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Zachary Reitman1, John Ginn1, Jingtong Zhao1,
Justus Adamson1, Kyle Lafata1,3,4, Evan Calabrese3,
John Kirkpatrick1 and Chunhao Wang1*

1Department of Radiation Oncology, Duke University, Durham, NC, United States, 2Medical Physics
Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China, 3Department of Radiology,
Duke University, Durham, NC, United States, 4Department of Electrical Engineering, Duke University,
Durham, NC, United States
Purpose: This work investigates the use of a spherical projection-based U-Net

(SPU-Net) segmentation model to improve meningioma segmentation

performance and allow for uncertainty quantification.

Methods: A total of 76 supratentorial meningioma patients treated with

radiotherapy were studied. Gross tumor volumes (GTVs) were contoured by a

single experienced radiation oncologist on high-resolution contrast-enhanced

T1 MRI scans (T1ce), and both T1 and T1ce images were utilized for segmentation.

SPU-Net, an adaptation of U-Net incorporating spherical image projection to

map 2D images onto a spherical surface, was proposed. As an equivalence of a

nonlinear image transform, projections enhance locoregional details while

maintaining the global field of view. By employing multiple projection centers,

SPU-Net generates various GTV segmentation predictions, the variance

indicating the model’s uncertainty. This uncertainty is quantified on a pixel-

wise basis using entropy calculations and aggregated through Otsu’s method for

a final segmentation.

Results/conclusion: The SPU-Net model poses an advantage over traditional

U-Net models by providing a quantitative method of displaying segmentation

uncertainty. Regarding segmentation performance, SPU-Net demonstrated

comparable results to a traditional U-Net in sensitivity (0.758 vs. 0.746), Dice

similarity coefficient (0.760 vs. 0.742), reduced mean Hausdorff distance (mHD)

(0.612 cm vs 0.744 cm), and reduced 95% Hausdorff distance (HD95) (2.682 cm

vs 2.912 cm). SPU-Net not only is comparable to U-Net in segmentation

performance but also offers a significant advantage by providing uncertainty

quantification. The added SPU-Net uncertainty mapping revealed low

uncertainty in accurate segments (e.g., within GTV or healthy tissue)

and higher uncertainty in problematic areas (e.g., GTV boundaries, dural tail),

providing valuable insights for potential manual corrections. This advancement
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is particularly valuable given the complex extra-axial nature of meningiomas

and involvement with dural tissue. The capability to quantify uncertainty makes

SPU-Net a more advanced and informative tool for segmentation, without

sacrificing performance.
KEYWORDS

meningioma, uncertainty quantification, radiation therapy, deep learning,
auto-segmentation
1 Introduction

Meningiomas are the most common primary brain tumors; while

usually benign, these tumors can lead to significant morbidity (1–3).

Given their origin from meningothelial cells, meningiomas can have

significant skull-brain interface characteristics with extracranial

extension and spread along the dura (1, 2). Treatment is often

individualized and planned based on anatomical location as well as

World Health Organization (WHO) classification (1–3). Treatment

typically involves a combination of observation, surgical resection,

and radiation therapy. Radiation therapy plays a large role in

mitigating recurrence after resection (4–8) for WHO grade 1 and

grade 3 tumors as well as being the primary treatment modality for

unresectable meningiomas (1, 9, 10). Auto-segmentation tools, i.e.

deep neural network (DNN)models, have promising implications for

use in radiation therapy planning which require a gross tumor

volume (GTV) to be contoured (11–14). These DNNs have the

potential to reduce contour variability, leading to improved clinical

outcomes while increasing workflow efficiency (11–13). Most

automated brain tumor segmentation efforts to date have been

focused on gliomas (15–17), despite meningiomas being the most

common type of primary brain tumor. The few segmentation studies

on meningiomas are commonly related to general volume

segmentation, for clinical use in analyzing tumor growth (18–21).

These meningioma segmentation studies are based on contrast-

enhancing tissue observed in magnetic resonance imaging (MRI)

(18–21). Auto-segmentation of meningioma for radiotherapy

targeting is even less studied. Meningioma patients that are treated

with radiation are either post-resection or have unresectable tumors

where delineation of meningioma GTVs incorporates an additional

layer of complexity. GTV segmentation proves to be a challenge due

to meningioma’s extra-axial characteristic locations and up to 72%

having an associated dural tail (22). Meningioma GTV segmentation

may include the dural enhancement and invaded bone in addition to

the main contrast-enhancing mass (23, 24). The extension of the

dural tail segmentation can be subjective and difficult to define.

High-performing segmentation DNNs can serve as a valuable tool;

however, model performance is heavily reliant on the robustness of the

training data. When used for complex structures and at higher risk

clinical scenarios, the accuracy and accountability of these models are

an area of concern (25). Predictions made without uncertainty
02
quantification may not be trustworthy causing DNN models to

create a false sense of certainty (25, 26). DNNs sometimes make

unexpected incorrect predictions and the need for uncertainty

quantification is apparent. There are numerous studies based on

analyzing model uncertainty through two approaches: model-based

uncertainty (epistemic) and data-based uncertainty (aleatoric) (25, 26).

Epistemic uncertainty quantification methods include Bayesian neural

networks (27, 28) and Monte Carlo dropout (29, 30), while aleatoric

uncertainty methods include test-time augmentation (31, 32).

However, there is not a standard method to quantify uncertainty.

Specifically, a pixel-wise uncertainty quantification method remains

unavailable. A pixel-wise uncertainty metric would quantify the

likelihood that each pixel belongs in the segmentation region,

providing a corresponding uncertainty quantification with each

segmentation prediction (33).

This innovative work investigated the use of spherical image

projection to quantify DNN segmentation aleatoric uncertainty for

meningioma radiotherapy target delineation. Inspired by spherical

camera image processing (34), our group developed a novel

spherical projection-based method to enable image segmentation

uncertainty estimation of DNN models. Such design emphasizes

locoregional image texture details near the projection center while

maintaining the global anatomy information (35). Previously, our

group has demonstrated that our spherical projection design can

successfully quantify uncertainty in multi-parametric MRI-based

glioma segmentation (33). This work is the first of its kind in deep

learning-based meningioma segmentation with uncertainty

analysis. This feature serves as an invaluable tool for clinicians,

offering visual cues that facilitate efficient correction of deep

learning segmentation outputs. We hypothesize that the

implementation of spherical projection-based segmentation and

uncertainty quantification can hold great value in meningioma

radiotherapy target delineation.
2 Materials and methods

2.1 Patient data

The study cohort included 76 meningioma patients with

intracranial meningiomas of varying WHO grades. All patients
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underwent radiation therapy within the Duke University

Healthcare System. This study (Pro00110695) was conducted

under the approval of Duke University Health System

Institutional Review Board. Exclusion criteria included tumors

with a volume less than 10 mm3, infratentorial located tumors,

and postoperative cases with no residual gross tumor. Each patient

had two standard MRI sequences as a multi-parametric MRI

(mpMRI) protocol: T1-weighted (T1), and contrast-enhanced T1-

weighted (T1ce). MRI images were pre-processed by co-registering

to the patient’s planning computed tomography (CT) images and

interpolated to a resolution of 1x1x1 mm3. The GTV for the

purpose of radiation treatment was contoured by a radiation

oncology physician, serving as the ground truth (GT) in this

segmentation study. Out of the cohort, 6 patients’ GTVs were

comprised with more than one lesion. The average GTV volume

was 31.84 cc (20-80% percentile range: 3.77- 48.16 cc). Figure 1

illustrates an example of the two MRI sequences with a

corresponding ground-truth segmentation.
2.2 Model design

2.2.1 Spherical projection
The spherical image projection methodology proposed by Yang

et al. (33) was adopted in this work; where it was shown to increase

segmentation accuracy and quantify segmentation uncertainty in

the use of glioblastoma segmentation. Specifically, the planar MRI

images are projected onto a sphere as a spherical MRI image.

Therefore, each pixel within the original image can be projected

onto the spherical surface as a form of non-linear image

transformation. Spherical image projection causes inhomogeneous

scaling over the original image, illustrated in Figure 2A. Image

details near the center become magnified, enhancing local image

details, while preserving the global field-of-view (FOV).

The forward projection is defined as the projection of the planar

image to a spherical surface. Computationally, an arbitrary sphere is

defined with a center O and a radius of r, illustrated laterally in

Figure 2B. The planar image P is placed at a projection distance d

from the center of the sphere. The planar image with a size of h x h
Frontiers in Oncology 03
is projected onto the spherical surface by quantifying h, d and r to

determine the projection geometry. The spherically projected image

is subsequently obtained by projecting each individual planar image

pixel onto the pre-defined sphere along the radius. Backward

projection is the inverse operation, projecting the spherical image

back to planar, illustrated laterally in Figure 2B. The design of the

sphere (h=0.5, r=1, d=0.3) from our group’s prior effort (33) with

the smallest image quality degradation, quantified using the

structural similarity index (SSIM), was adopted for this work.

The spherically projected images were processed as nonlinear

image transforms and therefore, reside in the Cartesian plane. The

locoregional magnification is specified by the location of the

designated projection center O. A group of spherical projected

images can be created by utilizing projection centers at varying

locations in the original planar image, illustrated in Figure 3. The

variation in segmentation predictions arising from multiple

spherical projection images reflects the internal uncertainty of the

deep learning model.

2.2.2 Overall model design
A U-Net deep learning network was constructed, composed of

encoding and decoding segments, illustrated in Figure 4A. Each

encoding layer is composed of two sequential convolutions with

rectified linear Unit (ReLU) operations followed by a max pooling

layer. Each decoding layer is constructed as a concatenation

followed by two sequential up-convolutions with ReLU

operations. The encoding and decoding layers are connected

through concatenation operations. The final 1x1 convolution

layer with a sigmoid operat ion produces the binary

segmentation prediction.

The proposed spherical projection-based U-Net (SPU-Net)

workflow followed our previous work (33), including both

forward and backward spherical projection, which is illustrated in

Figure 4B. The original planar 2-channel mpMRI input is denoted

as X, with the image center shown as a yellow dot. While

maintaining the pre-defined sphere geometry, multiple forward-

projected spherical images, Xs, can be obtained using different

projection centers. By varying the location of the projection

center, the locoregional magnification is varied. These projection
FIGURE 1

MRI sequences of T1ce and T1 with corresponding ground-truth segmentation.
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centers are uniformly distributed around the image center, with k

projection centers, illustrated as white dots in Figure 4B. In this

study, a total of k=121 projection centers were used. The SPU-Net

workflow for a given 2-channel mpMRI image set X is

summarized as:
Fron
1. Original input 2 channel mpMRI image set X with

dimension of 192 x 192 x 2.

2. Forward projection with k different projection centers

obtains a set of k 2-channel spherically projected images

Xs. Performing spherical projection and use of padding

scales the input tensor to k x 256 x 256 x 2.

3. The output of the U-net is the spherically projected

segmentation masks, represented as a set of k probability

distribution maps on the spherical plane Ms. These are

obtained as the output tensor with dimension of k x 256 x

256 x 1.

4. Backward projection obtains a set of k probability

distribution maps in the Cartesian plane M.
tiers in Oncology 04
5. Binarization using Otsu’s method (36) provides the final

segmentation result with a dimension of 256 x 256, rescaled

to the original image size of 192x192.

6. Uncertainty quantification reflects the image segmentation

uncertainty of each pixel with a final uncertainty map of

dimension 256 x 256, rescaled to the original image size

of 192x192.
The final segmentation result is obtained by binarization using

Otsu’s method. Otsu’s method was applied to the sum of all model

predictions for a given MRI slice to obtain a global threshold, T. The

binarization operation analyzes each pixel (i,j) within X that is

accompanied by k independent segmentation predictions withinM.

If the average value of a pixel (i,j) observed within M is above the

threshold T, the pixel will be binarized as 1. The binarization

operation to quantify the value of pixels (i,j) in Z is designed as:

Z(i, j) =
1,   if   (ov

n=1M
n
(i,j))=k  > T

0,   otherwise

(

FIGURE 2

(A) General schematic of spherical image projection. (B) Forward projection: projection of a planar image onto a spherical surface. Backward
projection: projection of a spherical image onto the Cartesian plane.
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FIGURE 3

Spherically projected images with varying projection center locations. Four different projection centers (A-D) are shown with respective
spherical projections.
FIGURE 4

(A) U-Net architecture. (B) Schematic diagram of overall SPU-Net model workflow.
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Uncertainty U is quantified through the entropy of the k

independent segmentation predictions. Given the probability

distribution M, there are a total of v unique values, and the

frequency observed of each unique value v is p̂ v
(i,j). The

uncertainty quantification for each pixel ( i , j) in U is

approximated as:

U(i,j) = −o
V

v=1
p̂ v
(i,j)ln(p̂

v
(i,j))  

A final uncertainty score, adopted from the Brain Tumor

Segmentation (BraTS) 2020 uncertainty challenge (QU-BraTS

challenge 2020) (37) definition is quantified for use in future

meningioma segmentation uncertainty studies. The uncertainty

map, U, is normalized to 0-100, with uncertainty thresholds set as

t = 1,2,3.,100. At each threshold, Z(i,j) segmentation results with

associated U(i,j) < t are considered in subsequent calculations. The

filtered segmentation results in Z(i,j) are compared with the

corresponding ground truth using Dice similarity coefficient

(DSC). At each t, the number of true positive and true negative

pixels are obtained based on the Z(i,j) after thresholding, specified as

TPt and TNt. The ratio of filtered true positive (FTP) pixels and

ratio of filtered true negative (FTN) pixels at each t to the unfiltered
Z (TP100 and TN100) is defined as:

FTPt =  
TP100 − TPt

TP100

FTNt =  
TN100 − TNt

TN100

Based on these definitions, three curves and their corresponding

area under the curve (AUC) can be obtained. AUC1 is the area

under the curve of the DSC over t, with a high AUC1 indicating

accurate segmentation predictions have low uncertainty. Therefore,

a high AUC1 represents a high confidence in the correct

segmentation results. AUC2 is the area under the curve of FTP

over t, such that (1-AUC2) will penalize true positive predictions

with associated low confidence. AUC3 is the area under the curve of

FTN over t, such that (1-AUC3) will penalize true negative

predictions with associated low confidence. Then, the final

uncertainty score, U-score, is defined as:

Uscore =  
AUC1 + (1 − AUC2) + (1 − AUC3)

3

Collectively, the uncertainty score ranges from 0 to 1, which

rewards high confidence in correct predictions and low confidence

in incorrect predictions while penalizing low confidence for pixels

with correct predictions. Therefore, the U-score is expected to be

high when Z(i,j) is correct with a low U(i,j) and when Z(i,j) is

incorrect with a high U(i,j). In other words, a high U-score is

expected when (1) high confidence in the correct segmentation

prediction and (2) low confidence in the incorrect predictions.

2.2.3 Comparison study
The proposed spherical projection-based model, SPU-Net, was

compared to a more traditional U-Net model. The U-Net model

contained the same U-Net architecture backbone as SPU-Net, with
Frontiers in Oncology 06
only the pre and post processing altered (i.e. no spherical

projection). This U-Net model utilized the same mpMRI image

sets with test-time augmentation of 8 augmentations per MRI slice

which includes rotations, translation, and flipping. In the

comparative analysis, the SPU-Net model and the classic U-Net

model were trained in the same fashion using a 7:3 train/test sample

ratio with the same train/test samples. Randomization into training

and testing groups was performed per subject with all meningioma

tumor-bearing slices for each subject used for either training or

testing. The number of image slices used for training, validation,

and testing were 1762, 489, and 284. Both models were optimized

for their specific data input. During training, the loss function was

set as binary cross-entropy.

This comparison analysis was to evaluate the performance of the

SPU-Net methodology to a baseline traditional segmentation model.

The SPU-Net’s output combo of mask and uncertainty map was

visually inspected against the U-Net’s output to examine the value for

meningioma GTV segmentation purposes. The two models were

compared quantitatively through metrics of accuracy, sensitivity,

specificity, 2D Dice similarity coefficient, mean Hausdorff distance

(mHD), and 95% Hausdorff distance (HD95). The mHD is the mean

distance between the patient’s GT and Z surface points, while the

HD95 is the 95th percentile distance (38).
3 Results

Figure 5 shows three examples of outputs from the U-Net and

SPU-Net models. In all three examples, SPU-Net’s segmentation

displays more visual similarity to the GT compared to U-Net’s

segmentation. The most obvious visual discrepancy is observed

around the tumor edges and near dural vessels, for SPU-Net and

more so for U-Net predictions. In the bottom examples, with 3

tumors, SPU-Net over-segmented the dural tail region of the left-

most lesion with U-Net not able to segment the middle lesion.

Similarly observed in other test cases, U-Net was observed to have

difficulty delineating small lesions, especially those in proximity

with vasculature. Generally, SPU-Net is observed to have better

segmentations when meningiomas are near dural vessels and

generally have better dural tail segmentations. SPU-Net can better

delineate and differentiate between meningioma tissue and

neighbouring blood vessels.

The SPU-Net’s segmentation mask and uncertainty map

showcase a correlation. Segmentation errors are reflected in the

uncertainty map with the region having high uncertainty. Accurate

regions in the segmentation mask are reflected to yield low

uncertainty. This observation meets the expectation of a favored

U visualization. SPU-Net achieved a U-score of 0.718 ± 0.183, which

will be used as benchmark results for future meningioma

segmentation uncertainty studies.

Table 1 summarizes the segmentation results evaluated between

the SPU-Net and traditional U-Net models. While both models

achieved acceptable results, SPU-Net achieved slightly higher

sensitivity and DSC values. SPU-Net achieved comparable

sensitivity (0.758 vs. 0.746) and Dice similarity coefficient (0.760

vs. 0.742) results from U-Net. SPU-Net also had smaller mHD
frontiersin.org
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(0.612 cm vs 0.744 cm) and smaller HD95 (2.682 cm vs 2.912 cm).

Additionally, smaller variances are observed in SPU-Net results.

These numerical result improvements, though promising, did not

achieve statistical significance in Wilcoxon signed-rank tests.
4 Discussion

In this work, a novel method to quantify deep learning

segmentation uncertainty was investigated for use in meningioma

radiotherapy target delineation. This novel method of spherical

projection allows for projecting planar MR images onto a spherical

surface, which could be considered as a form of nonlinear image

transformation. Utilizing multiple projection centers across the FOV,

structures are magnified at varying scales. The spherical projection-

based method obtains multiple independent segmentation

predictions from a single mpMRI input and allows for improved

segmentation and most importantly, uncertainty quantification.

Meningioma segmentation presents a significant challenge even

for experienced radiation oncologists due to the inherent

subjectivity surrounding the delineation of GTV boundaries. GTV

boundaries often overlap with blood vessels specifically in the dural

tail segmentation region, where the extent of the dural tail
Frontiers in Oncology 07
segmentation is based on judgement and experience. Some

physicians may be more cautious and extend the GTV edges and

dural tails further than others. SPU-Net addresses the challenge of

meningioma segmentation and the major concern regarding DNN

models of not having a confidence metric. SPU-Net provides a

pixel-wise uncertainty map to accompany the binary segmentation

prediction, to provide indication of prediction confidence. The

pixel-wise uncertainty map in the same FOV as the segmentation

mask substantially enhances the interpretability of a binarized

segmentation mask. Figure 5 illustrates the value of the

uncertainty map. With meningioma being a more challenging

segmentation task due to interobserver variability, there is a

higher likelihood of segmentation errors where the uncertainty

map offers visual cues on the anatomical locations of these errors.

The uncertainty map highlights the areas of high uncertainty,

predominantly observed around the GTV periphery, regions

overlapping with dural vessels, and the dural tail region. This

observation corresponds to known areas of clinical uncertainty

for oncologists. This alignment between SPU-Net’s uncertainty

map and the clinical challenges faced by radiation oncologists

demonstrates its potential for clinical adoption, providing more

interpretable and clinically relevant results that reflect oncologists’

real-world experiences.
TABLE 1 SPU-Net and U-Net accuracy, sensitivity, specificity, Dice coefficient, mean Hausdorff distance, and 95% Hausdorff distance results.

Accuracy Sensitivity Specificity DSC mHD HD95

U-Net 0.997 ± 0.002 0.746 ± 0.237 0.999 ± 0.001 0.742 ± 0.207 0.744 ± 1.724 2.912 ± 3.323

SPU-Net 0.997 ± 0.002 0.758 ± 0.182 0.999 ± 0.001 0.760 ± 0.143 0.612 ± 0.566 2.682 ± 2.435
FIGURE 5

U-Net and SPU-Net output for three examples of MRIs and GTs.U-Net output of segmentation mask, Z. SPU-Net output of segmentation mask,
Z and uncertainty map, U.
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The results indicate comparable performance between SPU-Net

and U-Net in quantitative segmentation metrics of sensitivity, DSC,

mHD, and HD95. However, SPU-Net was observed to handle

complex meningioma shapes and dural tail segmentations more

effectively compared to U-Net. By incorporating spherical

magnification, the SPU-Net GTV segmentations had better dural

tail segmentations compared to the traditional U-Net model

(Figure 5). U-Net sometimes struggled to segment areas where

the meningioma overlapped with dural vessels. In certain instances,

U-Net failed to generate a prediction altogether in such complex

regions, highlighting the limitations of the traditional model in

handling these challenging anatomical features. SPU-Net’s ability to

handle the challenging dural tail region more effectively highlights

its potential. Given the extra-axial nature of meningiomas,

segmentation difficulties were expected for both models, but any

improvement, especially in the dural tail region, is notable.

This study highlights the importance of incorporating

uncertainty quantification into deep learning models, specifically

through the use of spherical projection-based DNNs for

meningioma segmentation, a method that has also shown

promise in glioblastoma segmentation. Though the results are not

statistically significant, the technical innovation justifies further

exploration. A key advantage of spherical projection is its ability

to generate an uncertainty map that is spatially aligned with the

segmentation prediction. This uncertainty map provides valuable

insights into the underlying mechanisms driving the DNN’s

decisions, enhancing interpretability. For clinical applications, the

uncertainty map offers clinicians a clearer understanding of the

model’s predictions, helping them make more informed decisions

and increasing their confidence in adopting the model. Future

studies with larger cohorts and in different clinical applications

could provide a deeper understanding of SPU-Net’s full potential

and its broader applicability across different tumor types and

segmentation challenges. The use of spherical projection is a

model-agnostic method, it can be applied to other DNN

architectures and for other segmentation applications (35).

This study can be further analyzed and improved by being

more inclusive to inter-personal variations in GTV segmentation

and incorporating these into the study on a quantitative level. This

study utilized a GTV contoured by one singular physician, which

introduces bias to the study. A more accurate representation of the

ground truth may be an average of multiple physicians’ GTV

contours. The variability between multiple physicians’ GTV

contours could also represent a cl inical ly acceptable

uncertainty range.

The challenge of meningioma GTV subjectivity in segmentation

can also be addressed by incorporating a larger dataset; to support a

publicly available large dataset, the image data included in this work

will be submitted to the 2024 BraTS meningioma radiotherapy

segmentation challenge. The results in this study showed promising

improvements through the incorporation of spherical projections.

This issue could be potentially overcome by utilizing a larger cohort
Frontiers in Oncology 08
and increasing the sample size. With a larger cohort, the study can

also incorporate infratentorial located tumors. Infratentorial tumors

are particularly challenging to segment due to the complex anatomy

of the posterior fossa (a vast number of blood vessels) and frequent

imaging artifacts observed in this region, making it particularly

tricky for an MRI only based segmentation task. The inclusion of

CT scans is being considered to facilitate infratentorial tumor

segmentation. Expansion upon this current study will require re-

optimizing the SPU-Net workflow to be more robust to the

variation in anatomically located meningiomas.
5 Conclusion

A spherical projection-based U-Net (SPU-Net) was successfully

developed for meningioma segmentation using multi-parametric

MRI. In a comparison study against a classic U-Net, SPU-Net

achieved comparable results of sensitivity, DSC, mHD, and HD95.

While comparable to U-Net, SPU-Net has the added benefit of

providing uncertainty quantification in the form of an uncertainty

map which is spatially aligned with the segmentation prediction.

This uncertainty map closely matches clinical expectations,

accurately reflecting areas where oncologists typically face

difficulty in delineating meningiomas, such as regions overlapping

with the skull, blood vessels, and the dural tail. These regions are

known to have higher uncertainty in manual delineation, and SPU-

Net’s results mirror this clinical challenge. By providing an

interpretable outcome that highlights these uncertainties

associated with segmentation, SPU-Net significantly enhances the

potential for clinical adoption after future preclinical validation

studies using a larger dataset, bridging the gap between automated

systems and human expertise in the pursuit of precision medicine.
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