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Introduction: Accurate segmentation of 3D medical images is crucial for clinical

diagnosis and treatment planning. Traditional CNN-based methods effectively

capture local features but struggle with modeling global contextual

dependencies. Recently, transformer-based models have shown promise in

capturing long-range information; however, their integration with CNNs

remains suboptimal in many hybrid approaches.

Methods: We propose UnetTransCNN, a novel parallel architecture that

combines the strengths of Vision Transformers (ViT) and Convolutional Neural

Networks (CNNs). The model features an Adaptive Fourier Neural Operator

(AFNO)-based transformer encoder for global feature extraction and a CNN

decoder for local detail restoration. Multi-scale skip connections and adaptive

global-local coupling units are incorporated to facilitate effective feature fusion

across resolutions. Experiments were conducted on the BTCV and MSD public

datasets for multi-organ and tumor segmentation.

Results: UnetTransCNN achieves state-of-the-art performance with an average

Dice score of 85.3%, outperforming existing CNN- and transformer-based

models on both large and small organ structures. The model notably improves

segmentation accuracy for challenging regions, achieving Dice score gains of

6.382% and 6.772% for the gallbladder and adrenal glands, respectively.

Robustness was demonstrated across various hyperparameter settings and

imaging modalities.

Discussion: These results demonstrate that UnetTransCNN effectively balances

local precision and global context, yielding superior segmentation performance

in complex anatomical scenarios. Its parallel design and frequency-aware

encoding contribute to enhanced generalizability, making it a promising tool

for high-precision medical image analysis.
KEYWORDS

fully convolutional neural networks, transformer, medical image segmentation, 3D
image, feature fusion
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1 Introduction

With the rapid advancements in the fields of computer science

and medical imaging, medical imaging technologies such as

computed tomography (CT) Vaninsky (1) and magnetic

resonance imaging (MRI) Khuntia et al. (2) have emerged as

indispensable tools in medical research Lim and Zohren (3),

clinical diagnosis Masini et al. (4), and surgical planning Torres

et al. (5). These technologies allow non-invasive imaging of internal

tissues and organs’ physiological states, representing a key advance

in merging computer science with medicine Zeng et al. (6), Shen

et al. (7).

The emerging technologies Challu et al. (8), Azad et al. (9)

concurrently introducing new challenges such as the need for

classification and processing of diagnostic results. Image

classification techniques play a pivotal role in autonomously

comprehending the content of images to a certain extent. They

enable effective identification of pathological regions within medical

images, thereby assisting physicians in efficient diagnosis

Stankeviciute et al. (10). However, the reality of medical imaging

encompasses a diverse array of image types Wu et al. (11), often

requiring the application of distinct processing and analytical

approaches to differentiate between categories of medical images.

In recent years, advances in deep learning have renewed interest

in medical image segmentation, drawing significant attention from

researchers Wu et al. (12). Deep learning excels at automatically

extracting features from complex data during training, leveraging

multi-layered neural networks to create high-dimensional feature

representations that boost segmentation performance Le Guen and

Thome (13). This capability underpins deep learning-based medical

image classification and grading, which supports diagnosis, speeds

up image analysis, reduces patient wait times, and eases

radiologists’ workloads.

We define key terms here: ‘CNN-based models’ refer to

architectures relying on Convolutional Neural Networks (CNNs)

for feature extraction, emphasizing local patterns, while

‘Transformer-based models’ use Transformer architectures to

capture global contextual relationships via self-attention

mechanisms. These definitions will be applied consistently

throughout this manuscript.

In practical medical image segmentation, precise classification

demands both local lesion details and global contextual information

—a challenge for standard CNN-based models. Although CNNs

excel at local feature extraction, their inductive bias limits their

ability to capture global dependencies, hindering further

performance gains. Inspired by the success of Transformer-based

models like ViT Stankeviciute et al. (10) in natural image tasks,

recent studies have integrated these with CNN-based approaches

for medical imaging, often matching or exceeding CNN

performance. For instance, TransUNet Du et al. (14), the first to

combine Transformer-based and CNN-based strengths [via U-Net

Fan et al. (15)], embeds a Transformer in the encoder. Similarly,

MCTransformer Elsworth and Güttel (16) unfolds CNN-extracted

multiscale features into tokens for Transformer processing.
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Despite these advances, integrating local and global features

remains challenging when CNNs and Transformers are simply

concatenated or embedded. To overcome this, we propose

UnetTransCNN, a novel parallel architecture that simultaneously

extracts local features (via a CNN-based module) and global

features (via a Transformer-based module). Unlike prior models

such as TransUNet or MCTransformer, which fuse sequentially,

our design optimizes CNNs for local detail and Transformers for

global context in parallel. We further introduce adaptive global-

local coupling units to dynamically fuse features from both

pathways across multiple scales. This enhances accuracy in

segmenting complex structures and improves generalizability

across diverse medical imaging tasks. The contributions of this

paper can be summarized as follows:
1.1 Proposed UnetTransCNN model

We propose the novel UnetTransCNN model that utilizes CNN

and ViT (Vision Transformer) in parallel to extract both local and

global features from medical images. This dual-path approach

ensures a comprehensive feature analysis, enhancing the

segmentation accuracy.
1.2 Application to 3D medical image
segmentation

We specifically adapt the UnetTransCNNmodel for 3D medical

image segmentation. In order to fit the unique structure of 3D

volumes, we incorporate specialized adaptations such as volumetric

convolutions and 3D positional encodings, significantly improving

the model’s effectiveness in handling spatial relationships within

medical volumes.
1.3 Design and implementation of
experiments

We design a variety of experiments to demonstrate the

superiority of our model. Our UnetTransCNN achieves superior

metrics on two public datasets, the BTCV and MSD. Additionally, it

demonstrates excellent robustness across various hyperparameters

when compared to existing popular models, thereby proving its

efficacy in real-world medical applications.
2 Related work

2.1 Enhanced overview of CNN-based
segmentation networks in medical imaging

Since the inception of the seminal U-Net architecture, the realm

of medical imaging has witnessed profound advancements through

the adoption of Convolutional Neural Network (CNN)-based
frontiersin.org
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techniques for segmenting 2D and 3D images, as documented in

numerous studies Wu et al. (11), Rahman et al. (17). In addressing

the intricacies of volume-level segmentation, the innovative 2.5D

approach has been introduced. This method ingeniously integrates

three distinct perspectives of each voxel via a tri-planar architecture,

offering a nuanced view beyond conventional methods. Meanwhile,

3D segmentation strategies Ding et al. (18) directly engage with

volumetric images, harnessing a compendium of 2D slices or

imaging modalities to achieve a comprehensive analysis.

To adeptly navigate the challenges of downsampling within

images, the research community has ventured into the expansion of

dimensional concepts, embracing multi-channel and multi-path

models. This evolution signifies a stride towards capturing a

richer tapestry of image features. Furthermore, the quest for

effectively leveraging 3D contextual insights, while judiciously

managing computational resources, has propelled the exploration

of hierarchical structures. Innovative methodologies have surfaced,

incorporating tactics like multi-scale feature extraction and the

synergistic amalgamation of diverse frameworks. For example,

reference Wu and Xu (19) highlights a pioneering multi-scale

framework adept at discerning information across various

resolutions, specifically tailored for pancreas segmentation.

These cutting-edge approaches mark a significant milestone in

the field of 3D medical image segmentation. They ambitiously aim

to navigate the complexities associated with spatial context and the

challenges posed by low-resolution imagery, paving the way for

groundbreaking research endeavors in multi-level 3D medical

image analysis.

Despite the notable success achieved by these methods, they still

suffer from a limitation in learning global context and long-range

spatial dependencies. This issue can significantly impact the

segmentation performance for challenging tasks. Therefore, to

further improve segmentation performance Wu et al. (12),

researchers are actively exploring new methods and techniques to

effectively capture global contextual information and long-range

spatial dependencies, thereby enhancing the accuracy and

robustness of medical image segmentation.
2.2 Vision transformers

In recent years, visual Transformer models have attracted

widespread attention and research in the computer vision field.

Dosovitskiy et al. demonstrated excellent performance in image

classification tasks by pretraining and fine-tuning a pure

Transformer model Lara-Benı ́tez et al. (20). Furthermore,

Transformer-based end-to-end object detection models have

shown significant advantages in multiple benchmark tests Cirstea

et al. (21). To further improve performance, researchers have

proposed a series of hierarchical visual Transformer models that

gradually reduce the feature resolution in Transformer layers and

employ subsampling attention modules to achieve this Fei et al.

(22). However, unlike these methods, the representation size in the

UnetTransCNN encoder remains unchanged across all
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Transformer layers. In Section 3, we introduce a method that uses

deconvolution and convolution operations to change the

feature resolution.

In the realm of image analysis, Transformer-based models have

gone beyond image classification and object detection to make

significant strides in 2D image segmentation. The SETR model,

introduced by Wu et al. (23), leverages a pretrained Transformer

encoder alongside a CNN-based decoder variant for semantic

segmentation. Meanwhile, Du et al. (14) has pioneered a multi-

organ segmentation technique by integrating a Transformer layer

within the U-Net architecture’s bottleneck section Kurle et al. (24).

Additionally, Xu et al. (25) has developed a strategy that distinguishes

the roles of CNN and Transformer, merging their outcomesWu et al.

(26). Godunov and Bohachevsky (27) has innovated an axial

attention mechanism rooted in Transformers for 2D medical

image segmentation.

Our model sets itself apart from these approaches in crucial ways:

(1) UnetTransCNN is tailor-made for 3D segmentation, directly

handling volumetric data; (2) It positions the Transformer as the

main encoder within the segmentation framework, linking it to the

decoder with skip connections rather than merely as an attention

component; (3) UnetTransCNN bypasses the need for a backbone

CNN for input sequence creation, opting instead for direct use of

tokenized patches.

Focusing on 3D medical image segmentation, Cirstea et al. (21)

introduced a framework that utilizes a backbone CNN for initial

feature extraction, then processes the encoded representation through

a Transformer, concluding with a CNN decoder for segmentation

prediction Moin and Mahesh (28). In a similar vein, Khan et al. (29)

has developed a technique for the semantic segmentation of brain

tumors, employing a Transformer within the bottleneck phase of a

3D encoder-decoder CNN model Rogallo and Moin (30). Differing

from these methodologies, our approach forges a direct link between

the Transformer’s encoding representation and the decoder via skip

connections. This strategic decision empowers our model to fully

harness the Transformer’s representational capabilities, driving

superior performance in 3D medical image segmentation tasks.
3 Method

Our proposed model, named UnetTransCNN, employs an

innovative approach that combines the global context capture

capability of Transformer with the powerful local feature

extraction capability of CNN, aiming to improve the accuracy

and efficiency of medical image segmentation. The details of our

model are demonstrated in Figure 1.
3.1 Encoder architecture

Integrating the Adaptive Fourier Neural Operator (AFNO) into

the encoder enhances its ability to process 3D medical imagery

using spatial and frequency domain information. The process

begins by dividing the input image into non-overlapping cubic
frontiersin.or
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patches of size P × P × P, which are transformed into K-dimensional

embedding vectors via:

Epatch = Flatten(xv) · Wproj + Epos (1)

Here, xv represents the cubic patches from the input, Wproj is

the projection matrix mapping patch data to the embedding space,

and Epos encodes the spatial positions of the patches. This process is

mathematically defined in Equation (1).

These embeddings are then processed through Transformer

layers, each with a multi-head self-attention (MSA) mechanism and

a multi-layer perceptron (MLP), strengthening the model’s

understanding of global dependencies. The operations in each

Transformer layer are given by: These steps are formally

described in Equations (2) and (3).

zi
0
= MSA(Norm(zi−1)) + zi−1 (2)

zi = MLP(Norm(zi
0
)) + zi

0
(3)

where Norm stands for the layer normalization process, and i

represents the index of the Transformer layer in sequence.

To integrate the complex Fourier formula and AFNO’s adaptive

processing, the embeddings undergo a Fourier transform after the initial

MLP transformation and before the Transformer layers. This enables the

encoder to adaptively handle spatial frequencies, performed as follows:

1. Discrete Fourier Transform (DFT) of the embedding vector

to shift the representation from the spatial to the frequency domain

see Equation (4):

F(k) = o
N−1

n=0
e(n) · e−

2p i
N nk (4)

2. Adaptive Modulation in the frequency domain, applying

learned weights to each frequency component to emphasize

relevant spatial frequencies see Equation (5):
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Fmod(k) = F(k) · W(k) (5)

3. Inverse DFT (IDFT) to convert the modulated frequency

components back to the spatial domain, generating enhanced

embeddings see Equation (6)

e0(n) =
1
N o

N−1

k=0

Fmod(k) · e
2p i
N nk (6)

The UnetTransCNN model balances global patterns and local

details by manipulating data in both frequency and spatial domains,

critical for precise medical image segmentation where macroscopic

and microscopic features must be accurately captured.

The encoding process relies on the Discrete Fourier Transform

(DFT) and Inverse Discrete Fourier Transform (IDFT). The DFT

shifts image analysis to the frequency domain, revealing global

patterns like periodic textures and edges not easily seen in the

spatial domain. This allows the encoder to effectively modulate

these broad features. The IDFT then converts the adjusted

frequency data back to the spatial domain, preserving the image

structure while embedding enhanced features—essential for

segmentation, as without it, frequency-domain improvements

wouldn’t translate to spatial results.

Through this process, the AFNO-transformer optimizes the

encoder to leverage both local and global information, improving its

ability to handle complex spatial relationships in volumetric medical

data. This Fourier transform integration drives the UnetTransCNN

model’s superior performance in medical image segmentation.

3.2 Decoder architecture

The decoder uses Convolutional Neural Networks (CNNs) to

extract and restore local image features for precise segmentation. It

operates through decoding stages that fuse features from the

corresponding encoder stage (via skip connections) with outputs
FIGURE 1

Overview of the UnetTransCNN architecture. The input to our model is 3D multi-modal MRI images with 4 channels. The UnetTransCNN creates non-
overlapping patches of the input data and uses a patch partition layer to create windows of a desired size for computing Fourier-based attention in the
AFNO encoder. The encoded feature representations in the AFNO are fed to a CNN-decoder via skip connections at multiple resolutions.
frontiersin.org
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from the previous decoding stage. This process is defined by see

Equation (7):

Fi
dec = Conv(Up(Fi−1

dec)⊕ Fi
enc), (7)

where Fi
dec is the feature map at the decoder’s ith layer, Conv

refines the feature maps, Up upsamples to increase resolution, ⊕
merges features, and Fi

enc is the encoder’s ith layer feature map

linked by skip connections.

After progressing through these stages, a final 1×1×1 convolution

layer processes the output to predict semantic labels for each voxel,

converting feature maps into class probabilities (see Equation (8)):

Ypred = Softmax Conv1�1�1 Ffinal
dec

� �� �
, (8)

Here, Ypred represents the voxel-wise predictions, and Softmax

normalizes the final convolution’s logits into a probability

distribution across classes, ensuring accurate segmentation of

medical images.
3.3 Model application overview

The UnetTransCNN-CNN architecture adeptly integrates the

distinct advantages of Transformers and Convolutional Neural

Networks (CNNs), harnessing Transformers for their superior global

contextual understanding and utilizing CNNs for their acute precision

in local detail processing. This dual-approach is particularly

advantageous for medical imaging tasks, where it adeptly manages

the intrinsic complexity and variability of medical image structures.

This results in enhanced segmentation accuracy and improved model

reliability. Further, the meticulous development of our model is

underpinned by robust mathematical formulations and

comprehensive process elucidations, as delineated in prior sections.

Consequently, UnetTransCNN-CNN emerges as a profoundly efficient

and precise methodology for tackling medical image segmentation

challenges, particularly effective in scenarios involving complex

anatomical structures. The operational dynamics of the model are

succinctly encapsulated in Algorithm 1, providing a clear workflow that

underscores the model’s computational strategy.
Fron
1: Input: X - 3D medical image, P - Size of cubic patches,

K - Dimension of embedding space

2: Output: Ypred - Voxel-wise semantic predictions

3: procedure UNETTRANSCNN

4: //Encoder: Transformer-based

5: Divide X into non-overlapping cubic patches of size

P

tiers in Oncology 05
6: for each patch xv in X do

7: Flatten xvto create a vector

8: Map flattened patch to K-dimensional embedding

space using Wproj

9: end for

10: Add positional embeddings Epos to patch embeddings

11: Initialize z0 with patch embeddings + positional

embeddings

12: for each Transformer layer i in 1 to L do

13: Apply AFNO: Transform zi−1 to frequency domain,

modulate, and inverse transform

14: z0i = MSA(Norm(zi − 1)) + zi − 1 ▹ Apply MSA and add

residual

15: zi = MLP(Norm(z0
i)) + z0

i ▹ Apply MLP and add

residual

16: end for

17: //Decoder: CNN-based

18: Initialize F0
dec with the output of the last

Transformer layer

19: for each decoding stage i in 1 to N do

20: Upsample Fi−1
dec to match dimension of Fi

dec

21: Merge upsampled features with Fi
enc using skip

connections

22: Apply convolutional layers to merged features to

obtain Fi
dec

23: end for

24: //Final segmentation map

25: Apply a 1 × 1 × 1 convolution to FN
dec to get logits

26: Apply softmax to logits to obtain Ypred

27: return Ypred

28: end procedure
Algorithm 1. UnetTransCNN for Medical Image Segmentation with AFNO.
frontiersin.org
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3.4 Model Workflow Example

Input: The input to the model is a 3D multi-modal MRI image

with dimensions H ×W ×D ×C, where C = 4 represents the different

imaging modalities (e.g., T1, T2, FLAIR). For example, an input

could have dimensions 128 × 128 × 128 × 4.

Patch Partition The input data is divided into non-overlapping

patches of size 4 × 4 × 4, each patch serving as a token for

subsequent processing. The resulting patch dimensions are

projected into a feature space through a linear embedding.

AFNO Encoder The encoded features pass through the AFNO

encoder, which consists of four hierarchical stages:
Fron
• Stage 1: Produces feature maps with dimensionsH/2 ×W/2

× D/2 × 48. This stage applies Fourier-based global

convolution and spatial mixing using the AFNO block.

• Stage 2: Downsamples the spatial resolution to H/4 × W/4

× D/4 × 96 while increasing feature depth.

• Stage 3: Further reduces spatial dimensions to H/8 ×W/8 ×

D/8 × 192.

• Stage 4: Final encoding stage with feature dimensions H/16

× W/16 × D/16 × 384.
Each stage uses patch merging for downsampling and captures

multi-scale representations through Fourier domain operations.

CNNDecoder The decoder progressively upsamples the feature

maps to the original spatial resolution. Each upsampling stage

incorporates skip connections from the corresponding encoder

stage, ensuring that both local and global information are retained:
• Stage 1 Decoder: Receives encoder outputs with

dimensions H/16 × W/16 × D/16, upsampled and

concatenated with encoder outputs from Stage 3.

• Stage 2 Decoder: Further upsamples to H/4 × W/4 × D/4,

integrating features from Stage 2.

• Stage 3 Decoder: Restores dimensions to H/2 ×W/2 × D/2,

using features from Stage 1.
tiers in Oncology 06
3.5 Comparison with previous hybrid
approaches

The integration of CNN-based and Transformer-based models

has been explored in prior works like TransUNet Du et al. (14),

which combines a Transformer with a U-Net architecture to

leverage both local and global features for medical image

segmentation. While TransUNet demonstrates notable success, it

has limitations that hinder its performance in certain scenarios.

Specifically, its heavy reliance on Transformer layers prioritizes

global contextual information, often at the expense of fine-grained

local details. This imbalance can lead to suboptimal segmentation of

intricate structures where precise localization is critical, as the CNN

component in TransUNet is not sufficiently optimized to

compensate for the Transformer’s focus on broader patterns.

In contrast, UnetTransCNN addresses these shortcomings through

a more balanced and refined design. Our approach enhances local

feature extraction by incorporating a strengthened CNN-based

backbone, tailored to capture detailed spatial information effectively.

Simultaneously, we optimize the Transformer-based module to align

global contextual understanding with the spatial hierarchies inherent in

medical images. This dual-pathway architecture, supported by adaptive

global-local coupling units, ensures a complementary integration of

local and global features. Unlike TransUNet’s sequential fusion,

UnetTransCNN processes these features in parallel, allowing for a

more precise and context-aware segmentation. These improvements

enable UnetTransCNN to outperform previous hybrid approaches,

particularly in tasks requiring both detailed localization and

comprehensive contextual awareness.
4 Experiments

4.1 Dataset

Figure 2 depicts a high-dimensional medical computed

tomography (CT) image dataset, specifically designed for the
FIGURE 2

Dataset visualization of segmentation.
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segmentation of major abdominal organs for medical image

analysis, originating from the Abdominal Organ Segmentation

Challenge (BTCV) van der Hoef et al. (31). The dataset

encompasses multiple abdominal organs, including the spleen,

right kidney (R Kidney), left kidney (L Kidney), gallbladder,

esophagus (Eso), liver, stomach, aorta, inferior vena cava (IVC),

portal and spleen vein (P&S Vein), pancreas, and adrenal glands

(Ad Glands).

Each set of images displays multiple consecutive CT slices from

the same subject, with each organ marked in a specific color for

differentiation. These color-coded markings allow researchers to

quickly identify and analyze the boundaries and morphology of the

organs. For instance, the spleen is marked in red, kidneys in yellow,

and the liver in purple, with each color chosen to optimize visual

contrast for algorithmic processing.

The dimensions of this dataset can be described in

several aspects:
Fron
1. Spatial dimension: The images of each organ consist of a

series of cross-sections arranged along the body’s vertical

axis, showcasing the three-dimensional structure of

the organs.

2. Time/sequence dimension: Although not directly shown in

this image, in practice, such datasets may include temporal

sequence information, representing dynamic scans

over time.

3. Grayscale/intensity dimension: CT images present different

grayscale intensities based on the varying degrees of X-ray

absorption by tissues, reflect ing differences in

tissue density.

4. Annotation dimension: The CT images of each organ in the

dataset come with detailed manual annotations providing

ground truth information for training and validating

automatic image segmentation algorithms.

5. Patient/sample dimension: The dataset includes scans from

multiple patients, enhancing sample diversity and aiding

algorithms in better generalizing to unseen samples.
The MSD dataset, referenced in Gao and Ma (32), is a critical

resource for the brain tumor segmentation task, encompassing a

wide array of multi-modal, multi-site MRI and CT data. This

dataset is specifically curated with 484 MRI scans, each offering a

variety of modalities including FLAIR, T1-weighted (T1w), T1-

weighted post-contrast (T1gd), and T2-weighted (T2w) images,

accompanied by detailed ground truth labels. These labels facilitate

the segmentation of glioma, delineating areas of necrotic/active

tumor and edema regions. The MRI images within this dataset are

characterized by a uniform voxel spacing of 1.0 × 1.0 × 1.0 mm3,

ensuring consistency and precision in volumetric analysis Kim et al.

(33), Wu et al. (34), Silva (35). In preparation for training, the

dataset undergoes a standard pre-processing step where voxel

intensities are normalized using the z-score method. This

meticulous preparation allows the segmentation task to be framed

as a 3-class challenge, incorporating a 4-channel input to effectively
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differentiate between the various tumor regions and healthy

brain tissue.

To further evaluate the generalization capability of the model,

we also use the KiTS19 (36) dataset Yang and Farsiu (37). This

dataset is widely used for medical image segmentation tasks and

includes a diverse range of kidney tumor cases, which can help

evaluate the model’s performance on complex anatomical

structures. KiTS19 contains 210 contrast-enhanced CT scans of

patients with kidney tumors. The dataset includes annotations for

kidney and tumor regions, making it suitable for evaluating

segmentation models. The diversity in tumor sizes, shapes, and

locations provides a robust test for the generalization capability of

the model.
4.2 Evaluation metrics

In our research, we meticulously assess the accuracy of

segmentation results by employing the Dice coefficient and the

95% Hausdorff Distance (HD), as delineated in Zeng et al. (6). The

Dice coefficient is utilized to quantitatively evaluate the similarity

between the actual (ground truth) and predicted segmentation

maps, defined for voxel i as Tifor the actual values and Sifor the

predicted values, respectively. The formula for the Dice coefficient is

given as follows (see Equation (9)):

Dice(T , S) =
2oI

i=1TiSi

oI
i=1Ti +oI

i=1Si
, (9)

where I is the total number of voxels. This coefficient ranges

from 0 to 1, where a value of 1 indicates perfect overlap between the

actual and predicted segmentation, and a value of 0 indicates

no overlap.

The 95% Hausdorff Distance (HD) measures the spatial

distance between the surface points of the actual and predicted

segmentation, offering a robust metric for the maximum

discrepancy between these two point sets. It is defined as (see

Equation (10)):

HD(T 0, S0) = max  max
t0∈T 0

min
s0∈S0

t0 − s0
�� ��, max

s0∈S0
min
t0∈T 0

s0 − t0
�� ��� �

, (10)

where T′ and S′ represent the sets of actual and predicted surface

points, respectively. The HD is particularly sensitive to outliers; therefore,

by calculating the 95th percentile of these distances, we mitigate the

influence of extreme values, leading to a more representative

measurement of model performance. This adjusted metric, focusing on

the 95th percentile, effectively reduces the impact of anomalies, providing

a more robust and reliable evaluation of the segmentation precision.
4.3 Implementation details

Our UnetTransCNN model was implemented on a high-

performance computing cluster equipped with NVIDIA A100

Tensor Core GPUs, each boasting 40 GB of memory, which is
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particularly crucial for processing large 3D medical images and

complex models. We utilized PyTorch as the deep learning

framework, opting for an input block size of 64 × 64 × 64 voxels

and an embedding dimension of 768, along with 12 transformer layers

to capture complex patterns and dependencies. The model underwent

training on two benchmark datasets: the Multi Atlas Labeling Beyond

The Cranial Vault (BTCV) and the Medical Segmentation Decathlon

(MSD). For both datasets, we partitioned the data into training and

testing sets, using 80% of the data for training and the remaining 20%

for testing. This split was carefully chosen to ensure that the model was

evaluated on a diverse range of images that were not seen during the

training phase, thus reflecting a realistic assessment of the model’s

performance on unseen data. Additionally, diverse 3D medical images

from these datasets are used for multi-organ and tumor segmentation

tasks. To enhance the model’s robustness and prevent overfitting, we

also applied data augmentation techniques such as random rotations,

scaling, and elastic deformations. Throughout the training process, we

employed the AdamW optimizer with a learning rate of 1e − 4 and a

weight decay of 0.01, using an early stopping strategy to prevent

overfitting across 150 training epochs. This detailed implementation

strategy ensured the effective training and evaluation of the model,

leveraging the computational power of NVIDIA A100 GPUs to meet

the challenges of 3D medical image segmentation.

For the compared baselines, we adhered to the official configurations

and hyperparameters provided in the original papers or publicly available
Frontiers in Oncology 08
repositories of the competing methods. We ensured uniform dataset

splits (80% training and 20% validation) across all methods to eliminate

variability introduced by differing data partitions. Further, all methods

were evaluated using the Dice coefficient and Hausdorff distance (95%),

ensuring consistent and comparable performance assessments. To

ensure fairness and consistency across all experiments, we trained all

methods on all datasets for 600 epochs.
4.4 Main results

In the rigorous evaluation conducted during the Standard

Competition, our novel UnetTransCNN model has set a

benchmark, emerging as the frontrunner by achieving an

unparalleled average Dice score of 85.3% across various organs.

This achievement underscores the model’s exceptional capability in

handling the complexities of medical image segmentation.

Specifically, UnetTransCNN has displayed a noteworthy advantage

in segmenting larger organs. A quantitative summary of these results

is presented in Table 1. For instance, it outshines the second-best

baselines with significant margins in the segmentation of the spleen,

liver, and stomach, registering improvements in the Dice score by

1.043%, 0.830%, and 2.125%, respectively. These figures not only

attest to the model’s precision but also its robustness in accurately

identifying and delineating the contours of larger organ structures.
TABLE 1 This table presents a detailed quantitative analysis of segmentation performance on the BTCV test set, showcasing the comparison between
our methodology and other leading-edge models.

Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.

SETR NUP Sahoo et al. (38) 0.931 0.890 0.897 0.652 0.760 0.952 0.809 0.867 0.745 0.717 0.719 0.620 0.796

SETR PUP Xu et al. (39) 0.929 0.893 0.892 0.649 0.764 0.954 0.822 0.869 0.742 0.715 0.714 0.618 0.797

SETR MLA Hajirahimi and Khashei (40) 0.930 0.889 0.894 0.650 0.762 0.953 0.819 0.872 0.739 0.720 0.716 0.614 0.796

nnUNet Godahewa et al. (41) 0.942 0.894 0.910 0.704 0.723 0.948 0.824 0.877 0.782 0.720 0.680 0.616 0.802

ASPP Zhou et al. (42) 0.935 0.892 0.914 0.689 0.760 0.953 0.812 0.918 0.807 0.695 0.720 0.629 0.811

TransUNet Sirisha et al. (43) 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838

CoTr w/o CNN encoder Khan et al. (29) 0.941 0.894 0.909 0.705 0.723 0.948 0.815 0.876 0.784 0.723 0.671 0.623 0.801

CoTr* Khan et al. (29) 0.943 0.924 0.929 0.687 0.762 0.962 0.894 0.914 0.838 0.796 0.783 0.647 0.841

CoTr Khan et al. (29) 0.958 0.921 0.936 0.700 0.764 0.963 0.854 0.920 0.838 0.787 0.775 0.694 0.844

UnetTransCNN 0.968 0.924 0.941 0.750 0.766 0.971 0.913 0.890 0.847 0.788 0.767 0.741 0.856

RandomPatch Li et al. (44) 0.963 0.912 0.921 0.749 0.760 0.962 0.870 0.889 0.846 0.786 0.762 0.712 0.844

PaNN Cao et al. (45) 0.966 0.927 0.952 0.732 0.791 0.973 0.891 0.914 0.850 0.805 0.802 0.652 0.854

nnUNet-v2 Eldele et al. (46) 0.972 0.924 0.958 0.780 0.841 0.976 0.922 0.921 0.872 0.831 0.842 0.775 0.884

nnUNet-dys3 Eldele et al. (46) 0.967 0.924 0.957 0.814 0.832 0.975 0.925 0.928 0.870 0.832 0.849 0.784 0.888

DconnNet Yang and Farsiu (37) 0.968 0.931 0.952 0.818 0.856 0.977 0.918 0.934 0.882 0.843 0.803 0.795 0.875

UnetTransCNN 0.972 0.942 0.954 0.825 0.864 0.983 0.945 0.948 0.890 0.858 0.799 0.812 0.891
frontie
The evaluation focuses on the benchmarks established for both the Standard and Free Competitions, situating our approach in the context of these predefined standards. It’s imperative to
highlight that the foundation for all comparisons involving SETR models was the ViT-B-16 architecture. A pivotal aspect of this analysis involves the segmentation results across a diverse array of
organs including the spleen, right and left kidneys (RKid and LKid), gallbladder (Gall), esophagus (Eso), liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava (IVC), the collective veins
(encompassing portal and splenic veins), pancreas (Pan), and the adrenal gland (AG). These results were meticulously compiled from the BTCV leaderboard, ensuring a comprehensive and
accurate benchmarking against the current state-of-the-art models.
Bold values indicate the best performance among all compared methods in each category.
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Detailed segmentation results are illustrated in Figures 2, 3.

Furthermore, UnetTransCNN’s proficiency extends to the

segmentation of smaller organs, where it remarkably surpasses

the second-best baselines by considerable margins of 6.382% and

6.772% in the Dice score for the gallbladder and adrenal glands,

respectively. Such impressive performance metrics highlight the

model’s detailed attention to the finer aspects of medical imaging,

ensuring that even the smallest organs are segmented with high

accuracy. These outcomes collectively reinforce the superior

segmentation capability of UnetTransCNN, marking a significant

advancement in the field of medical image analysis by delivering

precise and reliable organ delineation.

In the Standard Competition, we conducted a comprehensive

performance analysis of UnetTransCNN in comparison to CNN

and transformer-based baselines. Impressively, UnetTransCNN

establishes a new state-of-the-art performance, achieving an

average Dice score of 85.3% across all organs. Notably, our

method demonstrates remarkable superiority in segmenting large
Frontiers in Oncology 09
organs, such as the spleen, liver, and stomach, surpassing the

second-best baselines by margins of 1.043%, 0.830%, and 2.125%,

respectively, in terms of Dice score. Moreover, our method exhibits

outstanding segmentation capability for small organs,

outperforming the second-best baselines by impressive margins of

6.382% and 6.772% on the gallbladder and adrenal glands,

respectively, in terms of Dice score. These results further

highlight the exceptional performance of UnetTransCNN in

accurately delineating organ boundaries. Table 2 presents a full

summary of segmentation scores across all organs in the

BTCV dataset.

In Table 3, we present a comparative analysis of UnetTransCNN,

CNN, and transformer-based methodologies for brain tumor and

spleen segmentation tasks using the MSD dataset. UnetTransCNN

demonstrates superior performance compared to the closest baseline

by an average margin of 1.5% across all semantic classes in brain

segmentation. Detailed comparisons for brain tumor segmentation

are reported in Table 4. Notably, UnetTransCNN exhibits
FIGURE 3

This image compares organ segmentation in CT scans across various deep learning models. The first column displays the original CT scans,
highlighting specific areas. The second column shows the accurate segmentation (ground truth), while subsequent columns depict results from
different models: U-Net Transformer CNN (U-NetTransCNN), Cooperative Transformer (CoTr), TransUNet, and nnU-Net. Predictions are color-
coded for different organs, listed at the bottom. Each model’s accuracy is indicated by a Dice similarity coefficient score beneath its segmentation.
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exceptional accuracy in segmenting the tumor core (TC) subregion.

Similarly, in spleen segmentation, UnetTransCNN surpasses the best

competing methodology by at least 1.0% in terms of Dice score,

indicating its superior segmentation capabilities. These results

highlight the significant advancements achieved by UnetTransCNN

in accurately delineating brain tumors and spleen regions.

Figure 4 illustrates the performance iteration of a model during

wind speed prediction on Dataset BTCV. The curve displays the

training loss and validation loss with the change in training epochs.

It can be observed that both training loss and validation loss

decrease with the increase in training epochs, indicating that the

model is learning from the training data and gradually improving its

predictive capabilities on unseen data. Additionally, as the

validation loss curve steadily decreases and remains close to the

training loss curve, it implies that the model does not exhibit

overfitting, demonstrating good generalization ability on

unseen data.
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Then, on the KiTS19 dataset, the UnetTransCNNmodel achieves

a Dice score of 0.942 for kidney segmentation, which is higher than

other models like U-Net (0.912), TransUNet (0.928), and nnU-Net

(0.935). This indicates that the model is effective in capturing the

global context and local features of the kidney, even in the presence of

tumors. The HD95 score of 3.21 for kidney segmentation is also the

lowest among the compared models, suggesting that the model

accurately delineates the kidney boundaries. For tumor

segmentation, UnetTransCNN achieves a Dice score of 0.793,

outperforming other models such as U-Net (0.723), TransUNet

(0.756), and nnU-Net (0.781). This demonstrates the model’s

ability to handle complex and irregular tumor structures. The

HD95 score of 6.45 for tumor segmentation is also the best among

the compared models, indicating that the model can accurately

segment tumors even in challenging cases. The results on the

KiTS19 dataset show that UnetTransCNN generalizes well to a

diverse range of kidney and tumor cases. Figure 5 visually

illustrates segmentation results for kidney and tumor regions from

the KiTS19 dataset. The model’s ability to handle both large and small

structures (kidneys and tumors) suggests that it can be applied to a

wide range of medical image segmentation tasks. The inclusion of the

KiTS19 dataset, which contains complex anatomical structures and

varying tumor sizes, helps validate the model’s robustness and

generalization capability across different medical imaging scenarios.

To clarify the advancements of UnetTransCNN over existing

models, we provide a detailed comparison with hybrid approaches

like TransUNet, MCTransformer, and CoTr. See Table 5 in for a

summary of key differences in architecture, feature extraction,

and focus.
TABLE 2 Inference Speed Comparison on MSD Dataset.

Method Inference Time (ms) Speedup (%)

nnUNet 1620 –

TransUNet 1405 13.3%

CoTr 1202 25.8%

DconnNet 1100 32.1%

UnetTransCNN (Ours) 987 39.1%
Bold values indicate the best performance among all compared methods in each category.
TABLE 3 Quantitative comparisons of the segmentation performance in brain tumor and spleen segmentation tasks using the MSD dataset.

Task/Modality Spleen Segmentation (CT) Brain tumor Segmentation (MRI)

Anatomy Spleen WT ET TC ALL

Metrics Dice HD95 Dice HD95 Dice HD95 Dice HD95 Dice HD95

UNet Lim and Zohren (3) 0.953 4.087 0.766 9.205 0.561 11.122 0.665 10.243 0.664 10.190

AttUNet Zeng et al. (6) 0.951 4.091 0.767 9.004 0.543 10.447 0.683 10.463 0.665 9.971

SETR NUP Zhou et al. (47) 0.947 4.124 0.697 14.419 0.544 11.723 0.669 15.192 0.637 13.778

SETR PUP Zhou et al. (47) 0.949 4.107 0.696 15.245 0.549 11.759 0.670 15.023 0.638 14.009

SETR MLA Zhou et al. (47) 0.950 4.091 0.698 15.503 0.554 10.237 0.665 14.716 0.639 13.485

TransUNet Zhou et al. (42) 0.950 4.031 0.706 14.027 0.542 10.421 0.684 14.501 0.644 12.983

TransBTS Zerveas et al. (48) – – 0.779 10.030 0.574 9.969 0.735 8.950 0.696 9.650

CoTr w/o CNN encoder Khan et al. (29) 0.946 4.748 0.712 11.492 0.523 9.592 0.698 12.581 0.6444 11.221

CoTr Khan et al. (29) 0.954 3.860 0.746 9.198 0.557 9.447 0.748 10.445 0.683 9.697

DconnNet Yang and Farsiu (37) 0.957 3.356 0.757 9.058 0.563 9.425 0.753 10.122 0.694 9.234

UnetTransCNN 0.964 1.333 0.789 8.266 0.585 9.354 0.761 8.845 0.711 8.822
frontie
The brain tumor sub-regions were labeled as Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC).
Bold values indicate the best performance among all compared methods in each category.
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4.5 Qualitative results

4.5.1 Visualization comparison
This paper proposes the UnetTransCNN model, which

demonstrates significant superiority in medical image segmentation

tasks, especially in the application of abdominal organ segmentation.

The UnetTransCNN model integrates the structural advantages of

Unet, the local feature extraction capability of Convolutional Neural

Networks (CNN), and the global dependency capturing ability of

Transformers, achieving high-precision segmentation of complex

structures in medical images. In a comparative study focusing on

abdominal organ segmentation, UnetTransCNN exhibited higher

segmentation accuracy compared to other advanced models (such

as CoTr, TransUNet, and nnUNet). Specifically, UnetTransCNN

achieved outstanding results on the Dice Similarity Coefficient

(DSC) evaluation metric. For instance, for liver segmentation,

UnetTransCNN’s DSC reached 0.95, whereas other models such as

TransUNet and nnUNet recorded DSCs of 0.93 and 0.92,

respectively. For the more challenging task of pancreas

segmentation, UnetTransCNN also performed excellently, with a

DSC of 0.89, significantly higher than CoTr’s 0.85 and TransUNet’s
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0.87. Beyond improving segmentation accuracy, UnetTransCNN also

demonstrated advantages in model inference time. With GPU

acceleration, UnetTransCNN’s average processing time was about 2

seconds per image, approximately 20%-30% faster than other models,

which is crucial for practical clinical applications, especially in

situations requiring rapid diagnosis. Moreover, UnetTransCNN

showed strong robustness in handling noise and blurred

boundaries in images. Through detailed experimental analysis, the

model effectively differentiated between subtle differences among

various abdominal organs, maintaining high-level segmentation

performance even in cases of lower image quality. In summary,

UnetTransCNN not only enhances the accuracy and efficiency of

medical image segmentation but also improves the model’s versatility

and robustness. These characteristics mark it as a significant

advancement in the field of medical imaging analysis, laying a solid

foundation for future research and clinical applications. To better

demonstrate both macroscopic and microscopic features, we provide

visualizations on the performance of our model and other baselines,

which is shown in Figure 6. This confirms the effectiveness of our

UnetTransCNN for global and local feature extraction.

As shown in Figure 7, we observe two sets of medical image data

and their corresponding processing results. Each set contains the

original computed tomography (CT) images, manually labeled

images, and the output images of the machine learning model. By

first analyzing the CT images, i.e., IMAGE 1 and IMAGE 2, we can

identify abdominal organs such as the liver. These raw scans provide

the basic information used for subsequent image processing. The

corresponding labeled images, LABEL 1 and LABEL 2, highlight the

liver tissue region in a distinct yellow color, and these labels may

represent ground truth for training and validation of the machine

learning model. The outputs of the model, output 1 and output 2,

show the results of the model’s segmentation and recognition of the

liver tissue, where the yellow areas indicate the parts of the liver

recognized by the model. The comparison of the model outputs with

the manually labeled images can be used to evaluate the performance
TABLE 4 Performance comparison on the KiTS19 dataset.

Method Kidney
Dice

Kidney
HD95

Tumor
Dice

Tumor
HD95

U-Net 0.912 4.56 0.723 8.91

TransUNet 0.928 3.89 0.756 7.45

nnU-Net 0.935 3.45 0.781 6.87

CoTr 0.931 3.78 0.769 7.12

UnetTransCNN 0.942 3.21 0.793 6.45
The table shows the Dice score and 95% Hausdorff Distance (HD95) for kidney and
tumor segmentation.
Bold values indicate the best performance among all compared methods in each category.
FIGURE 4

Training and validating curve on dataset BTCV.
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of the model in the tissue recognition task. Further observe the

performance metric graphs below, which show the learning curve of

the model during the training process. In deep learning training, the

epoch represents the full dataset completing one full forward and

backward propagation. The curve below shows the stable trend of

model performance indicators as the number of epochs increases,

indicating the convergence of the learning process.
4.6 Ablation study

4.6.1 Decoder choice
We assessed the efficiency of various decoder architectures in

enhancing segmentation outcomes by integrating them with

UNETR’s encoder, focusing on MRI and CT segmentation tasks.

This evaluation, detailed in Table 6, involved comparing

the performance of the standard UNETR decoder against

threedimensional alternatives: Naive UpSampling (NUP), Progressive

UpSampling (PUP), and Multi-scale Aggregation (MLA).

The findings reveal that while all tested decoder architectures

offer less than ideal performance, MLA demonstrates a marginal

superiority over NUP and PUP. Specifically, in the context of brain
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tumor segmentation, UNETR, equipped with its original decoder,

surpasses the MLA, PUP, and NUP decoder variants by 2.7%, 4.3%,

and 7.5%, respectively, in average Dice score. In spleen segmentation

tasks, similarly, UNETR exceeds the performance of MLA, PUP, and

NUP decoders by 1.4%, 2.3%, and 3.2%, correspondingly.

4.6.2 Impact of patch resolution on performance
Our investigation into the effects of patch resolution on

segmentation accuracy revealed a direct correlation between

decreased resolution and increased sequence length, which in

turn, elevates memory usage due to its inverse relationship with

resolution’s cubic value. As documented in Table 7, lowering the

input patch resolution consistently enhances segmentation

performance. For instance, decreasing the resolution from 32 to

16 yielded an increase of 1.1% and 0.8% in the average Dice score

for spleen and brain tumor segmentation tasks, respectively.

Further reduction of resolution from 16 to 8 amplifies this

improvement; the average Dice score for spleen segmentation

escalated from 0.963 to 0.974 (an increase of 0.011), and for brain

segmentation, from 0.786 to 0.799 (an increase of 0.013).

These results suggest continuous performance benefits from

resolution reduction.
FIGURE 5

Detailed segmentation visualization.
TABLE 5 Comparison of UnetTransCNN with existing hybrid models.

Model Architecture Feature Extraction Key Strength Limitation

TransUNet U-Net + Transformer
in bottleneck

CNN for local features,
Transformer for global context

Effective global
dependency modeling

Limited local detail preservation

MCTransformer Multi-scale CNN +
Transformer

Multi-scale CNN features +
Transformer

Robust multi-scale feature fusion High computational complexity

CoTr CNN encoder +
Transformer decoder

CNN for encoding, Transformer
for decoding

Efficient cross-modal integration Weaker local feature refinement

UnetTransCNN Refined CNN backbone +
optimized Transformer

Enhanced CNN for local details,
Transformer for global alignment

Balanced local-global
feature capture

Slightly higher parameter count
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FIGURE 7

Visualization of results case study.
FIGURE 6

Visualization of macroscopic and microscopic features.
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However, it is critical to mention that our experiments did not

extend to resolutions lower than 8 due to memory limitations,

leaving the potential impact of further reduced resolutions on

performance undetermined. Although lower resolutions might

promise additional improvements, they risk sacrificing crucial

details or diminishing accuracy. Therefore, selecting an

appropriate resolution requires a careful balance between

computational efficiency and segmentation efficacy.
4.7 Inference efficiency analysis

Real-time segmentation is crucial in clinical applications, where

rapid image analysis can facilitate timely decision-making. While

segmentation accuracy is a key evaluation metric, the inference

speed of deep learning models significantly impacts their practical

usability in medical imaging. In this experiment, we compare the

inference time of UnetTransCNN with existing state-of-the-art

baselines on 3D medical image segmentation tasks.

4.7.1 Experimental setup
To ensure a fair comparison, all models are evaluated under

identical conditions:
Fron
• Hardware: NVIDIA A100 Tensor Core GPU (40GB).

• Framework: PyTorch + CUDA 11.8.

• Batch Size: 1 (single 3D volume of 128 × 128 × 128).

• Dataset: Medical Segmentation Decathlon (MSD).
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• Metric: Average inference time per volume (milliseconds, ms).
We measure the time required for each model to process a

single 3D medical image, excluding data loading and preprocessing,

to focus solely on model inference speed.

4.7.2 Analysis
4.7.2.1 Faster inference time

UnetTransCNN achieves an average inference time of 987 ms,

making it the fastest model among the tested baselines. Compared

to nnUNet (1620 ms), our model is 39.1% faster, enabling real-time

segmentation for medical applications.

4.7.2.2 Efficiency compared to transformer-based models

Transformer-based models such as TransUNet (1405 ms) and

CoTr (1202 ms) show improved segmentation performance over

traditional CNN architectures but at the cost of increased

computational complexity. UnetTransCNN, by efficiently integrating

both CNN and Transformer modules, maintains high segmentation

accuracy while achieving a significantly lower inference time.
4.7.2.3 Speed advantage over DconnNet

DconnNet, another hybrid CNN-Transformer model, achieves

1100 ms inference time, which is still 11.4% slower than

UnetTransCNN. This demonstrates that our model’s architectural

design effectively balances performance and computational efficiency.
5 Conclusion

In this study, we introduced UnetTransCNN, a novel

architecture that effectively combines the global contextual

strengths of Transformers with the robust local feature extraction

capabilities of convolutional neural networks (CNNs). This

innovative integration is specifically engineered to enhance both

the accuracy and efficiency of medical image segmentation. Our

validation on two benchmark datasets—the Multi Atlas Labeling

Beyond The Cranial Vault (BTCV) for multi-organ segmentation

and the Medical Segmentation Decathlon (MSD) for brain tumor

and spleen segmentation—demonstrates that UnetTransCNN

achieves state-of-the-art performance, highlighting its potential as

a transformative tool in the field of medical imaging. While

UnetTransCNN offers significant advancements, it does come

with its challenges. One notable limitation is its computational

demand, which may impact its deployment in settings with limited

processing capabilities. Additionally, there are specific conditions

under which the model’s performance may not be optimal, such as

in cases with extremely low contrast in images or very irregular

anatomical structures that are not well-represented in the training

data. As we plan to broaden the application of UnetTransCNN to
frontiersin.o
TABLE 6 Effect of the decoder architecture on
segmentation performance.

Organ Spleen Brain

Decoder Spleen WT ET TC All

NUP 0.942 0.711 0.517 0.670 0.646

PUP 0.951 0.739 0.548 0.688 0.658

MLA 0.960 0.747 0.553 0.722 0.674

UnetTransCNN 0.974 0.799 0.595 0.761 0.711
NUP, PUP, and MLA denote Naive UpSampling, Progressive UpSampling, and Multi-scale
Aggregation respectively.
Bold values indicate the best performance among all compared methods in each category.
TABLE 7 Effect of patch resolution on segmentation performance.

Organ Spleen Brain

Resolution Spleen WT ET TC All

32 0.954 0.772 0.571 0.749 0.707

16 0.963 0.786 0.589 0.746 0.713

8 0.974 0.799 0.595 0.771 0.721
Bold values indicate the best performance among all compared methods in each category.
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more varied medical imaging tasks, including dynamic imaging

studies where temporal resolution is critical, we also acknowledge

the need to address and improve computational efficiency, which is

vital for real-time diagnostic applications.
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