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Over the past 20 years, early diagnosis of prostate cancer has become

increasingly prevalent due to the promotion of prostate-specific antigens, and

its treatment has become a focal point. However, there are some drawbacks

associated with therapies for early prostate cancer, such as active surveillance

and radical prostatectomy, which may include urinary incontinence, erectile

dysfunction, and urinary tract infection. In contrast, photodynamic therapy (PDT)

is introduced into the treatment of prostate cancer because of its advantages,

such as high precision to tumor cells, low toxicity, and no radiation. Compared to

radical prostatectomy, the PDT has low risk and minimal trauma. Although PDT is

in the early stages of clinical development, it holds promise for the effective

treatment of localized prostate cancer. Herein, we reviewed studies on the

mechanisms of PDT and photosensitizers for prostate cancer. Given the rapid

development of nanotechnology, photosensitizers wrapped by nanomaterials

have emerged as new option with significant advantages, particularly of in

achieving high tumor selectivity using functional nanomaterials. Numerous

PDT clinical trials on prostate cancer have been conducted worldwide. We also

reviewed the results of a few photosensitizers in these clinical trials. However, a

few limitations and challenges regarding PDT for prostate cancer still exist. In

addition, future development and potential clinical application strategies of

future PDT are predicted.
KEYWORDS

photodynamic therapy, localized prostate cancer, photosensitizer, precise treatment,
combined therapy
1 Introduction

Prostate cancer is the second common malignant tumor in males (1). Over the past 20

years, there has been significant development in therapies for localized prostate cancer. In

the past, traditional approaches for the treatment of localized prostate cancer mainly

included active surveillance, radical prostatectomy (RP), and radiation therapy. However,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1454392/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1454392/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1454392/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1454392&domain=pdf&date_stamp=2025-02-05
mailto:lishengxian@qdu.edu.cn
mailto:m18661805062@163.com
https://doi.org/10.3389/fonc.2025.1454392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1454392
https://www.frontiersin.org/journals/oncology


Xu et al. 10.3389/fonc.2025.1454392
RP can lead to some side effects, such as erectile dysfunction,

urinary incontinence, and urinary tract infections (2). Active

surveillance is another option. It may reduce overtreatment in

some patients with early-stage prostate cancer, but the potential

disadvantage of this approach is the psychological burden arising

from delaying RP (3). Consequently, focal treatment for localized

prostate cancer has gained researchers’ attention. This approach

causes minimal damage to the surrounding tissues and preserves

quality of life (4), because it destroys only the tumor or the

area containing it (2). The current treatments for localized

prostate cancer mainly include high-intensity focused ultrasound

(HIFU) (4), cryotherapy (5), irreversible electroporation (6), and

photodynamic therapy (PDT).

PDT originated in the 1960s when Lipson et al. reported a

porphyrin mixture (7). Schwartz then prepared and named it a

hematoporphyrin derivative (HPD). In the 1970s, early preclinical

and clinical studies expanded rapidly to explore the therapeutic

potential of HPD (8–10). Since the approval of certain light

applicators and photosensitizers (PSs), PDT has gained increasing

attention. It mainly involves three components: light, tissue oxygen,

and PSs (11). Compared with other focal therapies, PDT has lower

toxicity and limited side effects, and does not utilize ionizing

radiation (12). Furthermore, PDT equipment is cheaper and

requires less room. PDT is a clinically approved and minimally

invasive treatment for early-stage cancer (13). The photodynamic

therapy procedures for prostate cancer is shown in Figure 1 (14).

This article is an overall review of studies on PSs and PDT in

localized prostate cancer. Moreover, it addresses current limitations

and future perspectives.
2 The mechanisms of PDT

The mechanisms of PDT are depicted in Figure 2 (15). Light,

oxygen, and photosensitizers are the three primary elements of PDT

for tumor elimination (16). Photodynamic responses involve both

photochemical and photophysical reactions. When PSs are exposed

to light of a particular wavelength, they reach a higher-energy state

called the singlet state. In this state, activated PSs release energy by

emitting light, heat, or transforming into a triplet state (intermediate

energy state) before returning to the ground state (11). Triplet-state

PS can produce reactive oxygen species (ROS) via two mechanisms.

In one of the mechanisms, PSs interact directly with substrates,

transferring protons or electrons to produce organic radicals.

Further reactions between cellular oxygen and these free radicals

result in the generation of ROS, such as superoxide anions,

peroxides, and hydroxyl radicals. The other mechanism involves

the formation of singlet oxygen. When singlet oxygen interacts with

biomolecules, its primary products undergo chain reactions related to

free-radical peroxidation (17, 18). Ultimately, these processes lead to

vascular damage, affecting the immune system and causing cell

death (19).

There are three mechanisms that can explain the cytotoxicity of

ROS in tumors. Firstly, ROS can lead to vascular disorders and

thrombosis associated with tumors by destroying the vascular
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endothelial cells of the tumors. This means a reduction in the

supply of oxygen and nutrients to the tumor. Secondly, ROS can

cause an oxidative stress reaction, leading to the activation of the

protein kinase pathway or the expression of cytokines and

transcription factors. These reactions can lead to cell necrosis and

apoptosis. Thirdly, ROS can induce necrosis and apoptosis of tumor

cells, stimulating the activation of T cells and releasing numerous

pro-inflammatory factors. Moreover, they induce acute

inflammatory and anticancer immune responses (20, 21).
3 Basic research on PDT for the
precise treatment of prostate
cancer therapy

Light, oxygen, and PSs are the three primary elements of PDT

for tumor elimination. Among them, the selection and application

of PSs are the key factors affecting the efficacy of PDT. Since the

1950s, different kinds of photosensitizers have been discovered and

tried for the treatment of cancer (15). They are divided into three

generations according to the time of discovery. The characteristics

of different PSs are listed in Table 1.
3.1 First-generation PSs

In the 1950s, hematoporphyrin was found to accumulate in

tumor tissues and induce cell death after exposure to light (33). The

observed phenomenon indicated that the photodynamic effect of

hematoporphyrin resulted in cell death, involving the production of

toxic byproducts and ROS (25). In the 1970s, an HPD was used as a

PS in PTD to treat bladder cancer (34). By 1978, the successful

application of first-generation PSs in treating different tumors was

reported by Dougherty et al (10). In 1985, the photoinduced toxicity

of an HPD used on rat prostate cancer cells was studied (25). The

occurrence of prostate tissue necrosis during PDT depends on the

PS content in the prostate. Although the distribution of porphyrin

in the prostate and other urological organs has been investigated in

mice, there are significant discrepancies between the mouse model

and humans. Physiological and morphological similarities exist

only between the prostates of humans and other primates.

Therefore, primates are preferred for assessing porphyrin

distribution in the prostate and other organs. In addition, the

primate prostate contains a high concentration of zinc (35),

making it a suitable choice to study zinc-containing

metalloporphyrins in prostate cancer treatment (36). Although

zinc accumulation is high in prostatic tissues, preferential

localization to the two lobes of the primate prostate has not been

achieved. Interpreting this result is challenging because of limited

data on the effects of zinc on prostatic physiology. There are three

possible explanations for this finding: (1) Zinc may be preferentially

taken up by prostatic epithelial cells, especially when the zinc atoms

are placed inside the porphyrin molecule rather than at the

periphery. (2) The zinc characteristics of the metalloporphyrin
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complexes may have disappeared. (3) Zinc accumulation is under

the androgenic control of the prostate (37). Even if zinc-HPD is

preferentially taken up by prostatic tissues, it is clear from the

spectrum that the most useful absorption peak at 630 nm is lost.

There exist a few other first-generation photosensitizers, such as

verteporfin (24) and talaporfin (22).

However, numerous shortcomings limit the application of

HPD. For example, the low absorption rate of light, owing to the

short excitation wavelength, makes it difficult for light to penetrate

deeper tissues and effectively execute PDT. In addition, it is difficult

to synthesize and purify HPDs. Lastly, HPDs can easily induce

phototoxicity due to their long half-lives.
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3.2 Second-generation PSs

Second-generation PSs include phthalocyanines, phenothiazines,

polycyclic quinones (32), and porphyrin derivatives. Compared with

first-generation PSs, second-generation PSs have many improvements.

First, they can be activated by near-infrared (NIR) light due to their

longer absorption wavelengths. The ROS rate is related to the effect

depth of these PSs. In addition, second-generation PSs can be rapidly

metabolized, thereby reducing their side effects (38, 39).

Porphyrin-derived PSs primarily contain endogenous and

exogenous porphyrins. Among endogenous porphyrins, 5-

aminolevulinic acid (5-ALA) is widely used as a precursor for
FIGURE 1

The use of PDT for prostate cancer. (A) The photosensitizers are administered either orally or intravenously. After a suitable drug–light interval, the
drug is activated by a low-power laser light. (B) The light is most commonly delivered using a brachytherapy-style perineal template with transrectal
ultrasound guidance. Hollow plastic needles are inserted into the prostate, and cylindrically diffusing fibers are positioned within the hollow needles.
This part of the procedure is carried out under general anesthetic, with the patient in the lithotomy position. (C) The cylindrical diffuser fibers deliver
light to the prostate at the appropriate drug–light interval (14).
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heme synthesis (26). It is an endogenous biochemical substance that

is subjected to ALA anhydrase and a series of enzymatic actions to

produce protoporphyrin IX with strong photosensitizing effect (40).

In 1990, Kennedy et al. first used this technique for tumor ablation

(41). Later, Nakayama et al. used ALA-PDT to treat prostate cancer

cells and found that it led to rapid ROS-induced cell death and the
Frontiers in Oncology 04
suppression of cell proliferation through several pathways (42).

However, 5-ALA is easy to decompose if it is in direct sunlight and

its penetration is low. 5-ALA is not the optimal for refractory and thick

tumors. Methotrexate was combined with ALA because it could cause

an increase in protoporphyrin IX, which overcame disadvantages of 5-

ALA (30). Exogenous porphyrins, such as chlorin e6 (Ce6)
FIGURE 2

The mechanism of PDT. Light, oxygen, and photosensitizers are three primary elements of PDT required to eliminate tumors. The activated
photosensitizers release energy by emitting light and heat or transforming into a triplet state. Then the triplet state PS produces reactive oxygen
species (ROS) by two types of mechanisms. Ultimately, these processes lead to vascular damage, affecting the immune system and causing cell
death (15).
TABLE 1 The characteristics of different photosensitizers.

PSs
Activation
wavelength

Maximum
wavelength

Advantages Disadvantages Reference

Talaporfin 450 nm 660 nm Short drug-light interval; selectivity for
cancer cells

Visual disturbances reported (22)

Temoporfin 510 nm 690 nm Selectivity for cancer cells Visual disturbances reported (23)

Verteporfin 530 nm 692 nm Selectivity for cancer cells; short drug-
light interval (15-30 min)

Less tissue penetration (24)

Hematoporph 405 nm 635 nm Preparation less heterogenous than
HpD derivatives

Prolonged skin photosensitivity; long drug-
light intervals; suboptimal tumor selectivity

(25)

5-aminolevulinic
acid (5-ALA)

410 nm 635 nm Selectivity for cancer cells; short drug-
light interval (up to 4 h)

Less tissue penetration (26)

Motexafin lutetium 432 nm 732 nm Short drug-light interval (3 h); no
reported skin photosensitivity

No disadvantages reported (27)

Hypericin 400 nm 595 nm Longer absorption wavelengths
metabolized rapidly, decreasing the
side effects.

Poor tumor targeting capacity and low
permeability of local delivery.

(28)

Phthalocyanine 480 nm 680 nm Longer absorption wavelengths
metabolized rapidly, decreasing the
side effects.

Poor tumor targeting capacity and low
permeability of local delivery.

(29)

Methyl
aminolevulinic acid

450 nm 638 nm Selectivity for cancer cells; short drug-
light interval (up to 4 h)

Less tissue penetration (30)

Pyropheophorbide-a 425 nm 634 nm Preparation less heterogenous than
HpD derivatives

Less tissue penetration (31)

Polycyclic quinone 492 nm 560 nm Short drug-light interval (3 h); no
reported skin photosensitivity

No disadvantages reported (32)
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andphotochlor (HPPH), are comprehensively used in PDT

(43). HPPH, with its long excitation wavelength, is used for solid

tumors. Furthermore, its low phototoxicity eliminates the need to avoid

light exposure after injection. Ce6 (44), synthesized from

pyropheophorbide-a, is suitable for PDT because it can efficiently

produce singlet oxygen. However, Ce6 has a hydrophobic nature,

making its application difficult. Using HPPH for treatment presents

a significant limitation: the non-specific uptake and extensive diffusion

of HPPH can weaken its effectiveness and result in off-target effects.

Researchers try to revise the physical structure of HPPH, which can

load it into new drug delivery systems. This will be mentioned in

discussing the application of third-generation photosensitizers.

Polycyclic quinone, a natural PS, is widely found in plants. It

can generate free radicals, singlet oxygen, and superoxide anions

when used in PDT, which suggests that it can trigger two types of

photosensitive reactions (45). Representative polycyclic

compounds include hypericin, hypocrellin, and curcumin.

Hypericin extracted from Hypericum perforatum L. has

excellent photosensitivity to light (28). It can rapidly induce the

release of Ca2+ from the endoplasmic reticulum, a process possibly

correlated with cell apoptosis. In addition, the light-independent

effects of hypericin, including the ultrastructure of organelles,

protein synthesis, and ROS generation, have been reported by

Huntosova and Stroffekova (46). Hypocrellin occurs as two types:

HA and HB; both exhibit high ROS generation ability and rapid

clearance. Therefore, hypocrellin is a promising anticancer PS for

PDT. Curcumin is well known for its photosensitivity and

anticancer properties. These properties exert synergistic effects

when used in PDT.

Phenothiazine is a widely used PS. Methylene blue (MB), new

methylene blue, dimethyl methylene blue (DMMB), and toluidine

blue O are commonly used in this research. A previous study

revealed that DMMB may act through the cellular stress axis to

induce cell death. MB triggers cellular responses such as necrosis,

apoptosis, and autophagy, relying on the nonspecific generation of

many oxidant species (47).

Phthalocyanine is a porphyrin analog that can modify cores and

substituents, incorporating zinc, silicon, or aluminum to optimize

its properties (48). Consequently, they can be activated by light in

the wavelength range of 750–900 nm. In addition, phthalocyanine

PSs have ideal characteristics, such as low phototoxicity, quick

clearance, and high fluorescence signal generation (29). Therefore,

they can be used in photodiagnosis and photodynamic treatments.

However, second-generation PSs still have some disadvantages,

such as poor tumor-targeting capacity and low permeability for

local delivery.
3.3 Third-generation PSs

The third-generation PSs are based on second-generation PSs

and combined with substances with biological properties to

improve the targeting of photodynamic therapy and they can

attain high tumor selectivity by using functional nanomaterials

(49) or conjugating target molecules. DR2 is a bimolecular conjugate

composed of an anti-androgen molecule that can release NO under
Frontiers in Oncology 05
the influence of light and a photosensitizer (pheophorbide). DR2

can modulate the NF-KB/YY1/RKIP loop, which, in turn, controls

the growth and apoptosis of prostate cancer cells (50). The basic

method of research on PSs for prostate cancer is depicted in

Figure 3 (31). Prostate-specific membrane antigen (PSMA) is a

glycoprotein commonly found on the surface of prostate cancer

cells and has attracted considerable attention as a target for delivery.

Pyropheophorbide-a is a PS that lacks specificity for cancer

cells (52). However, inhibitors known as phosphoramidate

peptidomimetic PSMA are used for both intracellular delivery

and cell-surface labeling of prostate cancer cells (53). Thus, a

conjugation of the PSMA inhibitor to pyropheophorbide-a has

been analyzed (54, 55). Deks et al. effectively improved the

accuracy and efficacy of surgical treatment of prostate cancer by

combining fluorescence-guided surgery for PSMA with tumor-

targeted PDT (56).

Various functional nanomaterials have emerged owing to the

rapid development of nanotechnology (57). These materials are

carriers for delivering PSs with low water solubility (58). In

addition, certain nanomaterials can be used directly as PSs (59).

Examples include gold nanoparticles (60), silica nanoparticles (61),

magnetic nanoparticles (62), polymeric nanoparticles (63),

liposomes (64), and quantum dots (65).

In recent years, gold nanoparticles have been shown to have

unique chemical and physical properties, including fluorescence

enhancement and surface plasmon resonance, making them

suitable for drug delivery and targeting (66). PSMA-targeted

nanoparticles complex is a new drug delivery system. By

combining nanoparticles with PSMA-targeted ligands, it is

possible to improve the targeting and bioavailability of drugs in

prostate tissue. PSMA-targeted gold nanoparticles have been

synthesized and can effectively deliver drugs to targeted cells. The

animals treated with these nanoparticles showed tumor remission

after 14 days, indicating their potential for therapeutic intervention

(31). Luo et al. bound PSMA-targeting ligands and gadolinium (Gd

III) complexes to the gold nanoparticles surface. They are used in

magnetic resonance (MR)-guided prostate cancer-targeted therapy.

The results showed that the binding of gold to Gd (III) inhibited

prostate cancer more effectively after radiotherapy (67). Titanium

dioxide (TiO2) has been found to be photoactive upon irradiation. It

also has high stability, appropriate biocompatibility, and low

toxicity and is used in anticancer PDT (68). However, only UV

light can activate pure TiO2, and its tissue penetration is low,

limiting its application in PDT (69). Therefore, researchers have

attempted to use targeted TiO2 nanoparticles in PDT. The results

showed that TiO2 decreased the viability of cancer cells (61). Silica

has a tetrahedral structure. According to pore diameter, the silica

nanoparticles are classified as macropores (>50 nm), mesopores (2–

50 nm), and micropores (<2 nm) (70). Mesoporous silica

nanoparticles (MSNs) are considered suitable PS carriers because

of their excellent biocompatibility and large surface area. As

biocompatible materials, MSNs can be decomposed into water-

soluble and non-toxic orthosilicic acid (Si (OH)4) in a physiological

environment and then extracted in urine (70, 71). Magnetic

nanoparticles (MNPs) have unique biocompatibility, stability, and

physical properties (72). It is known that a permanent magnet can
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generate an external magnetic field with controlled interactions

with MNPs. These MNPs can be used to study the specific location

of a tumor within an organism and release drugs, thus creating a

targeted drug delivery system. PSMA-targeted MNPs were

developed by Ngen et al. After intravenous administration of 50

mg/kg of MNPs in a mouse model, evaluation using T2-weighted

MRI determined the concentration required for therapy. Compared

to PSMA (-) tumors, the nanoparticles initially aggregated at the

tumor periphery, and contrast enhancement was observed in PSMA

(+) tumors after administration (73). Although the U.S. Food and

Drug Administration (FDA) has approved some MNPs, many of

them cause side effects, such as damage to the brain, liver, skin, and
Frontiers in Oncology 06
nervous system. Therefore, their use should be controlled using

organic or inorganic compounds (74). In summary, the researches

of targeting PS in prostate cancer are listed in Table 2.

In addition, new nanoparticles have been used in PDT for

prostate cancer treatment (75). Polymeric nanoparticles are

prepared from synthetic or natural polymers with diameters less

than 1 µm. These polymeric nanoparticles are further classified as

nanocapsules (NCs) or nanospheres (NSs) (76, 77). NCs consist of a

solid/liquid nucleus with a shell, with the drug dissolved in the core,

although some can be on the surface of the NCS. In contrast, NSs

consist of a solid matrix without a polymer shell. The drug can then

be absorbed into the matrix (78). Chen et al. developed polymeric
FIGURE 3

Basic research on photosensitizers in prostate cancer therapy. (A) PDT was administered to the mice. (B) After rejection, the initial electrophoresis
variations and those after 30 min. (C) The different absorbances of AuNPs SPR and encapsulated Pc4 at different wavelengths. (D) Imaging and
fluorescent labeling after rejection (51).
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NCs that encapsulated a combination of quercetin and doxorubicin

for active targeting of prostate cancer. Polymeric NCs with well-

defined covalently stabilized structures have been generated as

potentially safe and universal therapeutic nanocarriers (79). Since

liposomes were first described by Bangham, active research has

been conducted in this field (80). Liposome self-assembly and

multifunctional carrier material containing lipid bilayers with

cholesterol or phospholipids and hydrophobic drugs can bind

with the lipid bilayers, as hydrophilic drugs are encapsulated in

the internal water chambers (81). Lipid carriers are easier to prepare

than other nanocarriers and are non-toxic (82, 83). The co-delivery of

resveratrol (Res) and docetaxel (Doc) via liposomes was introduced by

Zhang et al. Animal experiments showed that the drugs could be

delivered to prostate PC-3 cells. Mice treated with Res/Doc-containing

liposomes exhibited prolonged survival compared to the controls

exposed to Res/Doc without liposomes (84). Quantum dots with

diameters of 2−10 nm are composed of semiconductor elements with

unique electronic and photoluminescent properties (85). The core of

semiconductor materials, such as lead selenide or cadmium selenide,

determines their optical properties (86–88). In castration-resistant

prostate cancer (CRPC), a nanosystem with graphene oxide for

intravenous therapy was developed by Jiang et al. The graphene

quantum dots were first cross-linked by disulfide bonds and then

formed by approximately 200 nm derivatives that could load

enzalutamide. In in vitro and in vivo studies, this carrier showed an

ability to target prostate cancer, which could be internalized by CRPC

cells, inhibit the proliferation of cancer cells, and reduce the side effects

of drugs in vivo (23). Taken together, nanomaterials are gaining

attention in PDT for prostate cancer due to their numerous

advantages (75, 89, 90). Besides, there are also some other manners

of using nanomaterials to the cancer therapy. Researchers reported

that they designed a new carrier loaded glucose oxidase and disulfiram

prodrug, and the carrier used copper (II)-based metal–organic

framework, which could be combined with Cu2+ (27) was used to

enhance tumor-specific therapy (91).

As we all know, generating cytotoxic singlet oxygen for prostate

cancer treatment depends on the ability that PS transfers energy from

lasers to dissolved oxygen (92, 93). However, in tumors the oxygen

supply is not adequate, which will impair the effectiveness of PDT.

Hypoxia is common because of the reduced oxygen supply by

deteriorated diffusion and disturbed microcirculation in prostate

cancer, which are also the unique characteristics and antitumor

mechanisms of prostate cancer. In addition, PDT worsens hypoxia

through vascular shutdown effects and oxygen consumption. Low

oxygen can reduce photodynamic efficacy about PS, preventing PDT

from achieving full potential of cancer therapeutic. To ensure PDT

efficacy, some traditional experiments have tried to optimize tumor

oxygenation. For example, extending irradiation with low fluence rate

and dividing irradiation into dark-light circles have both been

investigated for better tumor reoxygenation. To actively increase

the oxygen of tumor, hyperbaric oxygen inhalation has been used.

However, there exist potential toxic effects about excessive oxygen, an

impediment to its clinical use. Therefore, it is important for

photodynamic therapy to optimize the efficacy with limited oxygen.

To overcome this challenge, researchers load PS into perfluorocarbon
Frontiers in Oncology 07
nanodroplets, developing novel oxygen self-enriched photodynamic

therapy. At the given oxygen partial pressure, perfluorocarbon can

maintain a high oxygen content because of its high oxygen capacity.

In their study, they demonstrated a platform called Oxy-PDT to

achieve enhance efficacy (94). The PDT efficacy is determined by 1O2

generation rate because it is 1O2 for PDT to kill the cancer cells. In the

Oxy-PDT agent, both oxygen and PS are enriched in the nanodroplet.

Oxy-PDT can realize higher efficacy in hypoxic conditions and is

considered the first PDT design. We anticipate its wide clinical

application in the future.

We can discover that some of the third generation PSs are enhanced

by some materials in therapy of prostate cancer compared to the first

generation PSs. For example, Mesquita et al. demonstrated significant

therapeutic potential by synthesizing fluorinated porphyrin derivatives

and optimizing their application using nanotechnology (95).
4 Clinical research on PDT for
prostate cancer

A great number of PDT clinical trials to treat prostate cancer

have been performed worldwide. The first clinical study on PDT to

treat prostate cancer was reported in The Lancet in 1990 (96).

As mentioned earlier, 5-ALA produces PpIX, which has strong

photosensitivity and is activated at 420−460 nm. Clinical research in

Germany has reported the efficacy of PpIX in treating prostate

cancer. Adam et al. reported the use of ALA to identify positive

surgical margins in endoscopic extraperitoneal and open retropubic

RP, which could improve RP outcomes. Thirty-nine patients with

prostate cancer received oral ALA and underwent RP (15

underwent open retroperitoneal RP and 24 underwent endoscopic

extraperitoneal RP). The results showed that the sensitivity of the

open RP group was significantly lower than that of the endoscopic

RP group. As ALA-PDD/PTT (photodynamic diagnosis and

photothermal therapy) can reduce the interval between drug

administration and irradiation to 4 hours, the authors considered

ALA-PDD during RP to be an effective method (97).

Many physicians have explored the treatment of prostate cancer

using temoporfin activated at 652 nm (98). In 2002, Nathan et al.

reported their phase I study involving 14 patients with prostate

cancer experiencing local recurrence after radiotherapy. These

patients were administered temoporfin-PDT, and the interval

from intravenous injection to irradiation was 72 hours. After

PDT, the prostate specific antigen (PSA) levels of nine patients

decreased, and no tumors were found in the biopsies offive patients.

Unfortunately, all patients underwent androgen deprivation

therapy (ADT) as their PSA levels eventually increased. The

researchers attributed this to partial gland coverage during

irradiation (99). In 2006 (98), doctors in London reported

another study involving temoporfin-PDT, wherein six patients

with prostate cancer underwent focal PDT, resulting in a 48.3%

decrease in PSA levels. Biopsy results revealed that all patients

who underwent PDT had residual cancer. Among them, two

patients underwent cryotherapy and brachytherapy, while three

patients underwent external beam radiotherapy. Only one patient
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remained cancer-free 6 years after PDT. It is important to note that

these trials were limited to areas detected by biopsy (100). The

efficacy of temoporfin can be enhanced with improvements in light

dosimetry and the accuracy of needle placement.

Motexafin lutetium is a potent PS, activated at 730−770 nm

(101). It has been approved by the FDA for the treatment of

malignant melanomas and breast cancer (102). In 2006, a phase I

study of 16 patients with recurrent prostate cancer was reported by

Du et al. (103). This study was the first to assess the PSA value,

ranging from day one to several weeks after PDT. The results

indicated that PSA levels significantly increased shortly after PDT,

suggesting that cellular damage induced by PDT may result in a

transient increase in PSA levels. Consistent with the results of other

trials, the PSA value dropped below baseline within 2 months after

PDT and then increased again (101).

At 763 nm NIR light can active vascular-targeted PSs

called Tookad®, destroying tumor blood vessels and effectively

killing cancer cells. This approach is called vascular-targeted

photodynamic therapy (VTP). VTP is administered using a

photosensitizer that is delivered intravenously and locally activated

by laser fibers that emit a specific wavelength of light. Once activated,

photosensitizers produce free radicals that cause severe forms of

uniform local vascular damage within tissues, leading to controlled,

non-thermal forms of coagulated tissue necrosis. Padeliporfin

(WST11, Tookad®) is hydrophilic, whereas Padoporfin (WST09,

Tookad®) is hydrophobic. WST11 is a new negatively charged,
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water-soluble palladium-bacterial chlorophyll derivative that has

been used in vascular-targeted photodynamic therapy (VTP). In

vitro results suggest that WST11 cell uptake, clearance, and

phototoxicity are mediated by serum albumin trafficking. The first

phase I/II trial of VTP in prostate cancer patients after external beam

radiotherapy was conducted by Trachtenberg et al (104). Only two

fibers were placed in the prostate to demonstrate safety in the first

trial (105). Subsequently, a phase II trial was conducted. In this trial,

28 patients received WST09 (2 mg/kg). The results indicated a

notable therapeutic effect with an appropriate light intensity and a

safe drug concentration (106). In France, a phase II trial reported that

56 patients with prostate cancer (Gleason score ≤3 + 3) underwent

VTP. After treatment for 6 months, the mean PSA value was 3.7 ng/

mL, and there was no residual tumor in the targeted area (107). To

determine theWST11 concentration, 40 patients with prostate cancer

(Gleason score ≤3 + 3) received 2, 4, or 6 mg/kg of WST11. The

results showed that 4 mg/kg of WST11 was the optimal dose (108). A

Latin American trial (PCM304) evaluated the efficacy of PDT in men

with prostate cancer. Twelve months after VTP, 60 (74%) patients

had negative biopsy results (109). In 2019, a phase II trial assessed

tumor control in 68 patients after VTP. The results were similar to

those of earlier phase II studies; a quarter of the patients had positive

biopsy results after 3 years. Without removing or destroying the

prostate, it only causes short-term urinary incontinence and erectile

problems and can be recovered within three months (110). Although

VTP has many advantages, such as easy metabolism, lack of obvious

side effects, and no drug-light interval, it must be used carefully in

low-risk patients (111). The initial experience of patients who

underwent VTP for unilateral low-risk prostate cancer was

reported in a real-world study conducted in Germany. The

researchers compared the short-term oncological outcomes in

patients undergoing continuous RP. The biopsy results indicated

that at 12 and 24 months after PDT, 27% of patients had low-and

intermediate-risk prostate cancer, respectively. This study suggests

that the complication rate of VTP is lower than that of RP. However,

after VTP, recurrence and progression are common; therefore, a

rigorous surveillance strategy is required (112). In addition, salvage

RP after VTP seems feasible because it does not involve thermal

ablation. Above all, the clinical researches on PDT for prostate cancer

are listed in Table 3.
5 Current limitations and future
perspectives of PDT

There are several limitations to use PDT for prostate cancer.

These limitations differ between focal and whole-gland therapies.

The challenges with using focal therapy include the initial and

future aspects. The former involves accurately predicting the behavior

of prostate cancer, identifying cancer within the prostate, and treating

the identified target volume. The latter involves ascertaining whether

the intended treatment is administered at the planned treatment

volume and ensuring the untreated part of the prostate is handled

appropriately. In the PDT of prostate cancer using a PS linked to a

monoclonal antibody, there is heterogeneity in antigen expression
TABLE 2 The research of targeting PS in prostate cancer.

Targeting
PS

Research Result

Gold
nanoparticle

Luo et al. bound PSMA-targeting
ligands and gadolinium (Gd III)
complexes to the gold
nanoparticles surface.

The binding of gold to
Gd (III) inhibited prostate
cancer more effectively
after radiotherapy

Titanium
dioxide

Researchers have attempted to
use targeted TiO2 nanoparticles
in PDT.

The results showed that
TiO2 decreased the
viability of cancer cells

Magnetic
nanoparticles
(MNPs)

PSMA-targeted MNPs were
developed by Ngen et al. have
unique biocompatibility, stability,
and physical properties

Their use should be
controlled using organic
or inorganic compounds

Polymeric
nanoparticles

Chen et al. developed polymeric
NCs that encapsulated a
combination of quercetin and
doxorubicin for active targeting
of prostate cancer

Polymeric NCs with well-
defined covalently
stabilized structures have
been generated as
potentially safe and
universal
therapeutic nanocarriers

Liposomes The co-delivery of resveratrol
(Res) and docetaxel (Doc) via
liposomes was introduced by
Zhang et al. Lipid carriers are
easier to prepare than other
nanocarriers and are non-toxic.

Prolonged survival
compared to the controls
exposed to Res/Doc
without liposomes

Quantum dots A nanosystem with graphene
oxide for intravenous therapy
was developed by Jiang et al.

In in vitro and in vivo
studies, this carrier
showed an ability to
target prostate cancer
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within a tumor or among different regions in the same prostate

cancer. Multiple targeting devices can resolve this problem; however,

their efficacy should be analyzed in preclinical studies.

There are some limitations to PDT of the whole gland. An

adequate dose of the drug, oxygen, and light should be delivered to

the entire gland to reliably achieve the whole-gland effect of PDT.

When the effect does not extend beyond the gland, excess light or

drugs do not matter. Future studies should explore the correlation

between drug, oxygen, and light measurements, and PDT outcomes.

The lack of an appropriate follow-up protocol for PDT of the entire

gland remains a challenge. Although MRI is useful for identifying

avascular lesions, the correlation between these lesions and long-

term clinical outcomes and biopsy materials is not available (113).

Whole-gland PDT has demonstrated significant morbidity after

radiotherapy compared to that with other salvage treatments. For

example, in a study assessing temoporfin, a rectourethral fistula was

observed after a PDT rectal biopsy (99). Another study assessing

padoporfin levels after radiotherapy reported two rectourethral

fistulas (106). Whole-gland treatment has mainly been studied in

patients who received radiotherapy before whole-gland PDT. Some

patients may experience urinary dysfunction after whole-gland

PDT. On the contrary, PDT for focal prostate cancer can identify

accurately the tumor within the gland.

Several studies in canine and human prostates have

demonstrated the ability of different PSs to induce necrosis in

prostate cancer cells or prostate tissue. However, some PSs, such

as porfimer sodium (Photofrin), induce toxicities, such as skin

photosensitization (96). After using such PSs, it is necessary to

avoid bright light for several days, thereby reducing the quality

of life and introducing additional problems. For example, patients

should stay in a room with reduced lighting for 3 days after
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using meso-tetra-hydroxyphenyl-chlorin to prevent skin

photosensitivity (99).

The future holds the promise of detecting more prostate cancers

at an early stage, thanks to the development of early detection

techniques such as liquid biopsy. This implies that minimally

invasive treatments, such as PDT, will benefit an increasing

number of patients with prostate cancer. Additionally, there are

treatment options available for locally recurrent prostate cancer and

CRPC. This vast potential opens avenues for patients with prostate

cancer, paving the way for more effective therapies. Studying the

optical characteristics of different types of prostate cancer can help

design a clinical reference strategy. The development of molecular

targeting techniques has made PDT highly selective for tumors,

with lower toxicity to surrounding tissues. While PDT is in its early

stages compared to other ablative modalities, such as cryotherapy

and HIFU, it has the suitable characteristics required for focal

treatment in prostate cancer. In the future, PDT warrants further

exploration in clinical trials. As mentioned above, the use of

advanced nanoparticles in the third generation can overcome the

known limitation of low penetration in PDT. Future objectives

should focus on addressing biodegradability as the primary

concern, enhancing the utilization of PDT for prostate cancer.

Additionally, ongoing developments, especially in photosensitizer

delivery and real-time feedback systems, make PDT an important

addition to the range of treatment options under investigation for

organ-confined prostate cancer (114). Development of new

therapeutic diagnostics based on the combination of PDT and

different imaging techniques to achieve treatment and diagnosis.

This combination can help address poor biodistribution and

selectivity through regional imaging, while therapeutics enable

effective personalized treatment. Biomarkers can identify patients
TABLE 3 Clinical research on PDT for prostate cancer.

Clinical trials The process The result Reference

Adam et al. reported the use of ALA to
identify positive surgical margins in
endoscopic extraperitoneal and open
retropubic RP, which could improve

RP outcomes.

Thirty-nine patients with prostate cancer received
oral ALA and underwent RP (15 underwent open
retroperitoneal RP and 24 underwent endoscopic

extraperitoneal RP).

The results showed that the sensitivity of the
open RP group was significantly lower than that

of the endoscopic RP group.

(97)

In 2002, Nathan et al. reported their phase I
study involving 14 patients with prostate
cancer experiencing local recurrence

after radiotherapy.

These patients were administered temoporfin-
PDT, and the interval from intravenous injection

to irradiation was 72 hours.

After PDT, the prostate specific antigen (PSA)
levels of nine patients decreased, and no tumors

were found in the biopsies of five patients.

(99)

In 2006, a phase I study of 16 patients with
recurrent prostate cancer was reported by

Du et al.

This study was the first to assess the PSA value,
ranging from day one to several weeks after PDT.

The results indicated that PSA levels significantly
increased shortly after PDT, suggesting that

cellular damage induced by PDT may result in a
transient increase in PSA levels.

(103)

The first phase I/II trial of VTP in prostate
cancer patients after external beam
radiotherapy was conducted by

Trachtenberg et al

Only two fibers were placed in the prostate to
demonstrate safety in the first trial. Subsequently,
a phase II trial was conducted. In this trial, 28

patients received WST09 (2 mg/kg).

The results indicated a notable therapeutic effect
with an appropriate light intensity and a safe

drug concentration

(104)

In France, a phase II trial 56 patients with prostate cancer (Gleason score
≤3 + 3) underwent VTP

After treatment for 6 months, the mean PSA
value was 3.7 ng/mL, and there was no residual

tumor in the targeted area

(107)
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who are sensitive to PDT, allowing for personalized treatment.

Besides, biomarkers such as photosensitizer-specific expression

levels, tumor hypoxia, and immune status can predict PDT

response.

Although PDT has these limitations, we can use it with other

therapies. For example, PDT can combine the photothermal

therapy (PTT) to enhance selectivity of cancer therapy (115).
6 Conclusion

The traditional treatments mainly include RP and active

surveillance. However, RP can lead to some side effects, such as

erectile dysfunction, urinary incontinence, and urinary tract

infections. And the potential disadvantage of active surveillance is

the psychological burden arising from delaying RP. Herein, we

reviewed PDT for localized prostate cancer and noted that it is a

minimally invasive treatment for localized prostate cancer and can

preserve the functions of the surrounding organs, such as rectum,

bladder, and neurovascular bundle. We also reviewed different PSs,

spanning from the first to the third generations. The third

generation is important because it is extensively used in PDT for

prostate cancer, where an increasing number of new nanoparticles

is being combined with PSs. This integration is expected to enhance

the accuracy and safety of PDT for localized prostate cancer.

Moreover, the promotion of prostate-specific antigens can

facilitate early diagnosis of prostate cancer. It is noteworthy that

we gathered not only studies on PSs but also those on PDT. An

important point is that PDT can be repeated without cumulative

toxicity. Therefore, if recurrent or residual diseases are identified,

PDT can be used to ablate the remaining prostate tissue after focal

therapy. Although there are limitations to PDT for localized

prostate cancer, we anticipate that in the future, PDT will

overcome these limitations and advance to the next level. We

believe that PDT will undergo comprehensive development

leading to precise application for the treatment of localized

prostate cancer.
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