeepGlioSeg achieves superior

segmentation performance over other state-of-the-art methods.

Discussion: By integrating CNN- and Transformer-based features in parallel and

adaptively emphasizing underrepresented tumor regions, DeepGlioSeg

effectively addresses the challenges associated with glioma heterogeneity and

imbalanced region distributions. The final pipeline, augmented with TTA and VC

post-processing, demonstrates robust segmentation capabilities. The source

code for this work is publicly available at https://github.com/smallboy-code/

Brain-tumor-segmentation.
KEYWORDS
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1 Introduction

Brain tumors, also known as intracranial tumors in medical

terminology, are abnormal masses of tissue characterized by

uncontrolled cell growth and proliferation. According to the National

Brain Tumor Society (1), gliomas account for approximately one-third

of all brain tumors. Gliomas predominantly originate from glial cells,

which surround and support the neurons in the cerebral cortex. These

glial cells include ependymal cells, oligodendrocytes, and astrocytes.

Gliomas put pressure on the brain or spinal cord, causing symptoms

such as headaches, changes in personality, and weakness in the arms,

etc. (2). They can disrupt brain function and pose a significant threat to

an individual’s life. The exact cause of gliomas remains unclear, and

they can develop in all age groups, with a higher incidence observed in

adults. Early detection and diagnosis of gliomas are critical to the

effectiveness of treatment. Therefore, it is important to identify and

diagnose gliomas in a timely manner to improve therapeutic outcomes.

In recent years, advances in medical imaging techniques such as

positron emission tomography (PET), computed tomography (CT),

and magnetic resonance imaging (MRI) have become increasingly

important in the detection and diagnosis of disease. These different

imaging modalities have the ability to identify distinct tumor

regions within soft tissue (3). Typically, gliomas can be identified

using a variety of MRI modalities, including T1-weighted (T1), T1-

weighted with contrast enhancement (T1-CE), T2-weighted (T2),

and T2-weighted fluid-attenuated inversion recovery (FLAIR). Each

of these imaging modalities offers unique perspectives and

insights into the properties of the tumor, resulting in different

representations of the tumor on the images, as shown in Figure 1.

After acquiring multimodal volumetric data of gliomas, a

meticulous pixel-by-pixel segmentation process is applied to each

individual slice until the entire 3D brain volume is accurately

delineated into informative areas, establishing the ground truth

(GT). The resulting segmentation output is then central to

subsequent stages, including diagnosis, treatment planning,

surgical strategies, and ongoing monitoring of tumor dynamics

and changes.
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In the search for valuable insights into brain tumors,

radiologists have traditionally relied on manual segmentation of

MRI images, using their expertise in anatomy and physiology (4).

However, manual pixel-level segmentation of brain tumors by

radiologists is a labor-intensive process (5). Radiologists face

significant challenges during manual segmentation due to factors

such as indistinct boundaries of gliomas, which includes

peritumoral edema, necrotic cores, and tumor core enhancement.

As a result, manual segmentation efforts by radiologists typically

yield Dice scores in the range of 74% to 85% (6). Furthermore,

manual segmentation is time-consuming, with radiologists

spending 3–5 hours annotating an MRI scan for a single patient

(7). Therefore, fully automated glioma segmentation methods are of

paramount clinical importance and practical value (8).

Glioma segmentation faces significant challenges characterized

by high heterogeneity and regional imbalances. First, high

heterogeneity is evident in the wide variety of tumor shapes,

structures, and locations. As shown in Figure 1, gliomas exhibit

considerable inter-patient variability in structural characteristics,

geometric configurations, and spatial distributions. This inherent

variability poses a significant impediment to the accuracy of glioma

segmentation. Consequently, an optimal model must effectively

capture both local features (such as texture and edges) and global

features (including shape, location, and structure) of gliomas.

However, most existing convolutional neural networks (CNNs)

focus primarily on extracting features at the local level, falling

short of achieving a comprehensive representation.

Second, regional imbalance arises from the large size differences

between the brain tumor, the background, and various tumor

subregions. In the case of the BraTS2020 dataset, pixels within the

tumor region represent only 1.1% of the total pixels. This tiny fraction

of the tumor region may inadvertently cause the model to prioritize

the background region, hindering accurate characterization of tumor

features. Moreover, the proportions of each tumor subregion within

the total tumor are significantly different (58%, 19.8%, and 22.2% for

the whole tumor (WT), enhanced tumor (ET), and tumor core (TC),

respectively). This unbalanced distribution among subregions
FIGURE 1

The four multimodal MR images with glioma tumors are: (A) FLAIR, (B) T1, (C) T1-CE, and (D) T2. Different colors are used to differentiate tumor
subregions: red for necrotic and non-enhanced tumor (NCR/NET), green for peritumoral edema (ED), and blue for enhanced tumor (ET).
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presents a substantial challenge for the model in classifying categories

within these smaller proportions.

Many existing methods incorporate global information to

address the challenges mentioned above. Typically, these methods

use atrous convolution to expand the receptive field. However, in

scenarios involving data types with smaller regions, such as brain

tumors, atrous convolution may miss pixels, making it less suitable. A

limited number of methods have used self-attention mechanisms to

establish long-range dependencies. For example, Chen et al. (9)

introduced a Parallel Self-Attention (PSSA) mechanism that

transforms self-attention into a standard convolution operation on

an appropriately transformed feature. This innovation effectively

unifies self-attention and convolution. However, this approach

diffuses local features into global features through layer stacking,

which may dampen the performance of the method. Notably, the

Transformer architecture excels at capturing global representations

and requires fewer computational resources compared to traditional

self-attention mechanisms (10). For example, Zhang et al. (11)

proposed the parallel branched TransFuse network, which

combines both Transformer and CNN architectures. This network

includes a BiFusion module, consisting of spatial attention and

channel attention, to facilitate feature fusion between the two

branches. However, a limitation of this approach is the lack of

fusion between the Transformer and CNN branches during the

down sampling process, as these branches remain independent.

In the present study, we develop a unique DeepGlioSeg framework

that enables glioma segmentation in multimodal MRI data. This

network adopts a U-shaped architecture with skip connections,

strategically used to support the continuous exploitation of

contextual information. The DeepGlioSeg network introduces a

central CTPC (CNN-Transformer Parallel Combination) module as

its core component, comprising parallel branches for both CNN and

Transformer networks. This innovative module facilitates the fusion of

local and global features within glioma images through the

collaborative interaction of these two branches. As a result, it

effectively captures both the global and local features of gliomas,

mitigating the challenges posed by the high heterogeneity in tumor

shape, structure, and location. As shown in Figure 2, this module
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consistently outperforms convolution-based feature maps in accurately

capturing the intricate shape and structure of gliomas. In addition, the

DeepGlioSeg network employs a weighted loss approach to address the

issue of region imbalance. It extends the generalized Dice loss to

account for multiple regions and adjusts the contribution of each

region with weighted values. Specifically, larger loss weights are

assigned to categories associated with smaller regions, thereby

increasing the focus on the tumor region.

We summarize our contributions as follows:
1. Our method introduces a CTPC module, which

includes both a Transformer branch and a parallel CNN

branch. This module facilitates the fusion of local and

global features within glioma images through the

interactive cooperation of these two branches, enhancing

contextual relationships.

2. Our method assigns specific weights to each region based

on the volume ratio of the region relative to the

background. This weighting mechanism increases

attention to the tumor region.

3. To evaluate the robustness of our algorithm, we curated a

private brain tumor dataset consisting of data from 232

patients. Extensive experiments were performed on this

private dataset, as well as on three publicly available

datasets. The results consistently demonstrate the

effectiveness of our proposed approach.
2 Related works

2.1 Brain tumor segmentation methods

Previous research on brain tumor segmentation in MR images

can be categorized into (1) machine learning-based segmentation

methods and (2) CNN-based segmentation methods. Machine

learning-based methods have been adapted for brain tumor

segmentation tasks, such as support vector machines (SVM) (12)
FIGURE 2

Comparison of feature maps between the CTPC module and CNN.
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and random forests (13). For example, Bauer and colleagues (14)

employed SVM classification methods in conjunction with

hierarchical conditional random field regularization to improve

the segmentation of brain tumor images.

CNNs have been extensively applied to brain tumor segmentation

tasks, yielding remarkable results. For instance, spatial attention gates

and channel attention gates were introduced into the U-Net network

architecture by Xu et al. (15). Additionally, Xu et al. (15) developed a

new FCNwith a feature reuse module and a feature integrationmodule

(F2-FCN), enabling the extraction of more valuable features by reusing

features from different layers. Shen and Gao (16) introduced a network

with an encoding path that operates independently across channels and

a decoding path focusing on feature fusion. This network utilizes self-

supervised training and presents a novel approach to domain

adaptation on the feature map, mitigating the risk of losing

important restoration information within channels.

Cascaded methods have also emerged as a key research focus in

brain tumor segmentation, achieving notable advancements through

various strategies. For instance, Le Folgoc et al. (17) introduced lifted

auto-context forests, a multi-level decision tree structure that

optimizes segmentation via auto-context mechanisms. Wang et al.

(18) proposed a cascaded anisotropic convolutional neural network,

enhancing tumor edge and structure segmentation with anisotropic

convolutional kernels. Lachinov et al. (19) iteratively refined

segmentation results using a cascaded 3D U-Net variant,

demonstrating its efficacy on the BraTS2018 dataset. Weninger

et al. (20) designed a two-step approach with a 3D U-Net for

tumor localization, followed by another for detailed segmentation

into core, enhanced, and peritumoral edema regions. Finally, Ghosal

et al. (21) developed a deep adaptive convolutional network with an

adaptive learning mechanism that dynamically adjusts parameters,

addressing the complexity of multimodal MRI.
2.2 Segmentation combined with CNN
and transformer

The application of Transformer architecture to image

segmentation has recently gained prominence, particularly in its

integration with CNNs, a fusion that has yielded remarkable results

in the field of medical image segmentation (9, 22–24). For example,

Cao et al. (22) constructed a Transformer-based U-type skip

connection encoder-decoder architecture called Swin-Unet. It is

the first pure Transformer segmentation network and successfully

demonstrates the applicability of transformers in the visual data

domain. Building on Swin-Unet, more and more methods have

begun to explore the fusion of Transformer and CNN. For instance,

Hatamizadeh et al. (23) presented the architecture of UNet

Transformer (UNETR), which uses a pure Transformer as the

backbone for learning features in the encoding part, while only

CNN is used in the decoding part.

Furthermore, not limited to Transformer, there has been

increasing exploration of the application of self-attention

mechanisms. For example, Chen et al. (9) theoretically derived a

global self-attention approximation scheme that approximates self-
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attention by performing convolution operations on transformed

features. Building on this, some approaches have developed multi-

module structures that combine convolution and self-attention to

integrate both local and non-local interactions. For instance, Petit

et al. (24) presented the U-transformer model, which combines the

U-type image segmentation structure with the self-attention and

cross-attention mechanisms of the Transformer.

Recent advancements in hybrid CNN-Transformer architectures

have significantly improved glioma segmentation by enhancing

boundary precision and integrating local and global features. Gai

et al. (25) proposed RMTF-Net, which combines ResBlock and mixed

transformer features with overlapping patch embedding and a Global

Feature Integration (GFI) module to improve decoding quality. Zhu

et al. (26) developed a multi-branch hybrid Transformer that

combines the Swin Transformer for semantic extraction and a

CNN for boundary detection, incorporating a Sobel-based edge

attention block to enhance tumor boundary preservation. Hu et al.

(27) introduced ERTN, a dual-encoder model with a rank-attention

mechanism to prioritize key queries, balancing performance and

efficiency. These studies showcase diverse strategies for leveraging

CNN-Transformer hybrids to address segmentation challenges,

particularly in cases with complex tumor boundaries.
2.3 Category imbalance

A common problem in pixel-level semantic segmentation is

class imbalance. This issue tends to reduce accuracy in regions

belonging to the minority class (28, 29). For example, Hossain et al.

(30) suggested that an effective way to address class imbalance is to

adjust the loss function. They propose the bifocal loss function

(DFL) to correct the problem of vanishing gradients in focal loss

(FL). They introduce a regularization term to impose constraints on

the negative class labels, which increases the loss for classes that are

difficult to classify. Bressan et al. (31) used pixel-level weights in the

training phase to dynamically adjust the importance of individual

pixels, either increasing or decreasing their weight as needed. In

other words, the contribution of each pixel in the loss function is

weighted, which increases the importance of minority class pixels.

Pan et al. (32) also faced the challenge of unbalanced foreground

and background voxels when performing coronary segmentation.

They use the concept of focal loss to optimize the network and

achieve good results. To address the significant class imbalance

problem observed in brain tumors, we follow the approach of the

GDL loss function and assign more weight to small class regions,

minimizing the model’s focus on background regions.
3 Methodology

The proposed DeepGlioSeg framework consists of two phases: (1)

the training phase, which includes data preprocessing, loss calculation,

and parameter updating, and (2) the inference phase, which includes

data preprocessing, learned model import, and postprocessing. A

diagram summarizing this framework is shown in Figure 3.
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3.1 Preprocessing

We used the BraTS and ZZH datasets, where each brain MRI

scan includes FLAIR, T1, T1-CE, and T2 modalities, each with

distinct eigenvalue distributions due to contrast differences. These

variations pose challenges such as slower convergence and

overfitting due to inconsistent intensity scales across modalities.

To address these issues, we normalized voxel values within brain

regions by subtracting the mean and dividing by the standard

deviation. This standardization facilitated effective learning and

mitigated convergence issues. Voxel values in non-brain regions

were set to zero to eliminate interference from irrelevant

background data. The normalization formula is as follows:

X0 =
X − mB

sB
(1)

whereX0 represents the processed image,X symbolizes the original

voxel value in the brain region, mB signifies the average intensity value

of the brain region, and sB indicates the standard deviation of the brain

region. This approach ensures that the model can focus on meaningful

information while reducing variability caused by background noise. To

further enhance robustness and generalization, we applied data

augmentation techniques such as random rotations, flips, and elastic

deformations. These augmentations prevent overfitting by exposing the

model to diverse variations, improving its performance on unseen data

in real-world clinical settings.

Four sets of modal sequences, each with a size of 240×240×155,

were merged to obtain 4-channel 3D image data with a size of

240×240×155×4. Each training example has a corresponding label
Frontiers in Oncology 05
with a size of 240×240×155. The labels consist of four categories:

background (label: 0), necrotic and non-enhanced tumor (label: 1),

peritumoral edema (label: 2), and GD-enhanced tumors (label: 4).

Finally, based on hardware and computational considerations, a

training patch with a size of 128×128×128 was extracted from the

training case.
3.2 DeepGlioSeg network architecture

The general design of DeepGlioSeg is shown in Figure 4A, which

features a symmetric encoder-decoder architecture with skip

connections. The basic concept revolves around the alternating

stacking of CTPC modules and down sampling layers, combining

local features with global representations at different resolution levels.

Importantly, the CTPC module maintains consistent feature map

sizes, while deconvolution gradually restores resolution. Throughout

the network, all convolutional layers are complemented by batch

normalization layers and ReLU activation functions. To mitigate

overfitting, an initial convolutional layer with dropout functionality is

included at the beginning of the model. Additionally, eight successive

convolutional layers are implemented at the base of DeepGlioSeg to

enhance feature extraction.

To manage the computational demands within the Transformer

branch, the Feature Fusion Pathway (FFP) employs different down

sampling steps corresponding to various resolution levels while

maintaining a patch embedding size of 4096. It is important to note

that the feature map input to the Transformer remains constant

at 16×16×16.
FIGURE 3

The diagram of the proposed DeepGlioSeg for automated glioma segmentation in multimodal MRI images.
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3.3 CTPC module structure

In deep learning, CNNs collect local features at different

resolutions by applying convolutional operations, effectively

preserving local details as feature maps. Vision Transformers, on

the other hand, are specifically designed to aggregate global

representations by iteratively processing compressed patch

embeddings through a series of self-attention modules. The CTPC

module, as shown in Figure 4B, consists of three essential elements:

the CNN module, the Transformer branch, and the FFP. These

components are integrated to facilitate feature fusion between the

two branches, effectively enhancing the feature extraction

capabilities of the network.

3.3.1 CNN branch
As shown in Figure 4C, the CNN branch consists of two iterative

convolution modules. Each module contains a sequence of a 1×1×1

downward convolution layer, a 3×3×3 spatial convolution layer, a

1×1×1 upward convolution layer, and a residual link connecting the

module’s input and output. While the Vision Transformer encodes

image patches into word vectors, potentially leading to a loss of local

detail, the CNN branch operates differently. In a CNN, the

convolutional kernel glides over the neighborhood map, enabling it

to extract continuous local features. This feature allows for the

preservation of intricate and detailed local features to a significant

extent. As a result, the CNN branch serves as a continuous supplier of

local detail to the Transformer branch.
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3.3.2 Transformer branch
The Transformer branch includes a multi-head self-attention

module and a multi-layer perceptron (MLP) block, as shown in

Figure 4C. Layer normalization is applied before both the multi-

head self-attention module and the MLP block. Additionally, two

residual connections are incorporated at corresponding positions.

To balance computational efficiency and feature map resolution,

the CNN branch output is down sampled to a 16×16×16

patch embedding.

3.3.3 Feature fusion path
The FFP functions to connect and align the shape disparity

between the feature map in the CNN pathway and the patch

embedding in the Transformer pathway. It actively promotes the

continuous integration of local features with global representations

through interactive mechanisms. Notably, the shape of the feature

stream differs between the CNN and Transformer pathways.

Specifically, the CNN feature map has a shape of C×H×W×D,

where C, H,W, and D denote the channel, height, width, and depth,

respectively. In contrast, the patch embedding takes the form E×C,

where E is the embedding size and C is the number of image

patches. Prior to inputting the feature map into the Transformer

branch, channel alignment of the feature map and patch embedding

is achieved by a 1×1×1 convolution. The volume dimensions are

then compressed to 16×16×16 using the down sampling module,

with different steps chosen for different resolution levels. Finally, the

patch embedding is obtained via a reshape operation.
FIGURE 4

Overview of the proposed DeepGlioSeg network architecture: (A) The architecture of DeepGlioSeg. (B) The specific implementation steps of the
CTPC module. (C) The detailed composition of the Conv block and Trans block.
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3.3.4 Position embedding
To capture essential positional information crucial for the

segmentation task, we introduced learnable positional embeddings

that are merged with the patch embedding by direct addition. When

transitioning from the Transformer branch back to the CNN branch,

it is necessary to upsample the patch embedding to restore it to the

original shape of the CNN feature map. A 1×1×1 convolutional layer

is then applied to harmonize the channel dimensions. Finally, the

resulting output is combined with the feature map. Throughout this

process, batch normalization is used to regulate the features.
3.4 Loss function

There is a significant data imbalance between tumor and non-

tumor tissue for the purpose of identifying and delineating brain

tumors and their subregions. Sudre et al. (33) noted that as the

degree of data imbalance increases, the loss function based on

overlap measurement is less susceptible to fluctuations compared to

weighted cross-entropy. Therefore, the Dice coefficient was utilized

to focus on different tumor subregions. The formula for the Dice

coefficient is given by:

LDice = 1 −
2oN

i=1pigi + ϵ

oN
i=1pi +oN

i=1g + ϵ
(2)

In this formula, gi represents the ground truth label for pixel i in

category c, and pi denotes the predicted probability of pixel i

belonging to category l. The term N represents the total number

of pixels in the image, and ϵ is a small constant added to avoid

division by zero, ensuring the stability of the loss function.

For multi-class segmentation tasks, a weight wl is typically

introduced based on the frequency of each category l. According

to the statistical analysis of the proportion of each category, the

weights were set to 0.1, 1, 2, and 2 for the background, WT, TC, and

ET, respectively. The Multi-class Generalized Dice Loss (Multi-

GDL) was then used as the model’s loss function, which can be

written as:

LGDL = 1 −
2oL

l=1wloN
i=1p

(l)
i g(l)i + ϵ

oL
l=1wl oN

i=1p
(l)
i +oN

i=1g
(l)
i

� �
+ ϵ

(3)

In the above formula, L represents the total number of classes,

and p(l)i and g(l)i denote the predicted probability and ground truth

label for pixel i in class l, respectively. The weight wl ensures that the

contribution of each class is appropriately adjusted based on its

frequency, addressing the issue of data imbalance.
3.5 Postprocessing

In the inference phase, the original image was sliced from left to

right and from top to bottom into eight inference blocks of size

128×128×128 and post-processed with test-time augmentation

(TTA) and volume-constraint (VC). For each inference block,

seven different flips ((x), (y), (z), (x, y), (x, z), (y, z), (x, y, z))

were performed, as shown in Figure 5A. The flipped data were then
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fed into the model, and the corresponding inference results were

obtained. The rotation angles of the different inference results were

restored, and the average value was taken as the final output.

For VC, if the reference segmentation for the ET is missing, the

BraTS evaluation assigns a reward of 0 for false positive predictions,

and the Dice score is 1. Therefore, in this study, if the ET volume

predicted by the model was less than the threshold of 500, the ET

region was reclassified as necrotic and non-enhanced tumor tissue.

As shown in Figure 5B, the ET region is replaced with necrotic and

non-enhanced tumors after volume restriction.
4 Experimental setting

4.1 Dataset

Three public benchmark datasets and one private dataset were

used to evaluate the effectiveness of the proposed DeepGlioSeg. The

Brain Tumor Segmentation Challenge provided the BraTS2019,

BraTS2020, and BraTS2021 datasets used in this study (6, 34, 35).

The BraTS2019 dataset consists of 335 training cases and 125

validation cases. The BraTS2020 dataset contains 369 training

examples and 125 validation examples. The BraTS2021 dataset

includes 1251 training samples and 219 validation samples.

The ZZH dataset was collected by the first affiliated hospital of

Zhengzhou University with institutional review board approval

(reference number: 2019-KY-231). It consists of 232 patient

records in the same format as the BraTS datasets. Each sample

was manually labeled by two radiologists at the first affiliated

hospital of Zhengzhou University. The dataset was split into

training, validation, and test sets in a 7:1:2 ratio. The training set

was used to train the model, the validation set was used to guide

hyperparameter tuning and early stopping, and the test set was used

to evaluate generalization. This approach prevents data leakage and

ensures an unbiased performance evaluation.
4.2 Evaluation metrics

The Dice similarity coefficient (Dice), Sensitivity (Sen), and

Hausdorff distance (Haus95) are used to assess the segmentation

performance of the model. Considering the glioma’s anatomical

features and structure, the model’s performance in segmenting the

following three tumor sub-regions is evaluated: WT (necrotic and

non-enhanced tumor, peritumoral edema, and enhanced tumor),

TC (necrotic and non-enhanced tumor, enhanced tumor), and ET

(enhanced tumor).
4.3 Experimental details

The optimization method used is Adam with a learning rate of

0.0002, and training is performed with a batch size of 4.

DeepGlioSeg is trained for approximately 1000 iterations. A

minimum loss value threshold is set, and the average loss value of

each epoch is calculated during training. Training is stopped when
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the loss value drops below the set threshold. The size of the image

input to the model is 128×128×128×4.

After each downsampling layer, the size of the feature map is

halved, and the number of channels is doubled. The number of initial

convolution kernels is 16. The loss weights for the four regions—ET,

WT, TC, and background—are set to [2, 1, 2, 0.1]. The following data

augmentation techniques are applied: (1) random cropping of the

data from 240×240×155 to 128×128×128; (2) random mirroring and

rotation in the axial, coronal, and sagittal planes with a probability of

0.5; and (3) random intensity shifts in the range [-0.1, 0.1] and scaling

factors in the range [0.8, 1.2]. The network is trained using Multi-

GDL, and L2 normalization is applied to regularize the model, with

the weight decay rate set to 1e-5.
5 Results

5.1 Ablation study

5.1.1 CTPC module configuration
We conducted experiments to identify the optimal configuration

of the CTPC module for better segmentation performance. Table 1

summarizes the impact of different CTPC configurations on model

performance. The baseline model employs a standard encoder-

decoder architecture with separate CNN and Transformer
Frontiers in Oncology 08
branches, which independently extract local and global features.

Although effective individually, the lack of integration between

these branches limits the model’s ability to combine local and

global information, reducing segmentation accuracy.

DeepGlioSeg addresses this by incorporating the CTPCmodule,

which enables the simultaneous fusion of local and global features.

Unlike the baseline, where features are processed separately, the

CTPC module integrates the outputs from both branches, fusing

local and global features into a unified representation. This

enhanced feature fusion improves segmentation accuracy,

particularly for complex and heterogeneous tumor regions. The

fully embedded CTPC model achieved a 4.5% improvement in Dice

score (84.3% vs. 79.8%) over the baseline, demonstrating the

effectiveness of this integration.

The CTPC module addresses challenges in feature alignment

and compatibility between CNN and Transformer outputs. By

using 1×1×1 convolutions for channel alignment, it ensures CNN

features match the Transformer input dimensions, preserving local

detail while facilitating global feature integration. Downsampling

reduces the volume dimensions to 16×16×16, balancing

computational efficiency with feature richness for global context.

The final reshaping generates patch embeddings that facilitate

effective local-global interaction, making the CTPC module highly

effective for capturing complex patterns, crucial for tumor

segmentation tasks.
FIGURE 5

Results obtained by the postprocessing: (A) TTA; (B) VC. TTA was performed using 7 different flips: (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z). VC replaces
the ET predicted by the model if its volume is below the 500-voxel threshold.
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5.1.2 Learnable position embedding
In the work of Dosovitskiy (36), a learnable embedding was

incorporated into the embedded patch sequence and complemented

with position embeddings to preserve critical positional information.

Similarly, for glioma segmentation, we introduced a learnable position

embedding to encode crucial positional information for the task.

Within the CTPC module, the CNN and Transformer branches

enable the fusion of feature streams through a shared pathway.

Before passing the CNN feature stream into the Transformer

branch, we used standard one-dimensional learnable position

embeddings to encode position information. The embeddings were

then added to the feature map via summation. As shown in Table 2,

the introduction of learnable position embeddings improved the

average Dice score by 1% (84.3% vs. 83.3%).

5.1.3 Strided convolution
As shown in Figure 3, downsampling the feature map from the

CNN branch is necessary to achieve spatial dimension alignment.

Peng et al. (37) used average pooling in the feature coupling unit for

this purpose. However, pooling can filter out valuable information

during downsampling. To mitigate this, we chose strided

convolution as the downsampling module. Strided convolution

enables multiple downsampling steps while facilitating further

feature extraction by adjusting the step size. The network uses

four resolution levels (128, 64, 32, 16) from top to bottom, with

downsampling modules having step sizes of 8, 4, 2, and 1,

respectively. To ensure computational consistency, we maintained

the patch embedding size in the Transformer branch at 4096. As

shown in Table 2, using strided convolution as the downsampling

module within the FFP improved the average Dice score by 0.7%

(84.3% vs. 83.6%).
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5.1.4 Postprocessing
During inference, we used a dual post-processing approach

involving TTA and VC. We evaluated the impact of these strategies

on segmentation performance through comparative experiments,

summarized in Table 3. The combined use of both strategies led to a

3.5% improvement in the average Dice score (84.3% vs. 80.8%).

Importantly, these strategies improved performance without

introducing additional computational complexity. We calculated a

p-value for this metric, which was less than 0.05, supporting

this improvement.

We systematically tested voxel count (VC) thresholds ranging

from 100 to 1000 voxels to optimize the Dice score across tumor

subregions, focusing on improving segmentation quality. As shown

in Figure 6, a 500-voxel threshold achieved the best balance between

false positives and true positives. At lower thresholds (e.g.,<500

voxels), over-segmentation occurred, leading to excessive false

positives, particularly in the ET region, where small noise regions

were incorrectly classified as tumor. Conversely, higher thresholds

(>500 voxels) risked under-segmentation, excluding small but

clinically significant tumor regions, reducing sensitivity and

potentially missing subtle pathological features. The 500-voxel

threshold effectively mitigated these issues, ensuring more robust

and accurate segmentation across all tumor subregions.

To further justify this choice, we conducted a sensitivity analysis

to evaluate the impact of different VC thresholds on segmentation

performance. The results, summarized in Table 4, indicate that a

threshold of 500 voxels consistently yielded the highest average Dice

score while maintaining a favorable balance between precision and

sensitivity across the four datasets. For the BraTS2019 dataset, the

average Dice score reaches a maximum of 0.834 at a 500-voxel

threshold, compared to 0.816 and 0.811 at thresholds of 100 and
TABLE 1 Qualitative comparison of results on the BraTS2020 dataset, including the model architecture without the CTPC module (Baseline),
encoding path configuration (EPC), decoding path configuration (DPC), and encoding-decoding path configuration (EDPC).

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC WT TC Mean

Baseline 0.770 0.895 0.728 0.798 0.783 0.899 0.695 0.792 41.7 6.25 26.1 24.7

EPC 0.753 0.892 0.854 0.835 0.775 0.906 0.770 0.817 32.8 6.80 12.9 17.5

DPC 0.753 0.895 0.858 0.835 0.781 0.914 0.799 0.831 36.5 6.88 10.1 17.8

EDPC 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
TABLE 2 Ablation study of the CTPC architecture on the BraTS2020 dataset, testing the impact of different components. .

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

Pool 0.760 0.889 0.850 0.833 0.782 0.912 0.804 0.833 28.8 8.89 9.13 15.6

Scov 0.761 0.892 0.856 0.836 0.781 0.907 0.808 0.832 27.3 6.56 9.21 14.4

Sconv+PE 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
Red denotes the best results, and blue means the second best.
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1000, respectively. Sensitivity and precision also achieve their

highest values of 0.838 and 0.842 at the 500-voxel threshold. In

the BraTS2020 dataset, the average Dice score reaches a maximum

of 0.843 when the threshold is 500, with sensitivity and precision

also reaching their maximum values of 0.836 and 0.855,

respectively. For the BraTS2021 dataset, when the threshold is

500, all evaluation metrics show excellent performance, with the

average Dice score at 0.865, sensitivity at 0.855, and precision at

0.846. For the ZZH dataset, although all metrics are relatively low

across all thresholds, at the 500-voxel threshold, the Dice

coefficient, sensitivity, and precision are 0.616, 0.639, and 0.653,

respectively, showing a relative advantage compared to the

performance under other thresholds. Overall, setting the

threshold at 500 for volume constraints generally yields better

segmentation results.

5.1.5 Loss function
Brain tumor segmentation faces significant category

imbalances, both between tumor and non-tumor tissue and

among different tumor subregions. To address this, we assigned
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class weights based on category frequencies. Incorporating class

weights into the GDL function increased the average Dice score by

5.2% (84.3% vs. 79.1%), as shown in Table 5, demonstrating its

effectiveness in handling class imbalance.

Glioma MRI datasets inherently exhibit imbalances among

tumor regions, with the TC and ET being significantly smaller

compared to the WT. To address this imbalance and emphasize

clinically critical regions, we assigned higher weights to the ET and

TC during training. Specifically, the model was configured with

weights of 0.1 for the background, 1 for the WT, and 2 for the ET

and TC, as shown in Table 6. This weighting strategy improved the

Dice scores for the smaller regions by encouraging the model to

prioritize them over the disproportionately large background and

WT regions. We observed that increasing the weights for the ET

and TC significantly enhanced their segmentation accuracy,

ensuring better representation of these clinically significant areas.

Simultaneously, reducing the background weight to 0.1 prevented

the model from overfitting to irrelevant regions, which often

dominate the data due to their larger size. Conversely, assigning

higher weights to the background degraded the segmentation
TABLE 3 Effect of post-processing on segmentation performance on the BraTS2020 dataset, evaluating strategies such as no post-processing (None),
only TTA, and a combination of TTA and VC.

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

None 0.694 0.880 0.850 0.808 0.695 0.905 0.806 0.802 45.8 9.22 11.9 22.3

TTA 0.728 0.897 0.865 0.830 0.726 0.911 0.812 0.816 39.3 5.92 9.94 18.4

TTA+VC 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
FIGURE 6

Visualization of results from different threshold selections in the VC post-processing technique on both the BraTS and ZZH datasets.
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performance on the smaller regions, as the model became biased

toward identifying the dominant background area. The selected

weight configuration effectively strikes a balance by focusing on

critical tumor subregions while minimizing distractions from the

background, resulting in segmentation that is both accurate and

clinically relevant.

5.1.6 CNN branch and transformer branch
The CTPC module consists of two primary components: the

CNN and Transformer branches. To better understand their

contributions, we conducted ablation studies, with results

summarized in Table 7. Removing the CNN branches caused a

significant drop in segmentation performance, highlighting their

critical role in the CTPC framework.
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In contrast, introducing the Transformer branch significantly

improved performance at a relatively low parameter cost. This

demonstrates the Transformer’s high efficiency and underscores its

strength within the model.

5.1.7 Different optimization strategy
We conducted experiments to evaluate the impact of different

optimization strategies on model performance. Specifically, we

tested SGD, Adam, and Adagrad on the BraTS2020 dataset to

assess their influence on segmentation metrics. As summarized in

Table 8, the SGD optimizer struggled with the ET metric (0.751),

indicating difficulty in segmenting complex structures, though it

performed slightly better on WT and TC metrics, averaging 0.811.

In contrast, the Adam optimizer delivered the best overall

performance, excelling in WT (0.897) and TC (0.865),

demonstrating its ability to handle intricate segmentation tasks.

Adagrad’s results were intermediate, performing well in WT (0.875)

and TC (0.838) but falling short of Adam. These results highlight

the need for effective optimizers like Adam to complement robust

model architectures.

5.1.8 Cross-dataset model testing
Table 9 summarizes our evaluation of the model ’s

generalization, trained on BraTS2021 and tested on BraTS2019,

BraTS2020, and ZZH datasets. On BraTS2019, the model achieved

Dice scores of 0.645 (ET), 0.775 (WT), and 0.735 (TC), averaging

0.718. Performance improved slightly on BraTS2020, with scores of

0.651 (ET), 0.782 (WT), and 0.732 (TC), averaging 0.721, indicating

good adaptation to consistent imaging protocols.

In contrast, testing on themore heterogeneous ZZH clinical dataset

resulted in lower Dice scores: 0.411 (ET), 0.705 (WT), and 0.431 (TC),

averaging 0.515. This performance drop highlights the challenges of

domain shifts and non-standardized imaging. These findings show the

model’s robustness on standardized datasets but underline the need for

domain adaptation to handle clinical variability.
5.2 Results

The comparison of the qualitative results for the BraTS2019,

BraTS2020, BraTS2021, and ZZH datasets is displayed in Table 10.

The segmentation outcomes for the three subregions on the BraTS

datasets are similar, with WT achieving the highest accuracy and

exhibiting fewer outliers. However, the annotation quality of the

ZZH dataset for two subregions, ET and TC, could be improved.
TABLE 4 Comparison of segmentation performance with different
thresholds across all the datasets.

Datasets Threshold Dice Sensitivity Precision

BraTS2019

100 0.816 0.833 0.835

300 0.831 0.837 0.838

500 0.834 0.838 0.842

700 0.827 0.821 0.841

1000 0.811 0.829 0.828

BraTS2020

100 0.821 0.825 0.828

300 0.833 0.842 0.834

500 0.843 0.836 0.855

700 0.834 0.811 0.863

1000 0.815 0.823 0.831

BraTS2021

100 0.827 0.824 0.822

300 0.83 0.827 0.824

500 0.865 0.855 0.846

700 0.835 0.833 0.831

1000 0.833 0.83 0.828

ZZH

100 0.574 0.603 0.621

300 0.581 0.605 0.623

500 0.616 0.639 0.653

700 0.592 0.614 0.628

1000 0.584 0.611 0.637
TABLE 5 Comparison of segmentation performance with different loss functions on the BraTS2020 dataset.

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

DL 0.753 0.877 0.745 0.791 0.753 0.891 0.722 0.789 35.9 14.7 16.5 22.4

GDL 0.760 0.886 0.852 0.832 0.775 0.905 0.788 0.823 30.1 7.92 15.4 17.8

Multi-GDL 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
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To further demonstrate the efficacy of the proposed

DeepGlioSeg, nine advanced image segmentation algorithms in

the field of medical image segmentation were reproduced,

including 3D U-Net (38), 3D V-Net (39), Attention U-Net (40),

nnU-Net (41), nnFormer (42), Segtran (43), SwinUNETR (44),

TransBTS (45), and UNETR (23).

For the BraTS2019 dataset, the mean Dice scores for each

method across the ET, WT, and TC regions, as well as the overall

mean Dice score, are presented in Table 11. Notably, our proposed

method demonstrates superior performance, achieving the highest

Dice scores across all regions and the overall mean Dice score.

Specifically, it achieves Dice scores of 0.761 for ET, 0.887 for WT,

0.854 for TC, and an impressive overall mean Dice score of 0.834.

Conversely, other contemporary approaches exhibit varying levels

of segmentation accuracy, with Dice scores ranging from 0.656 to

0.750 for ET, 0.831 to 0.879 for WT, 0.781 to 0.835 for TC, and

0.756 to 0.821 for the overall mean Dice score. These results

underscore the significant improvement achieved by our

proposed method over existing approaches, emphasizing its

potential to advance the field of brain tumor segmentation.
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For the BraTS2020 dataset, the results are summarized in

Table 12. Our proposed method stands out as the best-performing

approach, achieving the highest mean Dice scores: 0.897 for WT,

0.865 for TC, 0.768 for ET and 0.843 for the overall mean Dice score.

It is important to highlight that SwinUNETR is the closest competitor

to our proposed method, achieving remarkable mean Dice scores of

0.754 for ET, 0.883 for WT, 0.837 for TC, and 0.823 for the mean

Dice score. Comparatively, while several other methods also show

competitive performance, our proposed method consistently

outperforms them across all regions, demonstrating its effectiveness

in accurately segmenting brain tumors on the BraTS2020 dataset.

For the BraTS2021 dataset, Table 13 provides a comprehensive

overview of the segmentation performance of several methods. Our

proposed method demonstrates exceptional segmentation accuracy,

achieving the highest Dice scores across all regions. It stands out with

Dice scores of 0.808 for ET, 0.910 for WT, 0.878 for TC, and an

impressive mean Dice score of 0.865. This performance underscores

the ability of our proposed method to accurately delineate brain tumor

regions, indicating potential clinical relevance. SwinUNETR and

Segtran also exhibit strong segmentation performance, achieving

mean Dice scores of 0.854 and 0.845, respectively. Their robust

performance reflects the effectiveness of their segmentation strategies

and highlights their potential clinical utility. Our comprehensive

evaluation on the BraTS2021 validation dataset confirms the

exceptional performance of our proposed approach, outperforming

all other methods across different segmentation regions.

To demonstrate the excellence of the proposed DeepGlioSeg in

segmenting clinical datasets of suboptimal quality, we present the

results of our experiments on the ZZH dataset, comparing the

segmentation performance of several advanced technologies for

brain tumor segmentation. Table 5 provides a comprehensive

evaluation of the segmentation effectiveness of nine advanced

image segmentation technologies. From Table 14, we summarize

the following key points: (1) The ZZH dataset presents unique

challenges for brain tumor segmentation. The Dice scores of all

methods are significantly lower compared to previous datasets,

indicating the presence of complex tumor phenotypes and

irregular shapes in this dataset. (2) Among the evaluated

methods, our proposed method consistently achieves the highest

Dice scores, demonstrating its effectiveness in addressing the

challenges posed by the ZZH dataset. Specifically, it achieves an

average Dice score of 0.616, indicating relatively strong

segmentation performance even in this challenging context. (3)

While our proposed method stands out, there is variability in the

performance of other methods. SwinUNETR also shows

competitive effectiveness, with an average Dice score of 0.613.

The lower segmentation performance on the ZZH dataset

compared to the BraTS datasets arises from differences in data

quality, diversity, imaging protocols, and real-world complexities.

First, BraTS benefits from high-quality, standardized annotations

by multiple radiologists, ensuring consistent labels. In contrast,

ZZH annotations reflect varying expertise and subjective

judgments, introducing inconsistencies, particularly for smaller

regions like ET. Second, the BraTS datasets are diverse,

encompassing varied patient demographics, tumor grades, and

imaging conditions, enabling better generalization. By
TABLE 6 Comparison of segmentation performance with different
weights using the GDL on all the datasets used.

Datasets Weights Dice Sensitivity Precision

BraTS2019

0.1, 1, 1, 1 0.802 0.812 0.817

0.1, 1, 2, 2 0.834 0.838 0.842

1, 1, 1, 1 0.795 0.801 0.812

1, 1, 2, 2 0.799 0.806 0.814

BraTS2020

0.1, 1, 1, 1 0.831 0.822 0.838

0.1, 1, 2, 2 0.843 0.836 0.855

1, 1, 1, 1 0.805 0.793 0.812

1, 1, 2, 2 0.812 0.806 0.825

BraTS2021

0.1, 1, 1, 1 0.844 0.835 0.833

0.1, 1, 2, 2 0.865 0.855 0.846

1, 1, 1, 1 0.833 0.827 0.822

1, 1, 2, 2 0.841 0.835 0.828

ZZH

0.1, 1, 1, 1 0.596 0.616 0.635

0.1, 1, 2, 2 0.616 0.639 0.653

1, 1, 1, 1 0.574 0.583 0.591

1, 1, 2, 2 0.586 0.615 0.633
TABLE 7 Comparison of segmentation performance of the CNN branch
and Transformer branch on the BraTS2020 dataset.

CNN branch Trans branch Mean Dice Params

✗ ✓ 0.654 5.09M

✓ ✗ 0.798 5.47M

✓ ✓ 0.843 6.62M
Red denotes the best results, and blue means the second best.
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comparison, ZZH’s limited and less diverse sample restricts feature

learning and introduces potential demographic biases. Third,

standardized imaging protocols in BraTS ensure consistent data

characteristics, whereas ZZH exhibits variability in scanner models,

field strengths, and acquisition parameters, affecting tumor visibility

and segmentation accuracy. Lastly, ZZH reflects real clinical

challenges, such as artifacts, motion blur, and non-standardized

conditions, which are less prevalent in BraTS.

Figures 7 and 8 provide visual comparisons of segmentation results

from various methods on the BraTS2019, BraTS2020, and BraTS2021

datasets, supported by quantitative metrics such as HD95 and

boundary overlap to objectively assess boundary quality. The HD95

metric, which evaluates worst-case boundary deviations, highlights the

precision of DeepGlioSeg compared to state-of-the-art models such as

SwinUNETR and Segtran. For instance, DeepGlioSeg achieves an

HD95 of 5.09 for the ET on BraTS2021, outperforming SwinUNETR

(6.45) and Segtran (6.78), indicating superior boundary alignment.

Additionally, boundary overlap metrics such as Dice scores reinforce

these findings. DeepGlioSeg achieves a Dice score of 0.92 for the WT,

outperforming models that struggle with under-segmentation or

over-segmentation in intricate regions. This performance is

attributed to DeepGlioSeg’s hybrid CNN-Transformer architecture,

which effectively integrates local detail extraction and global context

modeling, enabling precise tumor boundary delineation even in
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challenging cases. These quantitative results align with the visual

comparisons, demonstrating DeepGlioSeg’s capability to handle

complex boundary variations.

However, challenges persist in tumors with high heterogeneity,

where significant variability in appearance affects segmentation

consistency. DeepGlioSeg demonstrates superior performance in

handling such heterogeneity, achieving consistent results across

various datasets, such as ZZH, BraTS2019, BraTS2020, and

BraTS2021. Its success lies in the flexible CTPC architecture,

which integrates CNNs for capturing localized details and

Transformers for modeling global context. This dual-pathway

approach enables the seamless fusion of local and global features,

ensuring accurate delineation of complex tumor boundaries. As

highlighted in Figure 9, DeepGlioSeg produces sharper and more

precise tumor segmentations than nnU-Net and SwinUNETR,

particularly in real-world datasets (e.g., ZZH), which exhibit

greater variability than more standardized datasets such as BraTS.

DeepGlioSeg’s design directly overcomes the limitations of

existing models. nnU-Net, while efficient in capturing local

features, struggles to generalize across datasets due to its lack of

global context modeling. SwinUNETR incorporates Transformers

for global feature representation but lacks the balanced local-global

integration of DeepGlioSeg, limiting its ability to segment tumors

with complex boundaries in heterogeneous datasets. In contrast, the

CTPC module’s efficient fusion of local and global features allows

DeepGlioSeg to excel in identifying subtle tumor variations. This

capability is crucial for accurate segmentation in real-world

clinical settings.
6 Discussion

Gliomas present significant challenges for segmentation due to

their complex heterogeneity, including variability in shape,

structure, and location. Accurate tumor boundary delineation is

essential, requiring models capable of capturing both local and

global features. However, many existing methods struggle to

achieve this integration effectively. To address this challenge, we

propose the DeepGlioSeg framework, which integrates a CTPC

module with parallel CNN and Transformer branches. The CNN

branch captures fine-grained local details, while the Transformer

branch models long-range dependencies. The combination of these

two pathways ensures a robust fusion of local and global features,

which enhances the model’s ability to represent complex tumor
TABLE 8 Quantitative results comparing performance across different
optimization strategy.

Strategy
Dice

ET WT TC Mean

SGD 0.751 0.859 0.821 0.811

Adam 0.768 0.897 0.865 0.843

Adagrad 0.758 0.875 0.838 0.823
TABLE 9 Performance of cross-dataset model testing.

Cross Dataset
Dice

ET WT TC Mean

BraTS2021->BraTS2019 0.645 0.775 0.735 0.718

BraTS2021->BraTS2020 0.651 0.782 0.732 0.721

BraTS2021->ZZH 0.411 0.705 0.431 0.515
TABLE 10 Qualitative comparison of results on the BraTS2019, BraTS2020, BraTS2021, and ZZH datasets.

Dataset
ET

Dice

Mean ET

Sen

Mean ET

Haus95

MeanWT TC WT TC WT TC

BraTS2019 0.761 0.887 0.854 0.834 0.785 0.905 0.809 0.836 33.2 7.03 7.09 15.8

BraTS2020 0.768 0.897 0.865 0.843 0.758 0.911 0.812 0.836 27.1 5.92 9.94 14.3

BraTS2021 0.808 0.91 0.878 0.865 0.836 0.925 0.843 0.868 22.4 5.06 10.7 12.7

ZZH 0.491 0.811 0.546 0.616 0.621 0.819 0.65 0.697 41.3 7.74 7.63 18.9
fron
tiersin.org

https://doi.org/10.3389/fonc.2025.1449911
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1449911
characteristics—such as varying shapes and structural heterogeneity

—resulting in improved segmentation accuracy.

In addition to effective feature fusion, DeepGlioSeg tackles the

issue of class imbalance—a common problem in glioma

segmentation, where certain tumor regions, such as the ET, are

underrepresented. To address this, we employ a weighted loss

function that extends the generalized Dice loss. By assigning

higher weights to clinically significant but underrepresented

regions (like ET), the model can prioritize these areas during

training, ensuring accurate segmentation of both larger regions

(e.g., the WT) and smaller, more challenging regions crucial for

treatment planning. This approach helps mitigate the bias toward

larger regions, which is often seen in conventional models.
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Table 15 compares the computational complexity of the

proposed method with state-of-the-art models across four

datasets: BraTS2019, BraTS2020, BraTS2021, and ZZH. Key

metrics include the number of parameters (Params in M),

computational cost (FLOPs in G), and statistical significance

(p-value). Transformer-based models, such as TransBTS and

SwinUNETR, exhibit higher parameter counts (15.56M–30.62M)

and computational costs (163.73G–254.45G), while lighter models

like 3DUNet and Atten-Unet maintain smaller parameter sizes but

incur higher FLOPs. The proposed method strikes an optimal

balance with 6.92M parameters and 156.79G FLOPs, significantly

reducing computational demands while maintaining competitive

performance. Lower p-values across datasets confirm the statistical
TABLE 11 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2019 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.721 0.864 0.832 0.805

3DVnet 0.712 0.861 0.824 0.799

Atten-Unet 0.738 0.848 0.800 0.795

nnU-Net 0.741 0.868 0.834 0.814

nnformer 0.656 0.831 0.781 0.756

Segtran 0.725 0.858 0.831 0.804

SwinUNETR 0.750 0.879 0.835 0.821

TransBTS 0.741 0.862 0.834 0.812

UNETR 0.736 0.859 0.812 0.802

Proposed 0.761 0.887 0.854 0.834
Red denotes the best results, and blue means the second best.
TABLE 12 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2020 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.746 0.870 0.848 0.821

3DVnet 0.734 0.865 0.844 0.814

Atten-Unet 0.742 0.852 0.802 0.818

nnU-Net 0.742 0.871 0.842 0.818

nnformer 0.659 0.833 0.785 0.759

Segtran 0.728 0.875 0.849 0.817

SwinUNETR 0.754 0.883 0.837 0.823

TransBTS 0.744 0.867 0.839 0.816

UNETR 0.734 0.864 0.817 0.813

Proposed 0.768 0.897 0.865 0.843
Red denotes the best results, and blue means the second best.
TABLE 13 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2021 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.735 0.874 0.843 0.817

3DVnet 0.728 0.870 0.836 0.811

Atten-Unet 0.716 0.865 0.821 0.800

nnU-Net 0.764 0.887 0.852 0.834

nnformer 0.711 0.861 0.812 0.794

Segtran 0.772 0.896 0.869 0.845

SwinUNETR 0.782 0.905 0.875 0.854

TransBTS 0.761 0.885 0.850 0.832

UNETR 0.756 0.883 0.842 0.827

Proposed 0.808 0.910 0.878 0.865
fr
Red denotes the best results, and blue means the second best.
TABLE 14 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
ZZH dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.473 0.745 0.495 0.571

3DVnet 0.446 0.718 0.506 0.556

Atten-Unet 0.430 0.731 0.461 0.540

nnU-Net 0.486 0.808 0.531 0.608

nnformer 0.419 0.701 0.488 0.536

Segtran 0.452 0.804 0.573 0.609

SwinUNETR 0.506 0.803 0.531 0.613

TransBTS 0.434 0.768 0.491 0.564

UNETR 0.441 0.735 0.482 0.552

Proposed 0.491 0.811 0.546 0.616
Red denotes the best results, and blue means the second best.
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significance of the proposed method’s improvements, emphasizing

its efficiency and robustness compared to other models.

Beyond glioma segmentation, the CTPC module is highly

adaptable and could be applied to other medical imaging tasks. Its

ability to integrate local and global features makes it well-suited for

segmenting tumors with irregular boundaries, such as lung or liver
Frontiers in Oncology 15
tumors. Additionally, the framework supports multi-modal imaging

(e.g., PET-CT, MRI-CT fusion), allowing the model to combine

complementary information for more accurate segmentation. In

the future, we plan to enhance the model further by incorporating

dynamic attention-based feature selection and task-specific fusion

strategies, broadening its clinical applicability.
FIGURE 7

Visual comparison of segmentation results with different models on the BraTS2019, BraTS2020, and BraTS2021 datasets. (A) FLAIR. (B) T1. (C) T1-CE.
(D) T2. (E) Attention-Unet. (F) nnU-Net. (G) Segtran. (H) SwinUNETR. (I) TransBTS. (J) Ours. (K) GT.
FIGURE 8

Visual comparison of segmentation results with different models on the ZZH dataset. (A) FLAIR. (B) T1. (C) T1-CE. (D) T2. (E) Attention-Unet. (F) nnU-
Net. (G) Segtran. (H) SwinUNETR. (I) TransBTS. (J) Ours. (K) GT.
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Despite these strengths, the model is not without limitations.

The complexity and large parameter count increase the risk of

overfitting, especially when trained on smaller datasets. To mitigate

this, regularization techniques such as dropout, data augmentation,

and early stopping could improve the model’s robustness. Another

challenge is the variability in MRI data from different scanners or

imaging protocols, which can hinder generalization. Future work

will focus on data harmonization methods, such as domain

adaptation and intensity normalization, to reduce these challenges

and improve generalization across diverse datasets.

Looking ahead, there are several opportunities for further

refinement of DeepGlioSeg. Incorporating multi-scale feature

extraction, attention mechanisms, and multi-task learning can

enhance its ability to handle a broader range of clinical tasks.

Additionally, transfer learning from pre-trained models and the

inclusion of contextual priors could reduce dependency on large

labeled datasets, improving the model’s adaptability to various

imaging modalities and expanding its clinical utility.
7 Conclusion

In this study, we present DeepGlioSeg, a novel framework

developed to address the challenging task of automating brain tumor

segmentation. Our proposed method incorporates the CTPC module

into an encoder-decoder network architecture, enabling it to capture

critical local features of gliomas, such as texture and edges. To tackle the

challenge of category imbalance, we introduce the Multi-GDL loss

function, which adjusts category weights to rebalance loss

contributions, resulting in more accurate identification of tumor
FIGURE 9

Visual comparison of feature maps with different models on the ZZH, BraTS2019, BraTS2020, and BraTS2021 datasets. (A) Raw image. (B) nnU-Net.
(C) Segtran. (D) SwinUNETR. (E) Ours. (F) TransBTS.
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TABLE 15 Comparison of computational complexity between our
method and other state-of-the-art methods on all the datasets used.

Datasets Method
Params
(M)

FLOPS
(G)

p-value

BraTS2019

3DUnet 5.42 275.53 2e-6

3DVnet 4.76 157.81 4e-5

Atten-Unet 2.47 164.06 2e-4

nnU-Net 9.4 84.03 0.0012

nnformer 14.91 172.04 0.0048

Segtran 29.19 254.45 0.0035

SwinUNETR 15.56 206.76 0.0072

TransBTS 30.62 163.73 0.0223

UNETR 15.56 206.76 0.0185

Proposed 6.92 156.79 *

BraTS2020

3DUnet 5.42 275.53 1e-7

3DVnet 4.76 157.81 3e-4

Atten-Unet 2.47 164.06 1e-4

nnU-Net 9.4 84.03 0.0015

nnformer 14.91 172.04 0.0053

Segtran 29.19 254.45 0.0041

SwinUNETR 15.56 206.76 0.0073

TransBTS 30.62 163.73 0.0244

(Continued)
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structures. To further enhance glioma segmentation during inference,

we employ a combination of TTA and VC as post-processing

strategies. These improvements highlight the effectiveness of the

CTPC module, Multi-GDL loss function, and post-processing

strategies. Future enhancements for segmenting complex regions like

ET and TC may involve refining the CTPC module with dynamic

attention-based feature fusion to adaptively focus on intricate

boundaries. Additionally, multi-scale learning and adaptive weighted

loss functions could further improve segmentation by capturing multi-

resolution features and prioritizing critical regions.
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TABLE 15 Continued

Datasets Method
Params
(M)

FLOPS
(G)

p-value

UNETR 15.56 206.76 0.0157

Proposed 6.92 156.79 *

BraTS2021

3DUnet 5.42 275.53 1e-7

3DVnet 4.76 157.81 3e-6

Atten-Unet 2.47 164.06 1e-5

nnU-Net 9.4 84.03 0.0009

nnformer 14.91 172.04 0.0052

Segtran 29.19 254.45 0.0032

SwinUNETR 15.56 206.76 0.0068

TransBTS 30.62 163.73 0.0277

UNETR 15.56 206.76 0.0136

Proposed 6.92 156.79 *

ZZH

3DUnet 5.42 275.53 1e-8

3DVnet 4.76 157.81 5e-4

Atten-Unet 2.47 164.06 6e-4

nnU-Net 9.4 84.03 0.0018

nnformer 14.91 172.04 0.0046

Segtran 29.19 254.45 0.0037

SwinUNETR 15.56 206.76 0.0076

TransBTS 30.62 163.73 0.0218

UNETR 15.56 206.76 0.0165

Proposed 6.92 156.79 *
The p-value is computed for paired t-tests between our method and other methods. A p-value
less than 0.05 indicates the statistical significance of the paired t-tests.
The symbol * indicates that the p-values for the other methods were calculated using a paired
samples t-test, with our method serving as the benchmark reference.
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