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Background: Lung adenocarcinoma (LUAD) is a common pathological category

of lung cancer. Circadian rhythm (CR) disruption has been demonstrated to

impact on lung tumorigenesis in mouse models. The aim of this study was to

mine genes relevant to CR in LUAD and construct a corresponding risk model.

Methods: CRRGs from GSEA-MsigDB were filtered by overlapping DEGs in LUAD

and NC specimens, two clusters with survival and clinical discrepancies, and

CRRGs. Cox regression analysis (univariate andmultivariate) was used to establish

a CR-relevant risk model, which was validated in both the training and validation

sets. Differences in immune infiltration, immunotherapy, and drug sensitivity

between subgroups were explored. Prognostic gene expression was tested in

clinical cancer and paracancer tissue samples using RT-qPCR.

Results: A grand total of two prognostic genes (CDK1 and HLA-DMA) related to

CR were screened. The AUC values of a CR-relevant risk model in predicting 1/3/

5-years survival in LUAD patients were greater than 0.6, indicating that the

efficiency of the model was decent. Then, the results of CIBERSORT

demonstrated noticeable differences in the tumor microenvironment between

CR-relevant high- and low-risk subgroups. In addition, the CR-relevant risk score

could be performed to estimate the effectiveness of immunotherapy in LUAD

patients. The sensitivity of three common drugs (homoharringtonine, lapatinib,

and palbociclib) in LUAD could be evaluated by the CR-relevant risk model.

Ultimately, the experimental results confirmed that the expression trends of

CDK1 and HLA-DMA in our collected clinical samples were in line with the

expression trends in the TCGA-LUAD dataset.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1464578/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1464578/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1464578/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1464578/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1464578/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1464578&domain=pdf&date_stamp=2025-02-18
mailto:623447244@qq.com
mailto:15861153525@163.com
https://doi.org/10.3389/fonc.2025.1464578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1464578
https://www.frontiersin.org/journals/oncology


Fu et al. 10.3389/fonc.2025.1464578

Frontiers in Oncology
Conclusion: In conclusion, a CR-relevant risk model based on CDK1 and HLA-

DMAwas constructed by using bioinformatics analysis, whichmight supply a new

insight into the improved prognosis of LUAD.
KEYWORDS

risk model, lung adenocarcinoma, circadian rhythm, immune infiltration,
bioinformatics analysis
1 Introduction

Lung cancer is a highly prevalent cancer worldwide and seriously

affects human health and life safety (1). It is the most common

malignancy in men with the highest morbidity and mortality and is

the third most common in women with the second highest mortality

(2). Lung adenocarcinoma (LUAD) is the most common subtype in

non-small cell lung cancer (NSCLC), which accounts for about 40% of

lung cancer cases (3). Due to the high aggressiveness of lung cancer,

most lung cancer patients are diagnosed at an advanced stage, leading

to a low 5-year survival rate of less than 20% in the majority of

countries (4). Although the great development of targeted therapy and

immunotherapy has improved the overall survival rate to a certain

extent, lung cancer still has a poor prognosis. Therefore, finding reliable

prognostic biomarkers is crucial to improving the treatment

effectiveness and life quality of LUAD patients.

Circadian rhythm (CR) is a fundamental biological phenomenon

wherein most physiological events in living organisms fluctuate

regularly over a period of approximately 24 h. This fluctuation helps

organisms adapt to the surrounding environment (5). Circadian clocks

include the central clock located in the hypothalamic suprachiasmatic

nucleus and peripheral clocks in various tissues throughout the body

(6). The suprachiasmatic nucleus, as a central pacemaker, integrates

light signals from the retina to regulate its own rhythm and

synchronizes the peripheral clocks through various pathways

involving mainly the autonomic nervous system and endocrine

signals (7). At the molecular level, CR is generated by transcription–

translation feedback loops, which are formed by a series of circadian

clock genes and their protein products, e.g., CLOCK, BMAL, Cry, Per

(8). CR regulates a wide variety of biological processes, including cell

proliferation and differentiation, the cell cycle, DNA damage and

repair, the immune response, and apoptosis (9). It also plays an

important role in maintaining homeostasis and solid organ function.

The dysregulation of CR may contribute to a wide range of human

diseases, including metabolic diseases (10), cardiovascular diseases (11,

12), sleep disorders, neurodegeneration (13), and especially cancer (14–

16). CR dysfunction has been classified as a possible human carcinogen

by the International Agency for Research on Cancer (IARC), a body of

the World Health Organization (WHO), in 2007 (17). Accumulating

epidemiological studies have shown that people who work night shifts

are more susceptible to breast cancer (18), endometrial cancer (19), and

prostate cancer (20). Two comprehensive analyses conclude that

circadian pathway genetic variation is involved in cancer
02
predisposition (21, 22). Regarding lung cancer, Gery et al. previously

reported that the expression of Per1 is low in NSCLC patient samples

and cell lines may be caused by DNA hypermethylation and histone

H3 acetylation (23). Liu et al. reported that patients with a lower

expression of Per1, Per2, and Per3 had shorter survival times and the

loss of Per may promote tumor progression in NSCLC (24). A study

using a genetically engineered mouse model has proved that genetic

loss of Per2 or Bmal1, which play cell-autonomous tumor-suppressive

roles in transformation and lung tumor progression, leads to increased

c-Myc expression and promotes lung tumorigenesis (25). These results

indicate that the abnormal expression of circadian rhythm genes may

serve as novel prognostic biomarkers for LUAD.

Therefore, this study obtained LUAD-related data from The

Cancer Genome Atlas (TCGA) database. Then, we screened the

prognostic genes associated with CR by differential analysis, cluster

analysis, and multiple regression methods and tried to establish a

good risk model that could predict LUAD. Moreover, we explored

the role of prognostic genes and the immune microenvironment of

LUAD as well as the related drug sensitivity analysis. Eventually, the

expression of prognostic genes was examined through clinical trials.

Overall, the identification of prognostic genes in LUAD through

these analyses lays a theoretical foundation for the diagnosis and

treatment of the disease.
2 Materials and methods

2.1 Ethics approval and consent
to participate

This retrospective study was approved by the institutional

review board from Changzhou Cancer Hospital (2024(SR)NO.014).
2.2 Data source

We integrated clinical information and transcriptomic data of

535 lung adenocarcinoma (LUAD) specimens and 59 normal

control (NC) specimens through the TCGA database. Then, 479

LUAD specimens with survival information were utilized to

construct the risk model. The GSE30219 dataset (external

validation set) including 115 LUAD specimens (lung tumor) was

mined from the GEO database. Then, 300 CRRGs were extracted
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from the GSEA-MsigDB database with “rhythm” (26)

(Supplementary Table S1).
2.3 Clustering analysis of LUAD specimens

To explore the relationship between circadian gene expression

patterns and LUAD, consensus clustering was performed with the

ConsensusClusterPlus package (v1.54.0) based on the expression

data of CRRG in TCGA-LUAD samples (27). The clustering

parameter was set to maxK = 6. Then, the points with the largest

change in the cumulative distribution function (CDF) value were

combined. Considering that a more stable CDF decreasing trend

indicates better clustering, the best clustering method was selected.

Subsequently, survival discrepancy between LUAD subgroups was

delved via survival package (v3.2-11) to investigate the potential

prognostic value of circadian-rhythm-related genes in LUAD (28).

In addition, the discrepancy in clinical traits between LUAD

subgroups was examined using chi-square test.
2.4 Differential expression analysis in
TCGA-LUAD specimens

In order to identify genes with significant differences in

expression levels between different sample groups, the limma

package (v3.46.0) was implemented to identify the DEGs in LUAD

and NC specimens (adj-p < 0.05, |log2 FoldChange (FC)| ≥ 0.5) (29).

Then, the same criteria was utilized to extract DEGs between different

clusters, and a volcano plot was generated using ggplot2 (v3.3.2) (30)

to visualize the differential gene expression. Subsequently, CR-related

DEGs were filtered by overlapping DEGs between LUAD and NC

specimens, DEGs between different clusters, and CRRGs using the

VennDiagram package (v1.6.20) (31).
2.5 Establishment of a CR-relevant risk
model in LUAD

To investigate whether circadian genes are associated with the

prognosis of lung adenocarcinoma patients, a prognostic model was

constructed to predict the survival of lung adenocarcinoma patients.

The LUAD specimens in the TCGA-LUAD database were randomly

classified into training set (N = 336) and internal validation set (N =

143) in the ratio of 7:3. Firstly, the clinical expression data of LUAD

was retrieved by merging overall survival (OS) information with the

expression data of CR-related DEGs. Next, we used the “survival”

package (v3.2-11) to perform Cox regression analysis (univariate and

multivariate) on the training set (28). Multivariate Cox analysis was

performed on the circadian rhythm genes with p-values <0.05 in the

univariate Cox analysis. The genes were filtered using the step function

based on AIC values to construct a risk model for lung

adenocarcinoma. Depending on the median value of the CR-relevant

risk score acquired by the following formula, LUAD patients were

separated into two risk subgroups (high risk and low risk).
Riskscore =o

n

i=1
coef (genei)* exp r(genei). The Kaplan–Meier (K–M) curve was
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plotted by using survminer package (v0.4.8) (32). For the purpose of

assessing the effectiveness of the CR-relevant risk model, the

survivalROC package (v1.0.3) was used to paint the ROC curve with

1, 3, and 5 years as the survival time node (33). Finally, the CR-relevant

risk model was verified in both the internal validation set and the

GSE30219 dataset.
2.6 Analysis of clinical parameters and
nomogram creation

To further investigate the prognosis of the clinical pathological

features and risk models, a correlation analysis was conducted between

clinical factors and risk scores in the LUAD training set samples.

Firstly, a chi-square test was utilized to compare the number of patients

with various clinical parameters (vital, stage, TMN stage, gender,

smoking category, and age) between two risk subgroups. Then, the

discrepancy in risk score between two subgroups was assessed via

Wilcoxon test for the abovementioned clinical subtypes. Next, the

survival discrepancies between the clinical subtypes of patients in

the high- and low-risk groups were compared. Subsequently, the

abovementioned clinical parameters and risk score were imported in

Cox regression analysis (univariate and multivariate) to authenticate

independent prognostic factors. The nomogram was established via

rms package (v6.2-10) to further investigate the prognosis of the risk

model, and a dynamic column chart was created using the shiny

package (https://jasmineonly.shinyapps.io/DynNomapp/) (34).

Finally, a calibration curve was plotted to evaluate the predictive

value of the nomogram.
2.7 Functional annotation for CR-relevant
risk subgroups

In order to explore the functional differences between high- and

low-risk groups, the enrichment scores of each KEGG pathway in

specimens for the two CR-relevant risk subgroups were calculated by

using the GSVA package (v1.36.3) (35). Then, pathways with significant

discrepancies were screened using limma package (p < 0.01) (29).

Finally, relevance analysis was conducted between differential pathways

and risk scores depending on |cor| > 0.6 and p < 0.01.
2.8 Relevance analysis of CR-relevant risk
model and immune infiltration

In order to investigate the differences in immune infiltration

between high- and low-risk groups, the CIBERSORT algorithm

(v1.03) was used to calculate the proportion of 22 immune-

infiltrating cells in the training set samples (36), and samples with P

> 0.05 were excluded. Subsequently, a correlation analysis was

conducted on 22 types of immune cells, and a correlation heatmap

was drawn. In addition, discrepancies in the 22 immune-infiltrating

cells between two risk subgroups were compared by using Wilcoxon

test (36). The box plot was plotted via ggplot2 (v3.3.2) (37) and Ggpubr

package (v0.4.0) (https://CRAN.R-project.org/package=ggpubr).
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2.9 Estimation of immunotherapy response

The expression and survival probability of 11 immune

checkpoint genes (ICGs) extracted from the TCGA-LUAD were

compared between two CR-relevant subgroups through Wilcoxon

test and survival package. Then, a relevance analysis of ICGs and

risk score was implemented via PerformanceAnalytics package

(v2.0.4) (https://CRAN.R-project.org/package=Performance

Analytics). Wilcoxon test was utilized to examine the discrepancy

of tumor mutational burden (TMB) obtained from cBioportal

(https://www.cbioportal.org/) and TIDE score retrieved from

TIDE database (http://tide.dfci.harvard.edu/) between the

two subgroups.
2.10 Sensitivity analysis of
chemotherapy drugs

The gene expression data of 60 cancer cell lines mandated by

NCI and inhibitory concentration (IC50) of drugs approved by

FDA were collected from the CellMiner database (https://

discover.nci.nih.gov/cellminer/loadDownload.do). Relevance

analysis of drugs and cell-line risk score calculated depending on

the risk coefficients and expression data of model genes was

implemented. Next, according to the median risk score value, cell

lines were stratified into high- and low-risk groups, and the IC50s of

drugs in the two groups were compared.
2.11 Analysis of expression for
prognostic genes

Next, in order to verify the expression levels of genes identified

from public datasets in clinical samples, 10 pairs of cancer and

paracancerous tissue samples were collected from Changzhou Cancer

Hospital. The tumor specimens were reviewed by two experienced

oncopathologists. These were approved by the Changzhou Cancer

Hospital ethics committee. All patients signed an informed consent

form. The 50-mg samples from the abovementioned 10 pairs of tissues

were lysed by adding TRIzol reagent (Ambion, USA) and

homogenizing fully to obtain total RNA. Then, equal amounts of

mRNA were reverse-transcribed into cDNA by using SureScript-First-

strand-cDNA-synthesis-kit (Servicebio, China). After that, qPCR was

implemented via 2xUniversal Blue SYBR Green qPCR Master Mix

(Servicebio, China) and CFX Connect real-time quantitative PCR

instrument (BIO-RAD, USA). The sequences of the qPCR primers

for each gene and GAPDH are listed in Supplementary Table S2. The

expression of prognostic genes was normalized using the conventional

method with GAPDH as an internal reference gene (38).
2.12 Statistical analysis

All open databases and R software were utilized to analyze and

visualize in this study. The heatmap was painted using pheatmap

package (v0.7.7) (39). P <0.05 was taken as a significant difference.
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3 Results

3.1 Subgroup analysis of LUAD specimens

On the basis of 300 CRRGs, the LUAD specimens were

classified into two clusters (k = 2) (Figures 1A, B). The K–M

curve indicated a significant difference in survival between cluster

1 and cluster 2, with cluster 1 having a lower survival probability

(P = 0.0018) (Figure 1C). In addition, a clinical differential analysis

showed significant differences in age (>65 or ≤65 years) and vita

status (alive or dead) between the two clusters (Figure 1D;

Supplementary Figure S1). In summary, CRRG could classify

LUAD patients into two subtypes with differences in survival and

clinical outcomes.
3.2 Identification of CR-related DEGs and
construction of a risk model

A total of 3,709 DEGs were altogether recognized between

LUAD and NC specimens in the TCGA-LUAD database, with

1,546 downregulated and 2,163 upregulated genes in LUAD

specimens (Figure 2A; Supplementary Table S3). Moreover, 705

DEGs were recognized between cluster 1 and cluster 2, with 493

downregulated and 212 upregulated genes in cluster 1 specimens

(Figure 2B). Then, 12 CR-related DEGs were obtained depending

on the Venn diagram (Figure 2C; Supplementary Table S4).

The 336 LUAD patients with survival information in TCGA-

LUAD served as the training set, while the remaining 143 patients

served as the internal validation set. Firstly, eight survival-associated

CR-related DEGs (CDK1, HLA-DMA, PTGDS, TOP2A,

TIMELESS, ARNTL2, TUBB3, and SFTPC) were derived via

univariate Cox analysis (Figure 2D). Subsequently, CDK1 and

HLA-DMA were further screened out to establish a CR-relevant

risk model by multivariate Cox analysis, with CDK1 being a risk

factor (hazard ratio (HR) > 1) and HLA-DMA being a protective

factor (HR < 1) for LUAD prognosis (Figure 2E; Supplementary

Table S5).
3.3 CR-relevant risk model to assess the
prognosis of LUAD patients

The LUAD patients were stratified into high- and low-risk

groups depending on the risk score (median) for further evaluation

of the prognostic value of the risk model (Figure 3A). A survival

status analysis revealed increased odds of patient death as the risk

score increases (Figure 3A). Moreover, the expression heatmap

manifested that CDK1 was highly expressed in patients with a

higher risk score, while HLA-DMA was highly expressed in patients

with a lower risk score (Figure 3A). Figure 3B shows that the high-

risk group was accompanied by a lower survival probability. In

addition, the AUC values of 1/3/5 years for LUAD were all greater

than 0.6, indicating a relatively accurate result (Figure 3C). To

further demonstrate the reliability and usefulness of the risk model,

the abovementioned analysis was also carried out both in the
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internal validation set and the GSE30219 dataset. We obtained

almost identical results to the training set (Figures 3D–I). The

results altogether indicated that the CR-relevant risk model was a

valid survival predictor for LUAD patients.
3.4 Relevance analysis of clinical
parameters and CR-relevant risk model

To research the association between the risk model and the

clinical characteristics of LUAD patients, we performed a relevance

analysis. Firstly, the patient number of various clinical parameters

had no discrepancy between the two risk subgroups except for vital

status, stage, and T_stage (Supplementary Table S6). Then, the risk

scores between the different clinical subtypes of vital status (dead or

alive), stage (stage I + stage II or stage III + stage IV), age (≤65 or

>65), gender (male or female), and N_stage (N0 or N+) had

noticeable discrepancies (Supplementary Figure S2A). In addition,

the survival discrepancies were presented in male, T1 + T2, M0, age

>65, and non-smoker between two CR-relevant risk subgroups

(Supplementary Figure S2B). To investigate the relevance between

clinical parameters and the prognosis of LUAD, we excavated
Frontiers in Oncology 05
independent predictors via Cox regression analysis (univariate

and multivariate). Hence, risk score and stage were reliable

independent predictors for LUAD (Figures 4A, B). A nomogram

(C-index = 0.7005) was established to predict the survival rate of

LUAD patients depending on stage and risk score (Figure 4C).

Finally, the calibration curve demonstrated the effectiveness of the

nomogram (Figure 4D).
3.5 Risk-model-based study of the
molecular mechanisms of LUAD

For the purpose of exploring the potential functions and

pathways for the two risk subgroups, we implemented GSVA

enrichment analysis. A total of 228 differential pathways were

altogether authenticated, 11 of which were significantly associated

with CR-relevant risk score (Supplementary Tables S7, S8).

Supplementary Figure S3A reveals that all of the pathways, except

the lysosome, were positively correlated with risk scores. In

addition, the heatmap displayed cell growth and development,

and DNA repair-relevant pathways were highly expressed in the

high-risk subgroup (Supplementary Figure S3B).
FIGURE 1

Exploring circadian rhythm (CR)-related genes in LUAD. (A) Consistency clustering cumulative distribution function (CDF) plot. The horizontal axis
represents the consistency index, ranging from 0 to 1, with different colors indicating different numbers of classes. (B) Sample clustering heatmap.
The darker the blue, the easier it is to cluster together. (C) Survival curves of patients in cluster 1 and cluster 2. (D) Differences in age and vital
subtypes between cluster 1 and cluster 2.
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3.6 Mining for differential immune cells
between CR-relevant risk subgroups

To clarify the association between the CR-relevant risk model

and immune infiltration, we recognized the differential immune

cells between two CR-relevant risk subgroups. Firstly, 81 specimens

(high risk = 41, low risk = 40) were incorporated to compute the

fraction of each immune infiltration cell after excluding samples

with p-value >0.05 via CIBERSORT algorithm (Figures 5A, B). In

addition, these 22 immune cells all had negative correlations with

each other (Figure 5C). Subsequently, according to Wilcoxon test,

seven differential immune cells (memory B cells, activated mast

cells, resting NK cells, activated memory CD4 T cells, resting

dendritic cells, plasma cells, and resting mast cells) were

authenticated between the two subgroups (Figure 5D).
3.7 The CR-relevant risk score was
associated with immunotherapy response

Due to the effectiveness of immunotherapy in cancer treatment,

the association between risk score and immunotherapy was

researched. The expression differences of five immune checkpoint

molecules (CD27, HAVCR2, ICOS, CDK1, and HLA-DMA) were

noticeable between the two risk score groups (Figure 6A). In
Frontiers in Oncology 06
addition, CD27, CDK1, HLA-DMA, and ICOS were notably

correlated with the survival of LUAD patients and were defined

as critical ICGs (Figure 6B). Figure 6C indicated that the CR-

relevant risk score was notably negatively correlated with HLA-

DMA and positively correlated with CDK1. Subsequently, TMB was

distinctly different between the two subgroups, and it was

remarkably positively associated with risk score (Figures 6D, E).

Moreover, Figure 6F revealed that the high-risk group was

accompanied by higher TIDE scores. In summary, the CR-

relevant risk score could be utilized to estimate the effectiveness

of immunotherapy in LUAD patients, and the effect was worse in

the high-risk group.
3.8 Drug screening for LUAD

To find effective therapeutic drugs for the two groups of patients

with differing risk, we performed a drug sensitivity analysis.

Figure 7A manifested that the risk score was remarkably

positively correlated with homoharringtonine, dexrazoxane,

lapatinib, LEE-011, and palbociclib, while it was remarkably

negatively associated with vemurafenib and ARRY-162 (|cor| >

0.2, p < 0.05). In addition, the IC50 of homoharringtonine,

lapatinib, and palbociclib was distinctly different between the two

cell-line-risk subgroups (Figure 7B).
FIGURE 2

Screening of prognostic genes by regression analysis. (A) Volcano map of differentially expressed genes (DEGs) between LUAD and control groups.
(B) Volcano map of differentially expressed genes among different clustering groups. Red indicates upregulated genes and blue indicates
downregulated genes. Black indicates non-significant genes. (C) Venn diagram of circadian-rhythm-related DEGs. (D) Forest map for screening
survival-related genes by univariate Cox regression analysis. (E) Forest map for screening prognostic gene by univariate Cox regression analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1464578
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2025.1464578
3.9 Discrepancies in the expression of
prognostic genes

As revealed in Supplementary Table S2, the expression of HLA-

DMA was notably lower (log2FC value was negative) in LUAD
Frontiers in Oncology 07
specimens than in NC specimens, and the CDK1 was notably higher

(log2FC value was positive) in LUAD specimens than in NC

specimens. We then tested the expression of prognostic genes at

the mRNA level in the clinical samples that we collected. Consistent

with the results from the public database, the expression of CDK1
FIGURE 3

Construction and assessment of risk models. (A) Risk curves, scatter plots, and model gene expression heatmaps for high- and low-risk groups in
the training set. The horizontal axis represents the patient samples sorted according to their risk scores. The vertical axis of the figure above
represents the risk score, the vertical axis of the middle figure represents the survival time, and the following figure shows the expression heatmap of
model genes for high- and low-risk groups. (B) Kaplan–Meier (K–M) survival curves in patients of high- and low-risk groups in the training set.
(C) Receiver operating characteristic (ROC) curves at 1, 3, and 5 years for LUAD patients in the training set. (D) Risk curves, scatter plots, and model
gene expression heatmaps for high- and low-risk groups in the internal validation set. (E) K–M survival curves in patients of high- and low-risk
groups in the internal validation set. (F) ROC curves at 1, 3, and 5 years for LUAD patients in the internal validation set. (G) Risk curves, scatter plots,
and model gene expression heatmaps for high- and low-risk groups in the GSE30219 dataset. (H) K–M survival curves in patients of high- and low-
risk groups in the GSE30219 dataset. (I) ROC curves at 1, 3, and 5 years for LUAD patients in the GSE30219 dataset.
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was higher in LUAD samples than in normal samples, and the

expression of HLA-DMA was lower in LUAD samples (Figure 8).
4 Discussion

A vast array of biochemical processes are regulated by circadian

rhythms. Circadian perturbation disrupts clock function, which

increases the probability of tumorigenesis and cancer progression by

influencing cell proliferation, DNA repair, metabolism, and the tumor

microenvironment (TME) (40–44). In lung cancer, abnormal circadian

rhythm gene expression might accelerate the initiation and progression

through multiple pathways, including the regulation of c-myc,

metastatic factors, immune cells, and cell cycle proteins (45). New

therapeutic strategies are emerging based on the potential mechanisms

of the clock interacting with cancer, generally including chronotherapy

and pharmacological molecules (15). Chronotherapy optimizes dosing

time to achieve optimal efficacy. Recent research has reported that CR

of cancer immunosurveillance might influence tumor size and cancer

immunotherapy. Immunotherapy is more effective when synchronized

with dendritic cell functions, as the rhythmic transport of dendritic cells

to the tumor-draining lymph node regulates the circadian response of

tumor-antigen-specific CD8 T cells (46). Pharmaceutical compounds

that target essential components of the circadian clock, such as GSK-3b
inhibitors, CRY stabilizers, CRY inhibitors, CK1 inhibitors, CK2

inhibitors, and REV-ERB agonists, are being developed and show

anti-cancer potential (47, 48). Thus, CR-related genes have the

potential to be novel biomarkers to predict prognosis.
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Using public data, we established and verified a CR-related risk

model based on two prognosis-related genes—CDK1 and HLA-DMA

—selected from 12 CR-related DEGs. The low-risk group showed a

better prognosis than the high-risk group, with the AUC values of 1, 3,

and 5 years all greater than 0.6. In addition, risk score and stage were

identified as reliable independent predictors for LUAD through

univariate and multifactorial Cox regression analyses. A nomogram

consisting of risk score and stage could effectively predict the survival

rate of LUAD patients. To confirm the prognostic effect of this risk

model in actual clinical cases, we performed qRT-PCR analysis on the

collected 10 normal and LUAD tissues. The results were consistent

with the public data analysis.

CDK1 belongs to cyclin-dependent kinases (CDKs) family, a set of

serine/threonine protein kinases that participate in the cell cycle

process (49). Abnormal activation of CDKs could lead to excessive

cell division which is a hallmark of cancer (50, 51). Several clinical trials

of CDK inhibitors, including early pan-CDK inhibitors, multitarget

CDK inhibitors, and selective CDK inhibitors, have been conducted in

multiple malignancies, and some of them had demonstrated significant

antitumor effects. The most successful CDK inhibitors are the dual

CDK4/6 inhibitors, which could specifically block the retinoblastoma

protein pathway participating in the transition from the G1 to the S

phase of the cell cycle, thereby preventing cancer cell progression (52).

Currently, CDK4/6 inhibitors have been approved by the FDA for the

treatment of advanced-stage hormone-receptor-positive, HER2-

negative breast cancer and also show benefits in non-small cell lung

cancer, melanoma, and head and neck squamous cell carcinoma (53,

54). As the most essential cell cycle Cdk in the process of driving cell
FIGURE 4

Construction and assessment of the nomogram of independent prognostic factors. Forest plots for univariate (A) and multivariate (B) Cox regression
analyses. (C) Nomogram of independent prognostic factors that assessed the 1-, 3-, and 5-year survival probability in LUAD patients. (D) Calibration
curves for nomogram.
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division, CDK1 initiates mitosis by binding and being activated by

cyclins A and B during the late S/G2 phase (55). CDK1 is involved in

multiple oncogenic pathways, and inhibiting the expression and

activation of CDK1 might exert an anti-tumor effect (56). Several

researchers had revealed that CDK1 inhibition induces MYC-

dependent apoptosis through a synthetic lethal interaction between

CDK1 and MYC in lymphomas, hepatoblastomas, and especially

breast cancers (57–59). Additionally, KRAS/CDK1 interaction also

exerts a robust synthetic lethal effect worthy of a further study (60). In

lung cancer, CDK1 is upregulated compared with normal tissues and

was negatively correlated with the overall survival of lung cancer

patients (61, 62). In our research, CDK1 showed a higher expression

in LUAD specimens than in normal lung tissues and was positively

correlated with the CR-relevant risk score. It turns out that CDK1 is a

protective factor for LUAD outcomes, which may be a prognostic and

treatment biomarker in LUAD.

HLA-DMA is a protein-coding gene playing an important role

in MHC class II/peptide complex formation (63) and protects

empty MHC class II molecules from functional inactivation in the

pathway of class II antigen presentation (64). Oldford et al.

demonstrated that the upregulation of HLA-DMA might

strengthen the immune response dominated by Th1 CD4 T cells

and improve patient survival in breast cancer (65). Recently, HLA-

DMA has been proposed to be a potential prognostic biomarker in

breast cancer and glioblastoma (66, 67). A latest research observed

that HLA-DMA might suppress LUAD cell proliferation by
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arresting the cell cycle at the S phase, and the decreased HLA-

DMA expression in LUAD tissues was correlated with worse OS.

The research found that HLA-DMA might alter the prognosis and

immunotherapy sensitivity in LUAD by regulating the TME status

(68). We obtained the same results in that HLA-DMA showed a

lower expression in LUAD specimens than in normal lung tissues.

In our CR-related risk model, the risk score was negatively

correlated with the expression of HLA-DMA, illustrating that

HLA-DMA is correlated to the poor survival outcomes of

cancer patients.

Through GSVA enrichment analysis, we found 11 pathways to

be associated with CR-relevant risk score, including cell cycle,

cellular senescence, DNA replication, fanconi anemia pathway,

homologous recombination, lysosome, mismatch repair,

nucleotide excision repair, oocyte meiosis, progesterone-mediated

oocyte maturation, and RNA transport. Thereinto, cell growth

and development and DNA repair-relevant pathways were

highly expressed in the high-risk subgroup, which indicates a

worse prognosis. DNA repair is a part of DNA damage response,

and defects in the DNA damage response can cause cancer

predisposition. Drugs targeting the DNA damage response exhibit

anti-tumor effects by exploiting synthetic lethal mechanisms (69,

70). Excessive cell growth and proliferation are a hallmark of cancer

which is often caused by cell cycle disorders. Moreover, Cdk1

activity is a pivotal factor for cell cycle entry. Many studies

inhibiting tumor proliferation by targeting CDK1 have obtained
FIGURE 5

Landscape of immune infiltration in LUAD. (A) Box plot of the proportion of immune cells in the training set. (B) Bar chart of immune cell proportion
stacking. (C) Heatmap of correlation between 22 immune cells. Red indicates a positive correlation, and blue indicates a negative correlation. (D) Box
plots of differences in 22 immune cells in the high- and low-risk groups. P <0.05 indicates significance. Pink represents the low-risk group, blue
represents the high-risk group, “ns” represents no significant difference, “*” represents P <0.05, “**” represents P <0.01, and “***” represents P <0.001.
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meaningful results—for instance, miR-181a inhibits cell

proliferation by regulating the expression of CDK1 in NSCLC

cells (71). CDK1 knockdown could reduce NSCLC cell

proliferation, invasion, and migration by avoiding NUCKS1

overexpression (72).

Immune checkpoint inhibitors have altered the treatment of

NSCLC, especially PD-1/PD-L1 immune checkpoint inhibitors.

However, the issues of immune-related adverse reactions, low

response rate, and drug resistance limit the clinical application of

immune checkpoint inhibitors (73). Great efforts have been devoted to
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searching for effective tumor biomarkers to predict the treatment

response and prognosis of LUAD patients. A great quantity of

biomarkers discovered so far, including PD-L1 expression levels,

TMB, and TME, have not been widely used clinically due to various

type defects (74). Since a tumor immune microenvironment plays an

important role in tumor development and immune escape (75), in this

study, we found that memory B cells, resting dendritic cells, and resting

mast cells showed a higher expression in the low-risk group. A

reduction of these immune cells may be associated with poor

prognosis. In addition, we defined four differentially expressed
FIGURE 6

Molecular analysis of immune checkpoint and differential analysis of immunotherapy. (A) Box plot of immune checkpoint expression between the
high- and low-risk groups. Pink represents the low-risk group, blue represents the high-risk group, “ns” represents no significant difference, “*”
represents P <0.05, “**” represents P <0.01, and “****” represents P <0.0001. (B) Kaplan–Meier (K–M) survival curves for high- and low-differential
immune checkpoint expression, including CD27, CDK1, HLA-DMA, and ICOS. (C) Correlation of immune checkpoints with risk scores. “*” represents
P <0.05; “***” represents P <0.001. (D) Box plot of differences in tumor mutational burden (TMB) between the high- and low-risk groups. (E) Scatter
plot of TMB correlation with risk score. “***” represents P <0.001. (F) Box plot of differences in tumor immune dysfunction and exclusion (TIDE)
between the high- and low-risk groups.”***” represents P <0.001.
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FIGURE 7

Drug sensitivity analyses. (A) Histogram of half-maximal inhibitory concentration (IC50) correlation with risk score. Pink indicates a positive
correlation and blue indicates a negative correlation. (B) Differences in IC50 of homoharringtonine, lapatinib, and palbociclib across the high- and
low-risk groups. P <0.05 indicates a significant difference.
FIGURE 8

Real time-quantitative PCR (RT-qPCR) validation of HLA-DMA and CDK1. “**” represents P <0.01, and “****” represents P <0.0001.
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immune checkpoint molecules (CD27, CDK1, HLA-DMA, and ICOS)

as critical ICGs. There is emerging evidence revealing the function of

circadian clocks in the potential symbiotic interactions between cancer

cells and TME. On one hand, cancer cell clock components impact

angiogenesis, tumor-promoting inflammation, and immune evasion of

TME; on the other hand, the TME clock components impact cancer

cell stemness modulation, tumor growth, metastasis, and therapeutic

efficacy (76). CDK1 and HLA‐DMA are contained within our risk

model. A systematic analysis showed that the expression of CDK1 is

related to multiple immunomodulator and chemokine expression and

increased infiltration of numerous immune cells, which could reshape

the tumor immune microenvironment (77). HLA‐DMA expression

has been shown to be positively correlated with CD8+ T cells (68).

CD27 was a co-stimulatory molecule that stimulates T-cell

proliferation and differentiation to effector and memory T cells

binding to its ligand CD70. Agonistic CD27 antibodies induce

increased antitumor immunity and have shown clinical benefit

mainly in hematological aspects (78). Like CD27, ICOS is another

co-stimulatory molecule involved in adaptive T-cell responses and T-

cell differentiation. It was induced by T-cell receptor engagement or

CD28 co-stimulatory signaling and then expressed on CD4+ and CD8

+ T cells. There was a higher expression of ICOS in tumor-infiltrating

lymphocytes, especially regulatory T cells in cancer. ICOS antibodies

could effectively evoke an antitumor immune response via depletion of

ICOS+ Treg cells (79, 80). We believed that differentially expressed

immune cells may influence tumor immunity and patient survival. The

decreased number of these immune cells and immune checkpoint

molecules might be related to patient survival by regulating

tumor immunity.

TMB refers to the number of somatic mutations within tumors.

Higher somatic TMB was previously thought to be associated with

better survival in patients treated with immune checkpoint inhibitors

since higher TMB promotes more production of neoantigens which

could be recognized by T cells (81). Our data showed a positive

correlation between TMB and risk scores, which indicated that patients

in high-risk groups were more likely to benefit from immunotherapy.

Furthermore, we calculated the TIDE score, which was developed to

predict immune checkpoint blockade response (82). The result showed

that patients in the high-risk group with higher TIDE scores were

associated with a poorer response to immunotherapy and shorter

survival in patients treated with anti-PD1 and anti-CTLA4. This

finding was contrary to the results of the TMB analysis. TMB is a

controversial biomarker. It has been reported that TMB does not

correlate with PD-L1 expression under the influence of both tumor

suppressor genes and oncogenes (83). Only a small proportion of

neoantigens are recognized by T cells. Furthermore, factors related to

individual immune microenvironment had an impact on T-cell-

mediated cell killing (81). For these reasons, TMB itself was not

sufficient to be a prognostic and predictive factor. Based upon the

results of the studies described above, we still suppose that patients in

the low-risk group might achieve better immune checkpoint inhibitor

outcomes by regulating tumor immunity.

According to a drug sensitivity analysis, patients in the low-risk

group were more sensitive to vemurafenib and ARRY-162.

Vemurafenib is a selective BRAF kinase inhibitor that can
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effectively inhibit the activity of BRAF V600E. The V600E

substitution in BRAF is the most common somatic mutation in

melanoma, and vemurafenib was the first BRAF inhibitor approved

for the treatment of late-stage BRAF V600E-positive malignant

melanoma (103). Moreover, it is effective for other tumors

harboring BRAF V600E mutations, including papillary thyroid

cancer, hairy-cell leukemia, and NSCLC (104–106). ARRY-162

(binimetinib) is a reversible MEK1/2 inhibitor which is often used

in conjunction with encorafenib in BRAF V600E-mutant metastatic

melanoma, NSCLC, and colorectal cancer (107–109).

Furthermore, patients in the high-risk group weremore sensitive to

five anti-cancer drugs (homoharringtonine, dexrazoxane, lapatinib,

LEE-011, and palbociclib), especially homoharringtonine, lapatinib,

and palbociclib. Homoharringtonine, a plant alkaloid isolated from

Cephalotaxus species, exhibits anti-tumor effects through inhibiting

protein translation. Homoharringtonine is mainly used in

hematological tumors, especially in tyrosine kinase inhibitor-resistant

chronic myeloid leukemia. In recent studies, homoharringtonine has

also shown anticancer activity in solid tumors such as breast cancer,

liver cancer, and lung cancer (84–86). Lapatinib is a tyrosine kinase

inhibitor targeting both EGFR and HER2 signaling. Lapatinib, in

combination with capecitabine or trastuzumab, was applied in

advanced HER2-positive breast cancer (87, 88). Moreover, lapatinib

can improve the survival for HER2-positive breast cancer patients with

brain metastases due to its ability to cross the blood–brain barrier (89).

Palbociclib is the first CDK4/6 inhibitor developed. As mentioned

earlier, its anti-tumor mechanism involves cell cycle arrest. The

combination of palbociclib and endocrine therapy has shown better

outcomes in both early-stage and metastatic hormone receptor-

positive, HER2-negative breast cancer (90, 91). Circadian rhythm

genes play a key role in regulating physiological processes such as

cell proliferation, apoptosis, and metabolism (92) and may influence

tumor progression bymodulating cell-cycle-related signaling pathways.

Circadian rhythm genes, such as Per2, have been demonstrated to

regulate the expression of cyclin D1, which impacts the transition from

the G1 phase to the S phase (93). In tumors such as lung

adenocarcinoma, the binding of cyclin D1 to CDK4/6 is crucial for

cell cycle progression, and palbociclib disrupts the tumor cell cycle

progression by selectively inhibiting the activity of CDK4/6 (94, 95).

When cyclin D1 expression is reduced, palbociclib binds more strongly

to CDK4/6, resulting in a more effective inhibition of tumor cell

proliferation (96). In addition, as an antitumor drug, HHT may

reduce the expression and activity of cyclin D1 by downregulating

the activity of the PI3K-AKT-mTOR (97) and RAS-RAF-MEK-ERK

pathways (98), thus preventing the transition of the cells from the G1

phase to the S phase (99, 100). Lapatinib inhibits the activation of these

pathways by targeting EGFR and HER2, thereby blocking cell cycle

progression and inducing apoptosis in tumor cells (101, 102).

Therefore, the three drugs (HHT, lapatinib, and Palbociclib) may

collectively intervene in the regulation of the cell cycle and inhibit

the proliferation of tumor cells by affecting the signaling pathways

related to circadian genes, consequently producing a synergistic effect

on the treatment of tumors such as lung adenocarcinoma. It is

necessary to integrate driver gene status, drug sensitivity, adverse

reactions, and distant metastasis to choose effective drugs.
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5 Conclusion

This study identified prognosis-related genes in LUAD based on

the data of TCGA databases and performed a simple RT-qPCR

verification. In future studies, more experiments are necessary to

validate the capability of the genes as reliable biomarkers. By

establishing animal models to simulate the development of lung

adenocarcinoma, we can further explore the impacts of drugs on the

tumor microenvironment of lung adenocarcinoma under the

interaction between drugs and circadian rhythm genes in order to

gain a deeper understanding of the relationship between the drugs

and lung adenocarcinoma. Furthermore, the function of these genes

and the potential relationship with lung cancer remain to be

explored. In summary, the prognostic model constructed based

on circadian-rhythm-related genes provides new ideas for the

improvement of prognosis and treatment of LUAD.
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Differences between cluster 1 and cluster 2 for different subtypes of clinical
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Correlation analysis between risk model and clinical factors. (A) Box plots of

differences in risk scores between different clinical subtypes. “NS” represents
no significance, “*” represents P <0.05, and “**” represents P <0.01. (B)
Kaplan–Meier (K–M) survival curves in patients with different clinical
subtypes. P <0.05 indicates significance.

SUPPLEMENTARY FIGURE 3

Gene set variation analysis (GSVA) analysis. (A) Heatmap of correlation

between KEGG pathways and risk scores. (B) Heatmap of differential
pathway enrichment expression in the high- and low-risk groups.
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