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Objectives: Radiotherapy is a fundamental cancer treatment method, and pre-

treatment patient-specific quality assurance (prePSQA) plays a crucial role in

ensuring dose accuracy and patient safety. Artificial intelligence model for

measurement-free prePSQA have been investigated over the last few years.

While these models stack successive pooling layers to carry out sequential

learning, directly splice together different modalities along channel dimensions

and feed them into shared encoder-decoder network, which greatly reduces the

anatomical features specific to different modalities. Furthermore, the existing

models simply take advantage of low-dimensional dosimetry information,

meaning that the spatial features about the complex dose distribution may be

lost and limiting the predictive power of the models. The purpose of this study is

to develop a novel deep learning model for measurement-guided therapeutic-

dose (MDose) prediction from head and neck cancer radiotherapy data.

Methods: The enrolled 310 patients underwent volumetric-modulated arc

radiotherapy (VMAT) were randomly divided into the training set (186 cases,

60%), validation set (62 cases, 20%), and test set (62 cases, 20%). The effective

prediction model explicitly integrates the multi-scale features that are specific to

CT and dose images, takes into account the useful spatial dose information and

fully exploits the mutual promotion within the different modalities. It enables

medical physicists to analyze the detailed locations of spatial dose differences

and to simultaneously generate clinically applicable dose-volume histograms

(DVHs) metrics and gamma passing rate (GPR) outcomes.

Results: The proposedmodel achieved better performance of MDose prediction,

and dosimetric congruence of DVHs, GPR with the ground truth compared with

several state-of-the-art models. Quantitative experimental predictions show that

the proposed model achieved the lowest values for the mean absolute error

(37.99) and root mean square error (4.916), and the highest values for the peak

signal-to-noise ratio (52.622), structural similarity (0.986) and universal quality

index (0.932). The predicted dose values of all voxels were within 6 Gy in the dose
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difference maps, except for the areas near the skin or thermoplastic mask

indentation boundaries.

Conclusions: We have developed a feasible MDose prediction model that could

potentially improve the efficiency and accuracy of prePSQA for head and neck

cancer radiotherapy, providing a boost for clinical adaptive radiotherapy.
KEYWORDS

artificial intelligence, radiotherapy, therapeutic-dose prediction, pre-treatment patient-
specific quality assurance, multi-level gated modality fusion network
1 Introduction

Cancer remains the leading cause of mortality worldwide, and

has threatened human life with increasing rates of incidence over

the past few years (1, 2). Along with surgery, chemotherapy and

immunotherapy, radiotherapy (RT) is a crucial pillar of cancer

treatment that destroys the target cells with ionizing radiation and

deprives them of the ability to divide and proliferate, while sparing

the surrounding healthy tissues (3). Previous and emerging

innovations in hardware and software have contributed to the

creation and delivery of the advanced volumetric-modulated arc

radiotherapy (VMAT) technique, which yields significant

improvements in terms of target coverage, sparing of organs at

risk (OARs), and treatment efficiency through dynamic MLC

modulation based on variable rotary gantry angles (4, 5).

However, the extensive modulations utilized in the highly

conformal approach often led to increased complexity and

dosimetric error in the dose calculation or delivery system. Pre-

treatment patient-specific quality assurance (prePSQA) is an

indispensable clinical process which plays a crucial role in

ensuring dose accuracy and patient safety, as strongly

recommended by the American Association of Physicists (6). One

conventional method of prePSQA is to measure the transmitted

dose distribution using radiographic film, diode/ion chamber array

or electronic portal imaging device (EPID) (7, 8). Nevertheless, the

execution of measurement-based prePSQA is expensive and time-

consuming for busy radiation oncology centers. Only a very small

percentage of treatment plans will fail these checks, and yet all of

them are carried out, creating an unnecessary burden for medical

physicists. If prePSQA fails, reformulating the plan will disrupt the

conventional clinical workflow and defer treatment, often causing

confusion and frustration to cancer patients (9).
1.1 Traditional Methods

In recent years, data-driven artificial intelligence (AI) has made

tremendous developments in computer vision, natural language

processing and medicine (10–12). In this paper, we mainly review
02
the AI-based prePSQA literatures. The application of machine

learning (ML) to measurement-free prePSQA has been achieved

through traditional approaches over the past ten years. With a

focus on studies of gamma passing rate (GPR) prediction models,

Valdes et al. were the first to use a Poisson regression with the Lasso

regularization method for predicting “pass” or “fail” (PRF) for

intensity modulated radiation therapy with a gamma evaluation

criterion of 3%(local)/3 mm (13). They reported results that

demonstrated a strong or moderate linear relationship between the

predicted and measured values, and especially for the detection of

failures due to incorrect settings and miniscule differences between

matched LINACs. Later, they performed a multi-center study to

validate the virtual QA approach using different measurement devices

on multiple LINACs (14). In a similar study, Li et al. used a regression

model to predict individual GPRs and a classification model to

classify PRF for VMAT plans (15). By exploring the applicability of

artificial neural networks (ANN) to the field of dosimetry, Chan et al.

demonstrated that ANN time-series modeling had the advantage of

more accurate and effective prediction over the well-developed auto-

regressive moving average technique on long-term accumulated

datasets (16). Hirashima et al. used an ML technique to improve

the prediction and classification performance for GPRs with plan

complexity and dosimetric features (17). Granville et al. also trained a

linear support vector machine to classify the metrics of VMAT

prePSQA measurement by using both plan characteristics and

routine quality control results (18). Although these automatic

methods have improved the efficiency of prePSQA to some extent,

and have potential benefits in terms of solving some issues, their

prediction accuracy is not high and they rely heavily on the manual

extraction/learning of complex features, resulting in poor scope for

clinical applications.
1.2 Deep Learning Models

In deep learning (DL) with convolutional neural networks

(CNN), multi-layer features are abstracted automatically and

integrated into an end-to-end network for prediction, which

contributes to eliminating the dependence on handcrafted
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features. Recently, many DL-based models have shown success

when applied to image segmentation, and have been introduced

to the field of prePSQA. For example, Tomori et al. developed a 15-

layer CNN-based prediction model for prePSQA in prostate cancer

treatment (19). This prediction model was later improved by using

dummy target plans and predicted GPR values in various gamma

criteria (20). By using transfer learning from rotation and

translation of the fluence maps during training, Interian et al.

created the convolutional blocks of a VGG-16 ImageNet and

compared it to a generalized Poisson regression model (21). They

found that deeply fine-tuned CNNs outperformed a baseline system

designed by domain experts when applied to the prediction of 3%/

3mm local GPRs. Kadoya et al. studied a DL-based prediction

model for gamma evaluation and applied it to prostate cancer cases

(22). Hu et al. proposed an automatic multi-branch neural network

model based on metrics describing the complexity of RT, and

proved that this model could assist physicians to improve QA in

terms of efficiency and quality (23). Rather than directly predicting

GPRs for IMRT/VMAT plans from complexity metrics derived

from the physical characteristics of the plans and machine-related

parameters, Nyflot et al. built a CNN model to classify the presence

or absence of introduced delivery errors generated from fluence

maps and measured by EPID, and demonstrated that the

performance of their network was superior to a handcrafted

approach with texture features (24). Jia et al. reported a novel

GAN architecture to carry out the EPID image-to-dose conversion,

and their results showed that a DL-based signal processing strategy

could accurately predict the cylindrical phantom dose (25). Other

studies have investigated improved DL networks to model GPR

predictions by using delivery fluence distribution informed by log

files (26–28).
1.3 Limitations

Previous findings have demonstrated the potential and feasibility

of ML/DL models in terms of predicting prePSQA without

performing real measurements. However, in the light of these

studies (11–29), two major issues should be considered when

building a ML/DL prePSQA model in clinical settings. Firstly, these

methods predicted prePSQA or to identify protentional dose errors

by inputting planar dose, fluence maps, or treatment plan/LINAC

performance-related metrics (29). The low-dimensional radiotherapy

data are deficient in showing dose correlation between adjacent

layers, making it impossible to explore the spatial features of the

volumetric dose and resulting in limited sensitivity to detect clinical

dose errors. Currently, evaluation of the dose-volume histograms

(DVHs) between the unapproved RT dose and the measurement-

reconstructed patient volumetric dose (MDose) has been

incorporated into clinical practice. The MDose can provide useful

spatial information about the complex dose distribution, especially

for VMAT cases. From the distribution of MDose, dosimetric metrics

for all structures can be completely reconstructed and detailed spatial

dose differences can be displayed (30). Secondly, the most existing

prePSQA prediction networks stack successive convolutional and
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pooling layers to obtain robust feature representations, and directly

splice together different modalities along channel dimensions and

feed them into one shared encoder-decoder network, which greatly

reduces spatial feature resolution specific to different modalities and

may lead to dose prediction errors for small structures. Our previous

study falls into this category, reporting the feasibility of a ResUNet

model and a ML model for predicting the metrics of prePSQA (31).
1.4 Contributions

In this work, we overcome the two major issues outlined above

by designing a new prePSQA prediction approach for head-and-

neck (H&N) patients receiving VMAT, which enables physicists to

analyze the detailed locations of spatial dose differences and has the

potential to improve the accuracy and efficiency of prePSQA. The

contributions of this study are summarized as follows:
1. We propose a novel deep network model for prePSQA to

acquire high-quality voxel-wiseMDose. Instead of predicting

prePSQAmetrics derived from the physical characteristics of

the plans and machine-related parameters, we provide the

MDose-based prePSQA model that receive the volumetric

RT dose (RTDose) and CT images as input, and then directly

output the patient-specific predicted volumetric. This design

has the benefits of integrating robust global semantic

information with local spatial details for MDose prediction,

and simultaneously generating clinically applicable DVHs

metrics and GPR outcomes.

2. We design a novel multi-level gated modality fusion

architecture (MLGMF) that employs different encoder

sub-networks to extract the multi-scale features that are

specific to CT and RTDose. By introducing the MLGMF

into the squeeze-and-excitation residual connection

mechanism-based CNN, the proposed model fully

exploits the mutual promotion within different

modalities, and explicitly integrates useful contextual

information with rich spatial details for MDose prediction.

3. We demonstrate in the extensive experiments that our

method can achieve comparable or better performance on

MDose prediction, DVHs metrics and estimation of GPR

compared to the existing state-of-the-art methods.

Furthermore, the present MDose-based prediction

approach greatly improves the efficiency for prePSQA

with a practical solution and is a promising direction for

clinical adaptive RT.
2 Materials and methods

2.1 Patient characteristics

A total of 310 patients with H&N cancer treated with VMAT

between 2018 and 2022 were enrolled in this study. Table 1
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summarizes the clinical characteristics of these patients. All the

patients were immobilized with a thermoplastic mask in the supine/

prone position, computed tomography, magnetic resonance imaging

and positron emission tomography images were used by experienced

experts to help contour the target volumes according to international

guideline. The prescribed doses were 70 and 56 Gy or 70, 63, and 56

Gy in 35 fractions. VMAT plans were generated by an experienced

physicist to achieve clinically acceptable target volume coverage while

sparing OARs. This was done using Pinnacle treatment planning

system (TPS) ver. 9.10 with the SmartArc optimization algorithm or
Frontiers in Oncology 04
Monaco TPS ver. 5.11 with the Monte Carlo algorithm, and executed

on an Elekta Infinity equipped with an Agility MLC or a Varian

TrueBeam equipped with a Millennium 120 MLC.
2.2 Measurement and data collection

In this work, dose distribution was measured using only one

validation device per patient, before patient plan validation, we

performed common physics checks on the LINACs and TPS

modeling to ensure that they were in normal condition. Then

prePSQA for each VMAT plan was performed by two 3D dose-

verification systems (VerSys). One is a Dolphin-Compass online

treatment monitoring system ver. 3.0 (IBA Dosimetry,

Schwarzenbruck, Germany), which included an array of 1,513 air

vented ionization chambers with a spatial resolution of 0.5 cm in the

central area. The wireless Dolphin transmission detector was

mounted and secured on a LINAC gantry head for

measurements, and was optimized for rotational treatments with

a built-in gantry angle sensor. Dose reconstruction software from

Compass was used to verify the plan, the beams, and the control

segments of the VMAT arcs. Patient-specific MDose reconstruction

for each patient’s anatomy was performed based on fluence

measurements of a phantom and an advanced collapsed cone

convolution superposition algorithm on the planning CT. The

other is an ArcCHECK system (Sun Nuclear Corporation,

Melbourne, FL, USA). A strict calibration procedure of the two

systems, including verification the accuracy of array measurement,

dose reconstruction and beam modeling, was performed in advance

according to the manufacturer’s standards. In essence, the aim of

this method was to use the dose distribution measured inside a QA

phantom with a relatively low pixel density detector array to guide

the TPS dose for the patient dataset, resulting in a high voxel-

density MDose distribution. We also recorded and evaluated the

percentage dosimetry errors, volumetric error and GPRs between

the planned and reconstructed doses, where GPRs were calculated
FIGURE 1

The overall workflow of this study.
TABLE 1 Summary of the enrolled patients.

Characteristics
Training
cohort
(186)

Validation
cohort (62)

Testing
cohort
(62)

Gender, no. (%)

Male 101 (54.3%) 45 (72.6%) 42 (67.7%)

Female 85 (45.7%) 17 (27.4%) 20 (32.3%)

Age (years) 58.3 ± 14.3 54.1 ± 18.8 55.2 ± 17.4

<20y 6 (3.2%) 4 (6.5%) 3 (4.8%)

20y-40y 28 (15.1%) 9 (14.5%) 11 (17.7%)

40y-60y 67 (36.0%) 18 (29.0%) 20 (32.3%)

>60y 85 (45.7%) 31 (50%) 28 (45.2%)

Pathological type

SCCA 65 (34.9%) 23 (37.1%) 19 (30.6%)

LA 34 (18.3%) 16 (25.8%) 13 (21.0%)

SA 28 (15.1%) 9 (14.5%) 6 (9.7%)

ACCA 26 (14.0%) 10 (16.1%) 14 (22.6%)

MCA 33 (17.7%) 4 (6.5%) 6 (9.7%)
SCCA, Squamous cell carcinoma; ACCA, Adenoid cystic carcinoma; MCA, mucoepidermoid
carcinoma; SA, Sarcoma; LA, Lymphoma.
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using a 3%/3mm criterion with a 10% threshold, and a GPR value of

90% was employed to determine pass or fail. To ensure target

coverage, the values of Dmean and Dmax (mean and maximum

doses), D2, D98, V95 and V100 (where Dx means the dose received

by x% of the volume, and Vx represents the volume receiving at

least x% of the prescription dose) for the targets were analyzed. For

the assessment of OARs, Dmax values of brainstem, bilateral lens,

optic chiasm, spinal cord, pituitary, optic nerves and

temporomandibular joints were evaluated, and Dmean values of

D50 for the bilateral parotid were also calculated.
2.3 Flow of this study

Figure 1 illustrates the overall workflow of our method. Firstly,

we extracted the DICOM files of CT and RTDose for the VMATs,

following the procedure for dosimetric measurement for each

patient using 3D VerSys. Then, a U-Net-like baseline model and

four specially designed MLGMF-based networks were trained to

predict the voxel-level MDose distribution. These five prediction

models took CT slices and the RTDose as input, as well as the

MDose distribution from the VerSys, and output the predicted

MDose distribution of the corresponding slice. Here, we referred

the predicted MDose as PDose. Finally, an in-house Python code

was developed to calculate the relevant DVHs metrics, 3D dose

difference maps, and GPRs from the PDose for each specific patient.
2.4 Baseline model

The task of MDose prediction can be formulated as a dense

voxel-level prediction problem. Low-level spatial details and high-

level semantic cues are both essential for this challenging problem.

In view of this, effective fusion of the multi-level features is the key

to obtaining an accurate prediction result. The widely used U-Net

architecture employs an encoder-decoder model to combine these

multi-scale features. According to the findings of our previous study

in which the widely used U-Net encoder-decoder architecture was

used as the main network (31). However, since the CT and RTDose

for each patient are both in 3D form, we changed the building block

of U-Net to a 3D paradigm and introduced a squeeze-and-

excitation residual connection mechanism, thus forming the

baseline model of ResUNet.
2.5 The proposed MLGMF

Due to the difference in modality between the CT and RTDose,

it is not sufficient to simply concatenate the CT and RTDose as the

input to the encoder-decoder network. In order to fully exploit the

mutual promotion within the two different modalities, we propose a

multi-level modality fusion architecture (MLGMF). Specifically,

two different encoder sub-networks are employed to extract the

multi-scale features that are specific to the CT and RTDose

modalities. Following this, a single shared decode sub-network
Frontiers in Oncology 05
fuses the multi-scale features generated by the CT and RTDose

encoder sub-networks in a layer-wise manner. Similarly to the

original ResUNet, the shared decoder sub-network consists of

multiple fusion operations, which are employed to fuse the multi-

scale features generated by the encoder sub-network in a

progressive way. In contrast, features from both the CT branch

and RTDose branch are required to be fused by each fusion module

in our proposed multi-scale gated modality fusion modules. To

achieve this, in the fusion module in the i-th layer, the feature maps

of the CT branch (f CTi ) and RTDose branch ( f RTDosei ) are first fused

by concatenation along the channel dimension, and another

convolution is applied for further feature abstraction. The

obtained feature (F̂i) is then fused with the upsampled feature

map from the deeper layer Fi+1, using a fusion pipeline similar to

that in U-Net, to generate the final fused feature Fi in the i-th layer.

This operation can be formulated as Equation 1:

Fi = Conv Concat Up(Fi+1),  Conv(Concat(f
CT
i ,   f RTDosei ))

� �� �
(1)

The fusion operation is iterated until the lowest layer is reached,

where the generated feature F1 has the same spatial resolution as the

input image, which is used to produce the final prediction. The

multi-level modality fusion module only fuses the features of CT

and RTDose in the decoder module, via simple feature

concatenation; however, to encourage mutual interaction between

these two different modalities, we enforce multi-level fusion

operations between CT and RTDose modality in the encoder

module as well. As shown in Figure 2, four specifically designed

fusion modules are applied to effectively combine the multi-level

features of the sub-networks from different modalities, i.e., (1) gated

modality concatenation parallel fusion network (CPFNet)

(Figure 2A); (2) gated modality concatenation cross fusion

network (CCFNet) (Figure 2C); (3) gated modality squeezed

parallel fusion network (SPFNet) (Figure 2B); (4) gated modality

squeezed cross fusion network (SCFNet) (Figure 2D). In this study,

the same fusion module was used to replace Fuse1-Fuse4.
2.6 Architecture of multi-level feature
fusion modules

1) Gated modality concatenation parallel fusion network

(CPFNet): In the encoder sub-network, in order to combine the

features of the CT and RTDose images (f CTi and f RTDosei ) in the i-th

layer, the proposed gated modality concatenation parallel fusion

module first makes the features of two modalities interact with each

other via simple feature concatenation along the feature channel

dimension. This operation can be formulated as f̂i = Concat(f CTi ,

f RTDosei ). Another convolutional layer is then applied for further

feature abstraction, giving a fused feature efi = Conv(f̂i). Following

this, in order to generate specific features corresponding to the CT

and RTDose modalities, different processing pipelines are followed:

a convolution layer is used to transform the feature efi for both the

CT and RTDose pipelines, generating ff CTi and gf RTDosei , respectively,

and these are then summed with the original feature, i.e., f CTi =
frontiersin.org
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f CTi + ff CTi , f RTDosei = f RTDosei + gf RTDosei . The generated features f CTi

and f RTDosei are the final transformed features for the CT and

RTDose modalities. The details of CPFNet are illustrated

in Figure 2A.

2) Gated modality concatenation cross fusion network

(CCFNet): In order to further boost the mutual interaction

between the CT and RTDose modalities, we replace the gated

modality concatenation parallel fusion module with a gated

modality concatenation cross fusion module in the CPFNet

described above. Most of the other operations of the proposed

new module are the same as in the CPFNet. As shown in Figure 2C,

when generating and f RTDosei in th stage, a cross fusion mode is
Frontiers in Oncology 06
employed, i.e., f CTi = f CTi + gf RTDosei , f RTDosei = f RTDosei + ff CTi . In this

way, the mutual advantages between the CT and RTDose modalities

are further explored.

3) Gated modality squeezed parallel fusion network (SPFNet):

Both the CPFNet and CCFNet fuse the features from the CT and

RTDose via simple feature concatenation between the two

modalities. Inspired by SE-Net, we squeeze the concatenated

feature map into 1D form via global average pooling. In this way,

the cues about the original fused feature along the spatial dimension

(w� h) are reduced, and the global distribution of channel-wise

responses is obtained. Similarly to the original SE-Net, the later

excitation stage explicitly models the channel interdependencies
FIGURE 2

The proposed MLGMF architecture. (A) The architecture of the gated modality concatenation parallel fusion module; (B) The architecture of the
gated modality concatenation cross fusion module; (C) The architecture of the gated modality squeezed parallel fusion module; (D) The architecture
of the gated modality squeezed cross fusion module.
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within the squeezed feature. In this process, more informative

features are selectively enhanced, and less useful features are

suppressed. To achieve this, we developed the gated modality

squeezed parallel fusion module, as illustrated in Figure 2B. In the

encoder sub-network, in order to combine the features of the CT

and RTDose images (f CTi and f RTDosei ) in the i-th layer, the proposed

module first concatenates the two feature maps along the channel

dimension. Then, a 3D global average pooling layer along the

channel dimension is applied to obtain a squeezed feature

representation efi in 1D form. These operations can be formulated

as: efi = GAPc(Concat(f
CT
i ,  f RTDosei )), where GAPc means global

average pooling along the channel dimension. We then use one

fully connected layer to convert the squeezed feature map efi into
wCT
i and wRTDose

i , respectively. The generated weight maps wCT
i and

wRTDose
i are used to reweight the original features f CTi and f RTDosei via

channel-wise multiplication, resulting in ff CTi and gf RTDosei : These

operations can be formulated as: ff CTi = FCCT (efi) ⊗ f CTi ,   gf RTDosei =

FCRTDose(efi) ⊗ f RTDosei , w h e r e ⊗ me a n s c h a n n e l - w i s e

multiplication. ff CTi and gf RTDosei are then summed with the original

features , as : f CTi = f CTi + ff CTi , f RTDosei = f RTDosei + gf RTDosei . The

generated features f CTi and f RTDosei are the final transformed

features for the CT and RTDose modalities.

4) Gated modality squeezed cross fusion network (SCFNet):

Based on the SPFNet model described above, we further enhance

the mutual interaction between the CT and RTDose modalities by

replacing the gated modality squeezed parallel fusion module with a

gated modality squeezed cross fusion module. As shown in

Figure 2D, most of the operations of the present module are the

same as in the SPFNet, and the difference lies in the final feature

fusion operation when obtaining f CTi and f RTDosei : f CTi = f CTi +gf RTDosei , f RTDosei = f RTDosei + ff CTi . This cross-fusion mode encourages

further mutual interactions between the CT and RTDose branches.

Pseudocode for our implementation of the present algorithm

for MDose reconstruction is given in Algorithm 1.
Fron
Dataste: 3D RTDose, MDose distribution and CT images

Input: Tensors xn  and  yn(n ∈ (1, 2,…,N))

Output: Prediction of 3D MDose distribution

1: Ending epoch = 200

2: Initialize the model randomly

3: while training epoch < ending epoch do

4: for a case xn  and yn in dataset do

4: for layer i in L layers of the encoder sub-network

do
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5: step 1 Feature extraction in the i –th layer of

the down-sampling part of CT

6: fCT
i = ConvCT

i (xn)

7: step 2 Feature extraction in the i –th layer of

the down-sampling part of RTDose

8: fRTDose
i = ConvRTDose

i (yn)

9: step 3 Fusion of the extracted features from the

CT and RTDose branches with the MLGMF module

10: fCT
i ,  fRTDose

i = MLGMF(fCT
i ,  fRTDose

i )

11: end for

12: step 4 Train the up-sampling part with the multi-

level fused features fCT
i and fRTDose

i

13: prediction←DeConv   _ more(fCT
i ,  fRTDose

i )

14: end for

15: while training epoch = ending epoch do

16: Save the model and parameters

17: end while
Algorithm 1. Multi-level Gated Modality Fusion Network.
3 Experiments settings

3.1 Data preprocessing

In order to reduce the variance of different datasets, calculation

complexity, and improve the learning speed, we devised some

unified and standardized data processing methods, as well as

improved data discretization and attribute selection measures.

The volume images were extracted as a 3D matrix with

dimensions of 512×512×150. Since the dose distribution depends

on the spatial distances among the delineated structures, according

to our previous work, (31) the grid resolution for all MDose and

RTDose was interpolated to the same pixel size with the

corresponding CT coordinates, and zero padding was added

during the interpolation process to keep the image size. The

specific dosimetry statistics were created using the same dose grid

spacing according to the TPS, and were binned as “in or out” for the

interest areas using a 3DVH-indices calculation module. If the dose

voxel was inside the reconstructed area volume, its dose value was

binned; otherwise, it was not counted in the DVH statistics for that

area. 31 The annotations created by different doctors were mapped
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to a unified format. To avoid any potential pitfalls such as inflating

the testing or validation performance, we were also careful to

confirm that the datasets described above were non-overlapping.
3.2 Competing methods

To validate and evaluate the performance of MLGMF, several

state-of-the-art approaches were considered for comparison purposes,

including the ResUNet (29), Swin-UNet (32), self-attention

mechanism-based Transformer (TransQA) (31), and invertible and

variable augmented network (IVPSQA) (30). ResUNet, this network

has recently been used for the prediction of dose distribution, whose

input data includes CT, structure, and RTDose derived from TPS, as

well as dose distributions measured by the verification system (29).

Swin-UNet, first proposed by Cao et al. (32), whom combined the

Transformer module and U-shape for medical image segmentation.

TransQA was first proposed by Zeng et al. (31), and combines the self-

attention mechanism-based Transformer and modified ResUNet for

predicting volumetric dose of prePSQA. IVPSQA is derived from the

invertible neural networks, Zou et al. (30), first used a modified

invertible and variable augmented network to predict the prePSQA

metrics from 300 cancer patients who underwent VMAT. These

different networks were trained on the same training and validation

datasets in the same environment; the maximum number of training

epochs was set to 200 for all models, and the learning decay rate was the

same for MLGMF. All networks were implemented using the Pytorch

library, and we ran the experiments on the same data as for MLGMF.

For authenticity, all methods considered for comparison were used

with their official open-source codes, and were optimally tuned for the

current dataset.
3.3 Model training and evaluation

Patients were randomly assigned to the training set (186 cases,

60%), validation set (62 cases, 20%), and test set (62 cases, 20%).
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The training set was used to enable us to tune the free parameters of

the model, the validation set was used to choose the best-

performing model, and the test set was used to qualitatively and

quantitatively evaluate the performance of the model. Regardless of

which method of prediction was used in this study, the grouping of

the data was consistent. We employed PyTorch as the backend in

our implementation, and the code was run on an NVIDIA GeForce

RTX 2080 GPU with 16GB memory and CUDA acceleration. We

initialized all the layers of the proposed model with a normalized

distribution. Standard backpropagation and an RMSprop optimizer

were used to train the model. The learning rate and batch size

hyperparameters were set to 5e-5 and one, respectively, and the

maximum number of epochs was set to 200. The L1 loss was applied

to supervise the training of the baseline method and our proposed

models, which can be formulated as Equation 2:

L1(Y ,  Y
ref ) =

1
S�H �WoS

s=1oH
i=1oW

j=1 ys,i,j − yref  s,i,j

��� ���
1

(2)

where Y denotes the PDose, and Yref denotes the MDose

(ground truth: GT). S, H, and W are the slice number, height and

width of the specific volume, respectively, and ys,i,j and ŷ s,i,j are the

predicted value for the (i, j) position of the s-th slice of the

prediction and the GT. With the trained prePSQA prediction

model, which required about 26 hours of computation, the PDose

distribution for a new case with pretreatment RT data took only a

few seconds.

To quantitatively evaluate the performance and stability of our

method, we used the mean absolute error (MAE), root mean square

error (RMSE), peak signal-to-noise ratio (PSNR), structural

similarity (SSIM) and universal quality index (UQI) as the

evaluation metrics. The MAE and RMSE are accuracy metrics,

and were applied to evaluate the predictions of the baseline method

and our proposed models. The PSNR, SSIM and UQI were used as

indicators of the image quality for the prediction. Mathematically,

the detailed calculation of RMSE, MAE, SSIM and UQI can be

referred to our previous work (29–31).
FIGURE 3

The loss curves of the training and validating process from five methods.
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4 Results

4.1 Ablation studies for different feature
fusion modules

In this work, we conducted a set of ablation experiments to

understand the behavior of the proposed MLGMF and validate its
Frontiers in Oncology 09
performance of the four embedded modules, i.e., CPFNet,

CCFNet, SPFNet, and SCFNet. From training and validating

these models, the loss curves in Figure 3 were obtained. As the

number of epochs increased, the loss values for the process of

training and validation decreased. After 120-130 epochs, the loss

values of training and validation for the proposed models

converged to a stable level, showing that further increasing the
FIGURE 4

Dose distributions in transverse, coronal and sagittal CT slides from ground truth and five different approaches. The first, third and fifth rows
represent the transverse, coronal and sagittal dose distribution, respectively. The second, fourth and last rows illustrate the differences between the
ground truth and the predictions.
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training epochs should not improve the accuracy of the

prediction models.

Dose distributions for the transverse, coronal, and sagittal slides

in the GT images and the five different models are shown in

Figure 4. We can observe that the four MLGMF-based models

achieved better dosimetric congruence with the GT compared with
Frontiers in Oncology 10
the ResUNet model, and this result was consistent with the study of

the dose difference maps. The dose values of all voxels were within 6

Gy in the dose difference maps, except for the areas near the skin or

thermoplastic mask indentation boundaries, as indicted by the blue

arrows in Figure 4. From a comparison of the difference maps

among the five methods, smaller dose differences were observed for

the four proposed models. SPFNet gave the lowest values of the dose

difference, implying that it was able to obtain a better image

similarity with the GT. To further evaluate the dose difference,

horizontal profiles of the resulting dose maps were drawn across the

blue line labeled in Figure 5. By observing the zoomed-in views of

the dashed boxes, we see that SPFNet and SCFNet were closer to the

GT, thus further demonstrating that the proposed models faithfully

follow the target/OAR profiles.

To enable a quantitative evaluation of the performance of the

five models, Table 2 lists the values of the MAE, RMSE, PSNR, SSIM

and UQI for the predicted results from 22 test case. All metrics were

computed over the whole volume in each case, and the top two

predictions are shown in bold. SPFNet achieved the lowest values
FIGURE 5

The horizontal difference profiles from transverse, coronal and sagittal dose distribution maps. The second and third columns are the local zoomed-
in views of the dashed boxes in first column. The “black line” is from the MDose acts as the ground-truth for comparison, the “blue line”, “green line”,
“cyan line”, “magenta line” and “red line” is from ResUNet model, CPFNet, CCFNet, SPFNet and SCFNet, respectively.
TABLE 2 Quantitative evaluation of ResUNet and the four modules
of MLGMF.

MAE RMSE PSNR SSIM UQI

ResUNet 79.476 7.905 49.993 0.962 0.844

CPFNet 73.002 7.384 51.079 0.983 0.882

CCFNet 71.235 7.434 49.658 0.982 0.912

SPFNet 37.990 4.916 52.622 0.986 0.932

SCFNet 46.068 5.586 49.153 0.970 0.917
MAE, mean absolute error; RMSE, root mean square error; PSNR, peak signal noise ratio;
SSIM, structural similarity; UQI, universal quality index.
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for the MAE (37.99) and RMSE (4.916), and the highest values for

the PSNR (52.622), SSIM (0.986) and UQI (0.932). In general, the

quantitative results from the MLGMF models were much better

than those of the ResUNet. The values of MAE and RMSE for

SPFNet were most improved, followed by PSNR and UQI, and

finally SSIM. Compared with the ResUNet, the accuracy was

improved by 8–52%, 7–38%, and 5–10% as measured by the

MAE, RMSE and UQI of the proposed models.
4.2 Evaluation of prediction by
different methods

Through the above analysis, it is found that the quality of

prediction results of SPFNet is better, which may be due to the fact

that we compress the connected feature graphs through global

average pooling, simplifying the original fusion features along the

spatial dimension clues, obtaining the global distribution of channel

responses, selectively enhancing more information features, and

suppressing less useful features. Additionally, in this work, to

further validate the performance of the proposed model, we

compare the SPFNet of MLGMF with other state-of-the-art DL

methods, including Swin-UNet, TransQA, and IVPSQA. Table 3

shows the quantitative results of 40 test cases, it is evident that

MLGMF exhibits significant improvements over the previous three

methods. Compared to Swin-UNet, TransQA, and IVPSQA in

terms of MAE, it decreases by 59.8%, 5.6%, and 16.9%. Regarding

SSIM, it improves by 2.1%, 0.8%, and 1.9% respectively. In terms of

RMSE, it reduces by 64.2%, 18.3%, and 46.7% respectively.

Table 4 summarizes the quantitative results for clinical

interested metrics for PTVs and 17 OARs. The values of D2, D50,

D98, V95, V100, Dmean, and Dmax values are reported for the

PTVs, while Dmean and Dmax are reported for the OARs. In regard

to the sparing of OARs, with the exception of Dmax for the

InnerEar_R and Eye_R, we note that the predicted prePSQA

metrics are in good agreement with the MDose. The proposed

MLGMF model achieved the smallest errors for these targets and

OARs, followed by TransQA and IVPSQA, Swin-UNet has the

worst, and IVPSQA results were extremely close to TransQA.

Figure 6 shows a typical DVHs comparison for an example

patient. Since the proposed models can account for multi-scale

fusion features extracted from CT and RTDose through the

incorporation of the MLGMF module into a multi-channel CNN,

it is expected that the prediction of spatially related DVHs curves
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can also benefit from voxel-level-based PDose, as shown in the

figure, where MLGMF is more consistent with GT values. The

DVHs curves for IVPSQA and TransQA show some variation

among the three approaches, and the predicted results have

approximately identical shapes to that of the GT. Overall, the

DVHs lines for all PTVs and OARs show good consistency and

comparable performance with the GT.

To verify the accuracy of these models, the PDose were

compared using a 3%/3 mm global GPR analysis with a dose

threshold of 10%. The GPR for the Swin-UNet model (95.4 ± 2.9)

was inferior to the other methods, and the GPR for MLGMF (94.7 ±

3.9) was in good agreement with the GT (94.0 ± 4.6). The remaining

methods, TransQA (95.1 ± 2.9), IVPSQA (95.2 ± 2.9), yielded

comparable results. Figure 7 plots the GPRs for the MDose and the

predictions of MLGMF. If the accuracy of a prediction model is

perfect, the GPR points for the test cases should be consistent with

the GT. The mean errors between the GPR of the MDose and the

predictions were 3.41% for the Swin-UNet, and 2.84%, 2.31%,

1.81% for IVPSQA, TransQA and MLGMF, respectively.
5 Discussion and conclusion

AI requires the use of complex mathematical algorithms that

mimic human intelligence to perform tasks such as pattern

recognition, visual perception and decision making. Recent

technological advances have made RT highly sophisticated, with

system equipment almost entirely depends on human-computer

interaction. The increasing complexity of these human-computer

interactions, coupled with rising cancer mortality, has led to a huge

workforce shortage worldwide. PrePSQA involves an evaluation of

the treatment plan and dose in order to detect human errors and

potential anomalies in the calculation of the dose and plan delivery.

Most treatment plans are subject to manual QA checks, and in rare

cases these fail, meaning that many underlying factors need to be

investigated and treatment for the cancer patient will be deferred. If

an innovative algorithm can be designed to predict PRF or identify

possible sources of error, it would be a valuable replacement for

repetitive and labor-intensive tasks, and could eliminate the current

reliance on manual measurements. However, most existing

prePSQA prediction networks stack successive convolutional and

pooling layers to obtain robust feature representations. This

multiple pooling operation greatly reduces the spatial resolution

of the features, and for deeper-level features, this causes a significant

loss of local spatial detail. CNN-based approaches generally have

limitations in terms of modeling explicit long-range relations, due

to the intrinsic locality of convolution operations. So when faced

with more difficult tasks, the desired outcome is often not obtained.

This is especially true for target structures that show large inter-

patient variations in terms of texture, shape, and size. In this work,

we have presented a novel MLGMF module to achieve high-quality

voxel-wise PDose values from whole-volume CT and RTDose

images. A simple yet effective multi-level fusion operation was

adopted in the proposed model to overcome the need for

excessive convolutional and pooling operations in sequential
TABLE 3 Comparison of experiments based on MLGMF and other
prediction network models.

MAE RMSE PSNR SSIM UQI

Swin-UNet 51.476 7.411 51.901 0.968 0.860

TransQA 34.012 5.342 51.721 0.981 0.910

IVPSQA 37.675 6.623 52.026 0.974 0.894

MLGMF 32.221 4.516 53.032 0.989 0.931
MAE, mean absolute error; RMSE, root mean square error; PSNR, peak signal noise ratio;
SSIM, structural similarity; UQI, universal quality index.
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learning with a CNN. Our experiment results indicate that the

proposed model achieved comparable or better performance on

MDose prediction, spatial dose differential distribution, DVHs of

OARs/targets and GPRs compared to the existing state-of-the-art

(UNet-based, Transformer-based, Invertible Neural network-

based) methods.

An evaluation of DVHs between TPS and MDose yields deep

insight into the dose distribution delivered to structures of interest;

nevertheless, it has also reduced the efficiency of prePSQA due to

the increase in the number of DVH metrics and treatment plans
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that needed to be reevaluated. Recently, by incorporating the plan

information (MLC position, gantry/collimator angles, and monitor

units) recorded in a machine log file into a vendor-provided

calculation tool, the computational-based virtual prePSQA (VQA)

has been used to perform a secondary check of the TPS dose.

Various efforts with different capabilities on LINAC log file analysis

have been proposed to improve the efficiency of VQA (33–38). In

addition, the latest commercial calculation software (Mobius3D;

Varian Medical Systems, Palo Alto, CA, USA) is available for

clinical dose verification (39). Although the aforementioned
TABLE 4 Quantitative evaluation based on the error in five model predictions of DVH metrics for targets and OARs.

Structure Metric Swin-UNet TransQA IVPSQA MLGMF

PTV7000

Dmean 0.52 ± 0.67 0.19 ± 0.69 0.37 ± 0.53 0.11 ± 0.35

D2 0.77 ± 0.34 0.26 ± 0.86 0.28 ± 0.63 0.20 ± 0.18

D50 0.47 ± 0.94 0.16 ± 0.83 0.36 ± 0.52 0.14 ± 0.24

D98 0.91 ± 1.51 0.34 ± 1.39 0.47 ± 1.97 0.12 ± 1.60

V95 0.97 ± 0.45 0.73 ± 0.67 0.91 ± 0.14 0.46 ± 0.69

V100 0.66 ± 1.70 0.46 ± 1.76 0.48 ± 1.01 0.37 ± 1.46

PTV5600

Dmean 1.10 ± 0.99 0.58 ± 1.02 0.69 ± 1.34 0.21 ± 1.47

D2 0.52 ± 1.50 0.24 ± 1.50 0.42 ± 1.95 0.11 ± 1.86

D50 0.86 ± 1.25 0.42 ± 1.02 0.69 ± 1.15 0.25 ± 1.08

D98 0.88 ± 0.66 0.39 ± 1.05 0.45 ± 0.76 0.15 ± 0.54

V95 0.94 ± 0.61 0.78 ± 0.42 0.82 ± 0.28 0.61 ± 0.25

V100 1.82 ± 1.23 1.63 ± 1.36 1.66 ± 1.03 1.26 ± 1.36

Parotid_L
Dmean 3.20 ± 1.79 1.45 ± 1.75 1.50 ± 1.72 1.23 ± 1.16

D50 1.86 ± 1.90 1.46 ± 1.99 1.53 ± 1.50 1.35 ± 1.46

Parotid_R
Dmean 2.26 ± 2.75 1.23 ± 1.14 1.31 ± 2.13 1.09 ± 2.68

D50 2.71 ± 2.45 1.03 ± 2.55 1.07 ± 2.91 1.02 ± 2.95

OpticChiasm Dmax 3.08 ± 1.30 1.28 ± 1.31 1.66 ± 1.64 1.19 ± 1.45

OpticNerve_L Dmax 1.99 ± 1.29 1.13 ± 1.89 1.35 ± 1.66 1.12 ± 7.47

OpticNerve_R Dmax 2.39 ± 1.43 1.36 ± 1.68 1.42 ± 2.54 1.00 ± 1.61

InnerEar_R Dmax 2.58 ± 2.59 2.01 ± 2.95 2.37 ± 3.01 1.93 ± 2.36

InnerEar_L Dmax 2.55 ± 0.87 1.21 ± 1.31 1.39 ± 1.53 1.10 ± 0.94

BrainStem Dmax 1.93 ± 2.00 1.30 ± 1.96 1.60 ± 2.26 1.05 ± 1.33

SpinalCord Dmax 1.73 ± 1.39 1.24 ± 1.23 1.56 ± 0.29 1.20 ± 1.01

Eye_L Dmax 2.70 ± 1.31 2.17 ± 2.34 2.46 ± 0.57 1.80 ± 1.72

Eye_R Dmax 2.59 ± 1.53 2.49 ± 2.56 2.50 ± 0.99 2.38 ± 2.17

Lens_L Dmax 1.43 ± 1.62 0.32 ± 1.74 0.59 ± 0.26 0.27 ± 1.94

Lens_R Dmax 0.84 ± 0.16 0.36 ± 1.40 0.64 ± 1.38 0.20 ± 1.55

Pituitary Dmax 1.87 ± 1.70 1.47 ± 1.77 1.55 ± 1.27 1.25 ± 1.46

Mandible Dmax 2.95 ± 2.90 2.49 ± 2.13 2.86 ± 1.04 2.08 ± 3.64

TMJ_L Dmax 1.99 ± 2.00 1.65 ± 2.25 1.86 ± 1.66 1.44 ± 2.29

TMJ_R Dmax 2.59 ± 2.91 1.75 ± 1.19 2.36 ± 2.18 1.42 ± 1.54
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studies indicate that VQA can provide an opportunity for

evaluating TPS plans and possible for resource sparing, this is still

an indirect descriptive method which is performed without

practical measurements on a physical phantom, and might not be

able to detect errors in MLC positions due to T-nut or motor

failures. The MDose-based MLGMF suggested in this study strikes a

nice balance between DVHs metric and efficiency. Compared with

other comparative models, relatively low dose errors were

discovered between the PDose of MLGMF and GT (Figures 4-6).

The results of quantitative analysis are shown in Tables 2-4, which

further proves the accuracy of the proposed models.

Research on direct prePSQA dose prediction from 3D measured

dose for AI models is crucial, yet rare. Almost all prePSQA prediction

methods use 2D or 1D data or a combination of both as inputs for

predicting GPRs or identifying potential errors (11–22). Using only

this information as input for prePSQA prediction may cause a loss of
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spatial information about the complex dose distribution, and can

limit the model’s predictive ability. Yue et al. proposed a DL method

of dose prediction for nasopharyngeal carcinoma by taking advantage

of multiple sources of information, such as distance information,

binary mask information of OARs/targets, planning CT, and clinical

plans (40). They achieved values for the predicted dose error and

DVHs error that were 7.51% and 11.6% lower than those of the mask-

based method, respectively. Hirashima et al. and Tomori et al. also

found that combining multiple sources of input information could

improve the prediction and classification performance (17, 19, 20).

Recently, a new DVHs-based prePSQA prediction methodology was

developed by combining DL and ML techniques. This prediction

model achieved values for the area under curve, accuracy, sensitivity,

and specificity of 0.89 versus 0.88, 0.89 versus 0.86, 0.71 versus 0.71,

and 0.95 versus 0.91 for the measured and predicted doses,

respectively, indicating that this method was promising in terms of
FIGURE 7

Gamma analysis of GT and MLGMF.
FIGURE 6

A typical DVH comparison for an example patient in the test dataset among ground truth (solid line), IVPSQA (dash line), TransQA (dotted line), and
MLGMF (dash dot line). The second row is the zoomed details of the ROIs as indicated by the blue solid square in the first row.
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overcoming the limitations of GIs and improving the efficiency of

IMRT/VMAT delivery (31). With the aim of fully exploiting the

mutual promotion between the different modalities, we proposed the

MLGMF module to extract multi-scale features which are specific to

the CT and RTDose modalities. Unlike in previous studies, features

from both the whole-volume dose branch and the CT branch were

fused in each fusion module of our network.

For the PDose distributions shown in Figure 4, our proposed

models showed better performance, and the ResUNet model

performed worse. An interesting result was that most of the

values predicted by CCFNet and SCFNet were lower than the GT,

resulting in large negative areas in their difference maps, especially

for SCFNet. However, CPFNet and SPFNet showed the opposite

phenomenon. One possible reason for this is that the four models

differ in terms of the final feature fusion operation. To further

enhance the mutual interaction between the CT and RTDose

modalities, we replaced the CPFNet and SPFNet with cross-fusion

concatenation in the last stage. In this way, the mutual advantages

between different modalities could be further explored. From

Table 3, we compare our model with Swin-UNet, TransQA, and

IVPSQA methods, the quantitative metrics show that MLGMF

exhibits significant improvements over the previous three

methods, which means relatively low dose errors were discovered

between the PDose of MLGMF and GT. With regard to DVHs

metrics evaluation, Gronberg et al. reported that their predicted

DVHs metrics for the Dmax and Dmean of the OARs were within

2.7% and 2.0% (41). Nguyen et al. achieved overall mean values for

all OARs of within 5.1% of the prescription dose for Dmean (42).

Zhang et al. reported average voxel-based MAEs (normalized to the

prescription dose) of within 6.9% for all structures (43). In

comparison, our model achieved DVH metrics for Dmax and

Dmean for all OARs of within 2.4% and 1.3% (Table 4). More

specifically, compared with these methods studied for auto-

planning purposes by using only CT or RT dose as inputs, our

modules were trained based on the anatomical features extracted

from CT images and the dosimetric features from the MDose and

RTDose. The proposed models were able to operate directly on the

dose modalities to learn and extract their own spatial features, and

to improve the quality of representation for the further generation

of channel-wise features. Hence, our models achieved similar or

even better prediction accuracy on DVHs metrics compared with

the alternatives for H&N VMAT cases. In addition, we observed

that the deviations between the predicted and measured GPRs were

mostly within 6%. Recent publications support the use of plan

complexity or LINAC performance metrics to predict GPR for

IMRT/VMAT plans. Since most samples in the input data have

GPR values larger than 90%, and only a tiny fraction of samples has

GPRs lower than 90%, the unbalanced GPR data distribution could

result in large prediction errors. The proposed prePSQA approach

can generate robust GPR outcomes from high-quality PDose

results, which perfectly avoids the problem of data imbalance.

DL networks have good learning ability and can predict better

dose distribution through prior knowledge. Although our method

has advantages over other methods, DL networks still have some

shortcomings in dose prediction. It was found in the experiment
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that all four models in this paper predicted some unpredictable dose

points, and this uncertainty deserves further analysis. We

considered whether more constraint factors could be introduced

in the training process to solve this problem. There are several

potential limitations to this study. Firstly, the use of CT and RTDose

distributions as input information for the proposed model may

limit its predictive ability to some extent. Combining multiple

sources of information, such as target/OARs structures, treatment

plans and LINAC performance-related metrics, may increase the

predictive accuracy of the prePSQA model. The addition of more

relevant information to the input of the model in order to achieve

higher accuracy with fewer labor costs will be a topic for future

research. Secondly, although we enrolled 310 H&N cases with 620

VMAT arcs, IMRT, TOMO, etc. are widely used RT method for

H&N cases, due to the inherent requirements of the model training,

the number of patients was relatively small, and our conclusions

could be further supported by increasing the sample size and the

multimodal dataset in future studies. Last but not least, this work

focused on using a DL-based method to solve the prePSQA

problem, rather than the network itself. In the future, we hope to

refine the MLGMF approach to achieve higher precision accuracy.

Nevertheless, the actual delivered dose distribution based PDose

will be a breakthrough in predicting prePSQA, in combination with

the novel multi-level gated modality fusion networks, the new

prePSQA framework is capable of driving improvements in RT

and may become better than current or past clinical practice. AI

methods have shown good results in radiotherapy dose prediction,

but it is not yet appropriate to directly use the measurement dose

prediction and replace manual measurement. After further

improvements to our approach, it may be a great help for

adaptive RT and play a considerable role in future prePSQA work.
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