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Purpose: Functional radiotherapy avoids the delivery of high-radiation dosages

to high-ventilated lung areas. Methods to determine CT-ventilation imaging

(CTVI) typically rely on deformable image registration (DIR) to calculate volume

changes within inhale/exhale CT image pairs. Since DIR is a non-trivial task that

can bias CTVI, we hypothesize that lung volume changes needed to calculate

CTVI can be computed from AI-driven lobe segmentations in inhale/exhale

phases, without DIR. We utilize a novel lobe segmentation pipeline

(TriSwinUNETR), and the resulting inhale/exhale lobe volumes are used to

calculate CTVI.

Methods: Our pipeline involves three SwinUNETR networks, each trained on

6,501 CT image pairs from the COPDGene study. An initial network provides

right/left lung segmentations used to define bounding boxes for each lung.

Bounding boxes are resized to focus on lung volumes and then lobes are

segmented with dedicated right and left SwinUNETR networks. Fine-tuning

was conducted on CTs from 11 patients treated with radiotherapy for non-

small cell lung cancer. Five-fold cross-validation was then performed on 51

LUNA16 cases with manually delineated ground truth. Breathing-induced

volume change was calculated for each lobe using AI-defined lobe volumes

from inhale/exhale phases, without DIR. Resulting lobar CTVI values were

validated with 4DCT and positron emission tomography (PET)-Galligas

ventilation imaging for 19 lung cancer patients. Spatial Spearman correlation

between TriSwinUNETR lobe ventilation and ground-truth PET-Galligas

ventilation was calculated for each patient.

Results: TriSwinUNETR achieved a state-of-the-art mean Dice score of 93.72%

(RUL: 93.49%, RML: 85.78%, RLL: 95.65%, LUL: 97.12%, LLL: 96.58%),

outperforming best-reported accuracy of 92.81% for the lobe segmentation

task. CTVI calculations yielded a median Spearman correlation coefficient of 0.9

across 19 cases, with 13 cases exhibiting correlations of at least 0.5, indicating

strong agreement with PET-Galligas ventilation.
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Conclusion: Our TriSwinUNETR pipeline demonstrated superior performance in

the lobe segmentation task, while our segmentation-based CTVI exhibited

strong agreement with PET-Galligas ventilation. Moreover, as our approach

leverages deep-learning for segmentation, it provides interpretable ventilation

results and facilitates quality assurance, thereby reducing reliance on DIR.
KEYWORDS

lobe segmentation, CT-ventilation, artificial intelligence, transformer networks,
functional radiotherapy, deformable image registration, medical image segmentation
1 Introduction

The lungs are situated within the thoracic cavity, enclosed by

the ribcage. Although the right and left lungs appear similar, they

exhibit notable anatomical differences. The right lung consists of

three lobes: right upper lobe (RUL), right middle lobe (RML), and

right lower lobe (RLL). The left lung consists of only two: left upper

lobe (LUL) and left lower lobe (LLL). Lobar boundaries are

characterized by fissures that appear as thin white lines on

computed tomography (CT) scans. There is variability in lobe

fissures, which may be complete when the lobes are connected

solely at the hilum by the bronchi and pulmonary vessels,

incomplete when there are areas of parenchymal fusion between

the lobes, or entirely absent (1). In the right lung, the oblique fissure

divides the lower and middle lobes, and the horizontal fissure

divides the upper and middle lobes (2). The left lobe contains

only one oblique fissure separating the upper and lower lobes (2).

Radiologists and machine learning models alike identify the fissure

locations in the lungs to determine the boundaries between lobes

and subsequently perform the task of lobe segmentation.

Lobe segmentation is crucial for various medical applications,

including disease diagnosis, severity assessment, and treatment

planning (3). Previous research has shown that lung regions

receiving high doses of radiation (> 20 Gy) experience a decrease

in post-treatment lung function, as measured by decreased CTVI

values (4). To improve lung cancer treatment, functional

radiotherapy has been proposed. This approach aims to avoid

delivering high radiation doses to high-functioning, or high-

ventilated, lung areas during radiotherapy treatment planning.

Methods to calculate CTVI typically use deformable image

registration (DIR), in which lung voxels are registered from the

inhale to the exhale phase of the breathing cycle, and the

displacement of each voxel is measured (4). However, iterative DIR

is a non-trivial task that can potentially bias CTVI due to its long

computation time, potential inaccuracies in alignment, and inherent

uncertainty (5). Therefore, the use of a DIR-free automated lung lobe

segmentation method as a means for calculating CTVI based on

volume changes is a potential avenue to be explored.

While healthy patients pose little challenge to existing lobe

segmentation methods, the accuracy of the segmentations can be

significantly worsened by the presence of disease states. It has been
02
demonstrated that conditions such as COVID-19 can affect the

appearance of lung tissue and cause existing methods to fail (6).

Similarly, parenchymal fibrosis associated with chronic obstructive

pulmonary disorder (COPD) can pose similar challenges to existing

methods since the density of the fibrotic tissue is similar to that of

tissue outside the lung, which can obscure fissures and affect

thresholding-based algorithms (6).

Previous works on deep learning-based segmentation have been

faced with the issue of downsampling images without losing

substantial contextual information in order to fit the memory

capacity of graphics processing units (GPUs) needed for model

training. As shown in Figure 1, fissure identification is challenging

at lower resolutions, but due to memory requirements, it is a

common procedure to downsample original CT scans from a full-

resolution to a lower-resolution space. To preserve contextual

information, previous works have employed a random sampling

tactic, resizing the original 512x512x256 CT scan to a lower

resolution of 256x256x128 and then random sampling in

128x128x64 patches (7). The issue with such approaches,

however, is in the first downsampling step, which diminishes the

resolution of the images by a factor of 2, thus possibly leading to a

loss of essential information that could have guided the model to a

better result.

While convolutional neural networks (CNNs), proposed in the

1980s, have been widely used for medical imaging segmentation

tasks, newer machine learning models have improved upon the

basic CNN. Ronneberger et al. took the basic CNN structure to

create the U-NET, widely used for medical imaging segmentation

tasks. This “U-shaped” network consists of an encoder, a

contracting path to capture contextual information, and a

decoder, an expanding path that enables localization (8). In

contrast to CNNs which are notably constrained to the local

features captured by the kernel, the innovative transformer

architecture provides the capability to capture more global

features. Recent advancements in large language models are in

large part thanks to the transformer architecture, introduced in the

famous “Attention is All You Need” paper (9). Expanding upon the

basic transformer network, the vision transformer (ViT) provided

the precedent and foundation for implementing transformers in

computer vision tasks (10). The UNETR architecture developed by

Hatamizadeh et al. replaces the convolutional encoding arm of a
frontiersin.org
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traditional UNET with a ViT encoder, achieving state-of-the-art

performance at the time in the Beyond the Cranial Vault (BTCV)

abdominal CTmulti-organ segmentation challenge (11). In order to

translate images into a format compatible with the ViT, 16x16 pixel

large patches of the image are taken and linearly projected.

However, images often vary in scale and require higher resolution

than the 16x16 patches can capture. The Swin Transformer resolves

this limitation by dividing the image into a variety of patches

ranging from 4x4 to 16x16 in order to capture the different scales

and resolution of details in an image (12). This approach generalizes

into the third dimension and is utilized in the SwinUNETR,

replacing the ViT encoder with a Swin Transformer. This

improved architecture is demonstrated to provide superior

performance compared to its ViT-based predecessor in the BTCV

challenge (13).

In this study, we propose the novel three SwinUNETR

(TriSwinUNETR) ensemble pipeline network for CT lobe

segmentation, using the proven state-of-the-art transformer-based

machine learning architecture. Furthermore, we break down the

lobe segmentation task into three steps to prevent loss of contextual

information caused by image downsampling. Then, we train the

machine learning pipeline in multiple datasets and disease states to

ensure that the model is generalizable to multiple patients. Lastly,

we test the model on a clinical task for calculating CTVI of lung

cancer patients prior to undergoing radiotherapy.
Frontiers in Oncology 03
2 Materials and methods

2.1 COPDGene and preprocessing

CT images from the COPDGene dataset were used to train the

three SwinUNETR networks comprising our TriSwinUNETR

model. COPDGene data was acquired from an observational

study conducted to identify genetic factors that contributed to

COPD (14). Images were acquired using multi-detector CT

scanners, with 3D volumetric scans acquired on both full

inspiration (200 mAs) and end-of-normal expiration (50 mAs)

(14). For each patient, the scan is composed of sub-millimeter

spaced (0.625 - 0.9 mm) 512x512 slices with a pixel spacing of 0.5

mm (14). The severity of COPD is categorized by a value for the

Global Initiative for Obstructive Lung Disease, or GOLD score.

GOLD scores range from 0 to 4, where an increasing score denotes

increased severity. Our model was trained on the full range of

GOLD scores, as shown in Table 1.

A total of 13,002 unique breath-hold CT scans, or 6,501 inhale-

exhale CT image pairs, from all GOLD scores at the initial time

point of the COPDGene imaging study were preprocessed prior to

the training phase. Scans were first converted from Hounsfield

units, which are calculated based on the attenuation coefficient of

the X-ray beam, to density values ranging from 0 to 1 (15). All lung

tissues fall within this density range while excluding denser tissue
FIGURE 1

Loss of contextual information upon downsampling. The image on the left is a COPD Gold 1 case at resolution 512x512x649; the endpoints of
fissures are shown with arrows. On the right, the same image was downsampled with nearest neighbor interpolation to 128x128x128, and upon
visual inspection, the horizontal fissure on the right lung is not clearly identified.
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and bone. In order to satisfy computational and memory

constraints, the initial full-resolution training CT scans and their

corresponding masks were then downsampled with nearest-

neighbor interpolation to a resolution of 128x128x128.
2.2 SwinUNETR training

This paper proposes a lobe segmentation pipeline,

TriSwinUNETR, composed of three SwinUNETR networks. The

overview of the SwinUNETR architecture is shown in Figure 2. The

SwinUNETR is a “U-shaped” network composed of a Swin-

transformer encoder and a CNN-based decoder with skip

connections at each resolution. The encoder begins with a patch

partition layer and then proceeds to contain 4 stages comprising 2

transformer blocks each. Each stage contains a windowmulti-head self-

attention transformer mechanism, applied individually within each

partition, and a sliding window multi-head self-attention transformer
Frontiers in Oncology 04
mechanism, applied across different local windows. Patch merging

occurs at the end of each stage. Encoded feature representations are

concatenated to the decoder input via skip connections at each

resolution along the path. In each of the four stages, output features

are reshaped and sent to a convolutional residual block. The final

segmentation is outputted using a 1x1x1 convolutional layer and

softmax activation function. Hyperparameter and optimizer details

are included on the - Supplementary Material page.

As shown in Figure 3, an initial network denoted as Lung

SwinUNETR provides right and left lung segmentations on a

resolution space of 128x128x128, which are then subsequently

utilized to determine bounding boxes for each lung. The bounding

boxes acquired from the left and right lung segmentations from the first

network are then upsampled and localized back onto the original CT

scan, which is at a full resolution of 512x512x512. Each individual lung

is then cropped from the original scan, downsampled back to

128x128x128, and provided as input to a dedicated SwinUNETR

network that is trained to output the corresponding amount of

segmentation classes for lobes in that lung. This strategy only

downsamples the lung region instead of the entire CT scan for the

task of lobe segmentation, thus preserving a substantial amount of

contextual information.
2.3 Post-processing

After each model forward pass, the result was dusted with an

implementation of a block-based union-find algorithm. All

connected components were evaluated with a connectivity of 26

and a threshold of 5000 voxels for the initial segmentation and 3000

voxels for the subsequent segmentations was used for dusting.
FIGURE 2

An overview of the SwinUNETR architecture. The encoder contains four stages. Each stage is composed of a window multi-head self-attention
(W-MSA) transformer block, a sliding window multi-head self-attention (SW-MSA) transformer block, and a patch merging mechanism. The decoder
reshapes output features that are sent to a convolutional block up on the path. The encoder and decoder are connected via skip connections.
A softmax activation function outputs the final segmentations.
TABLE 1 CODPGene training data.

Gold Score Qty

0 4387

1 787

2 1926

3 1164

4 606

Uncategorized 1782
Number of CT images per GOLD score.
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2.4 Fine-tuning and testing datasets

As shown in Table 2, two datasets were used to finetune the L

Lobe SwinUNETR and R Lobe SwinUNETR networks. The first

fine-tuning step was done on 22 4DCT scans of non-small cell lung

cancer patients, with lobe segmentations manually delineated by

experts. These scans were obtained as part of a study to incorporate

lung function imaging into radiation therapy to preserve function

after treatment. Of the 202 inhale and exhale phases from the 101

participants in the study, 22 were randomly selected after validation

of image quality (16).

The second dataset used is a subset of the LUNA-16 dataset

with lobe segmentations manually created by radiologists. The

LUNA-16 dataset was originally a dataset of 888 scans selected

from the LIDC-IDRI dataset of lung CT scans with nodules as part

of a lung nodule segmentation Grand Challenge in 2016. From this

dataset, 51 scans were selected, segmented by radiologists, and

presented in (17).
2.5 Fine-tuning with 4DCT lung
cancer dataset

4DCT non-small cell lung cancer images used in fine-tuning

were preprocessed similarly to the COPDGene cases described

previously. The process of acquiring bounding boxes for the lungs

and using them to crop to each lung on the high-resolution image is
Frontiers in Oncology 05
the same. However, the two new images and their corresponding

lobe masks were not resized to 1283; instead, they were resized to

the largest possible resolution divisible by 32 with a volume less

than 6*1283 to fit into memory. This fine-tuning process yielded the

best results and was conducted on the right and left networks

separately. Hyperparameter and optimizer details are included on

the - Supplementary Material page.
2.6 K-fold cross validation with LUNA16

Following fine-tuning on the cancer dataset, K-fold cross-

validation was performed on a random subset of 51 LUNA16 lobe

segmentation cases, as previously described. The original LUNA16

scans were preprocessed in the same manner as the COPDGene

dataset. The 51 cases were divided into k = 5 folds of 10 or 11 cases

each. The optimizer and hyperparameters used were identical to the

previous fine-tuning step. The accuracy of segmentations was

calculated using Dice percent score.
2.7 CT-ventilation calculation

Using the trained and fine-tuned AI model previously described,

lobe segmentations were acquired from the inhale and exhale phases

of the 4DCT of 19 lung cancer patients from a publicly available

dataset (18). As shown in Figure 4, CTVI calculation for each lobe
FIGURE 3

An overview of the TriSwinUNETR pipeline. A full-resolution (512x512x512) CT image is first downsampled to 128x128x128, left and right lung
segmentations are acquired then upsampled back to the original image space, bounding boxes for each lung are determined based on the initial
segmentations, regions delineated by the bounding boxes are downsampled, then corresponding Right Lobe and Left Lobe SwinUNETR networks
output the corresponding lobe segmentations for each lung.
frontiersin.org
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was acquired by determining the breathing-induced lobar volume

change using AI-defined lobe segmentation volumes, without DIR.

The CTVI was calculated for each individual patient as the percent

change in lobar volumetric segmentations between the full inhale and

full exhale phases of the breathing cycle. Each patient had five CTVI

values, one for each main lobar region.

Resulting lobar CTVI values were validated with positron

emission tomography (PET)-Galligas ventilation imaging for each

lung cancer patient, which was acquired from the same publicly

available dataset (18). As shown in Figure 4, the PET-Galligas

ventilation was acquired for each patient’s lobe (LUL, LLL, RUL,

RML, RLL) based on the number of counts or detected photon

events recorded by the PET scanner. Each of the five PET-Galligas

ventilation values was compared against the CTVI value calculated

for that specific lobe. The spatial Spearman correlation between

TriSwinUNETR lobe ventilation and ground-truth PET-Galligas

ventilation was calculated for each patient. A Spearman correlation

value of at least 0.5 suggests a moderately strong correlation
Frontiers in Oncology 06
between AI-based ventilation and the ground truth. It is

important to note that the PET imaging itself, as shown in

Figure 4, could have been a source of error since the radioactive

material can be seen going beyond the extremities of the lungs.

Since the calculations were isolated to lobes only, the radioactive

material outside of the lungs was not considered.

To determine whether the proposed volume-change approach

may improve CTVI calculations compared to DIR-based methods,

the CTVIs for the 19 lung cancer cases were generated using both

methods. The chosen DIR-based method to use was the integral

formulation of the Jacobian (IJF), which aims to estimate the

apparent voxel volume changes within an inhale/exhale CT image

pair (19). The Spatial Spearman correlation between IJF ventilation

and ground-truth PET-Galligas was generated for each patient.
3 Results

3.1 Dice comparison for lobe segmentation

Table 3 shows the lobe segmentation results of previous high-

performing model architectures. Our method attained a mean Dice

percent score of 93.75 ± 1.81% on the LUNA16 cases, with RUL at

93.49 ± 2.76%, RML at 85.78 ± 5.61%, RLL at 95.65 ± 0.69%, LUL at

97.12 ± 0.17%, and LLL at 96.58 ± 0.42%. 4.08M working parameters

were used in the Lung SwinUNETR, and 15.7M working parameters

were used in the L Lobe SwinUNETR and R Lobe SwinUNETR each.

TriSwinUNETR contains 35.48M working parameters in total.

TriSwinUNETR Dice percent scores included on Table 3 are the

average across the five folds from our K-fold cross-validation.
FIGURE 4

CTVI calculation and validation. (A) CTVI is calculated based on the change in volume between the inhale (right) and exhale (left) segmentations,
where ventilation(Ω) = |1 - vol(∅(Ω))/vol(Ω)|. (B) The ground-truth PET-Galligas (right) is acquired by isolating the number of counts per lobe based
on the TriSwinUNETR lobe segmentation from the PET-CT scan (left).
TABLE 2 Summary of datasets used.

Name and
Source

Number of
CT images

Purpose

COPDGene (14) 13,002 Training Lung, Right Lobe, and Left
Lobe SwinUNETR models

4DCT Lung
Cancer (18)

22 Fine-tuning Right Lobe and Left Lobe
SwinUNETR models

LUNA16 (17) 51 K-fold cross-validation of Right Lobe
and Left Lobe SwinUNETR models
The name, source, number of CT images used, and purpose of each dataset in this study are
included in this table.
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Table 4 shows the results for the K-fold cross validation of 51

LUNA16 cases using TriSwinUNETR network.

Representative test cases from the three datasets used to train

and finetune the model were selected, and their corresponding lobe

segmentations and ground truth are shown in Figure 5.
3.2 Spearman correlation for
CT-ventilation

Table 5 shows the Spearman correlation coefficients between the

CTVI and the PET-Galligas for each of the 19 lung cancer patients. The

correlation was calculated between the CTVI and PET-Galligas count

for all five lobes (LUL, LLL, RUL, RML, RLL) per patient. The median

Spearman correlation coefficient was 0.9 across 19 cases, with 13 cases

exhibiting correlations of at least 0.5, indicating moderately strong

agreement between CTVI and PET-Galligas ventilation.

Figure 6 compares the proposed method’s CTVI values and the

number of PET-counts per lobar region for four patients. As shown,

higher percent ventilation values should correspond to higher numbers

of counts detected by the PET-scanner in order to result in a strong

Spearman correlation. Refer to the - Supplementary Material page for

all patients’ data.
4 Discussion

4.1 Lobe segmentation task

Lung cancer is the leading cause of cancer death in the United

States, causing more deaths in 2020 than breast, colorectal, and

prostate cancers combined (23). However, advancements in the

understanding of tumor biology, development of targeted therapies,

and introduction of low-dose computed tomography (LDCT) for

lung cancer screening have increased survival rates (23). Annual

cancer screening using LDCT is an integral step in detecting cancer

at its earlier stages, and lobe segmentation is a necessary part of the

process. Computer-assisted diagnosis (CAD) methods aid

radiologists in early lung nodule detection, but to do so,

automatic segmentation of pulmonary lobes must be completed

to eliminate other confounding structures such as the heart, the

thoracic wall, abdominal organs, and the vertebrae (24). Although

current automatic lobe segmentation models exist, previous
Frontiers in Oncology 07
methods may fail to train on different lung conditions and disease

states in addition to struggling to downsample images without

losing substantial contextual information, as previously discussed

(6, 7). For these reasons we propose a novel CT lobe segmentation

pipeline (TriSwinUNETR), which employs transfer learning to

ensure generalizability to multiple datasets and disease states and

breaks down segmentation tasks to prevent loss of contextual

information caused by image downsampling.

In the first part of this study, we used K-fold cross-validation

applied to the LUNA16 dataset to compare against previously

published results. Although previous works do not mention the

process of K-fold cross-validation nor a clear method for calculating

standard deviation of Dice scores, we have chosen to perform 5-fold

validation to ensure that LUNA16 test results are robust and

reproducible. The proposed TriSwinUNETR achieves a mean

Dice score of 93.75%, surpassing the mean Dice percent accuracy

reported by the current state-of-the-art model, SCLMnet (22). In

particular, TriSwinUNETR outperforms pre-existing architectures

on the segmentation of lobes in the right lung.

As shown in Figure 5, our pipeline performs well in comparison

to ground truth manual segmentations. Since we downsample a

smaller portion of the image instead of the entire CT scan, a

significant amount of information is preserved on the lower-

resolution image, thus improving the accuracy of our results. In

addition, fine-tuning on higher-resolution lung cancer images

preserved higher-quality contextual information that could have

been useful in the network’s learning process. Due to their vast

number of parameters as well as the complexity of architecture,

transformer-based models require a significant amount of images to

learn (25). Therefore, in addition to preserving as much of the

image resolution as possible, transfer learning also increased the

accuracy of our results. Training the models first on the COPDGene

dataset allowed the architecture to familiarize itself with lung

anatomy and the segmentation task. However, fine-tuning on the

lung cancer dataset prior to doing K-fold cross-validation on

LUNA16 allowed us to ensure that the model would be exposed

to different types of scanners and lung conditions.

A limitation of our study is the quality of the training data itself.

As previously stated, transformer-based models require a

substantial amount of images to be optimized, but manual lobe

segmentation is a time-consuming task. Therefore, we trained

TriSwinUNETR on the larger COPDGene dataset, despite its

automated segmentations that are prone to errors. This bias could

have influenced the training of our model. However, in order to
TABLE 3 Dice percent score comparison.

Model RUL
Dice %

RML
Dice %

RLL
Dice %

LUL
Dice %

LLL
Dice %

Mean
Dice %

Params (M)

UNETR (11) 92.47 83.56 93.15 93.51 92.84 91.11 101.96

UNet++ (20) 92.20 82.26 94.08 95.89 95.53 92.00 N/A

AttentionUnet (21) 93.01 82.91 94.24 95.32 94.89 92.07 23.63

SCLMnet (22) 92.81 78.28 95.02 97.68 97.05 92.17 87.31

TriSwinUNETR 93.50 85.82 95.65 97.16 96.61 93.75 35.48
Dice percent scores for RUL, RML, RLL, LUL, LLL, and mean Dice percent score are given for each model. Model parameters (in millions) are also included for each model. Bolded values indicate
tasks where TriSwinUNETR outperforms existing architectures.
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minimize errors caused by such bias, we have fine-tuned the Left

and Right SwinUNETR networks with 62/63 images (22 lung cancer

and 40/41 lung nodule CTs). In addition, our pipeline, along with

other existing methods, struggles to segment cases where the patient

has undergone a lobectomy due to the lack of available lobe

segmentations of cases involving lobectomies. Therefore, future

directions for this work include expanding the datasets and

disease states that we train our models on, in addition to

developing an even more effective method to preserve image

resolution prior to the segmentation task.
4.2 CT-ventilation task

Given the high mortality of lung cancer in the United States,

radiotherapy (RT) has been undergoing several technological
Frontiers in Oncology 08
innovations in recent years (26). One specific type of RT,

functional RT, allows irradiation of tumors with high doses, while

sparring healthy lung tissue. In order to make use of this

advancement, however, functional image information is necessary

to determine high-functioning lung areas in addition to applying

personalized dose prescriptions for patients (26). CTVI is a

functional metric that has been positively correlated with high-

functioning areas of the lung, as previously discussed (4).

Deformable image registration (DIR) is a core process in

radiotherapy treatment planning and in calculating CTVI.

However, DIR is a process that requires caution, as previously

stated, as it is a process that is highly subject to variation in

algorithm and user input (27). It has also been observed that DIR

may return results that are physically implausible (27). Therefore, in

the second part of this study, we propose the use of our

TriSwinUNETR network to calculate CTVI without the use of DIR.
TABLE 4 Dice percent scores per fold.

Fold RUL
Dice %

RML
Dice %

RLL
Dice %

LUL
Dice %

LLL
Dice %

Mean
Dice %

1 93.38 84.80 94.73 97.09 96.32 93.27

2 96.22 92.09 95.91 97.50 97.33 95.81

3 93.09 83.30 96.15 97.13 96.10 93.15

4 88.65 77.14 94.97 96.98 96.75 90.90

5 96.14 91.75 96.51 97.13 96.54 95.61
Dice percent scores for RUL, RML, RLL, LUL, LLL, and mean Dice percent score are given for each fold.
FIGURE 5

Lobar segmentations comparison. The 4DCT Lung Cancer test case has an average percent Dice score of 92.61 (LUL: 96.77 LLL: 89.69 RUL: 96.26
RML: 93.99 RLL: 86.36). The LUNA16 test case has an average percent Dice score of 96.05 (LUL: 97.45 LLL: 97.69 RUL: 95.16 RML: 92.35 RLL: 97.61).
The COPDGene test case has an average percent Dice score of 96.62 (LUL: 97.83 LLL: 97.28 RUL: 97.20 RML: 94.09 RLL: 96.69).
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The Spearman correlation coefficients reveal that when using

the proposed lobe volume change method, 13 out of 19 lung cancer

cases (~68%) yielded successful CTVI results when compared to the

ground-truth PET-Galligas per lobe. On the other hand, when using

the DIR-based IJF method, only 8 out of 19 lung cancer cases

(~42%) yielded successful CTVI results compared to ground truth.

These results indicate the potential benefit of implementing a lobe

volume change approach to calculate CTVI instead of solely relying

on DIR. Since the lobe segmentation pipeline has been proven over

93% accurate on LUNA16 cases and has been fine-tuned on lung

cancer cases, the model is well-prepared to segment lobes from the

lung cancer 4DCT test set. Possible reasons for the proposed

model’s Spearman correlation coefficients < 0.5 include patients

who have had a lobectomy, which as previously discussed could be

challenging for the model to segment. In addition, the 4DCT lung

cancer cases have an image resolution of 512 x 512 x ~170; the lower

image resolution on the z-axis could make it more challenging for

the AI model to identify fissures in certain patients. Lastly, most of

the unsuccessful cases have abnormal PET-Galligas, which are

either incorrectly cropped or missing to fill a sublobar region.
Frontiers in Oncology 09
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patients’ with Spearman correlation < 0.5.

Possible future directions for this work include combining the

proposed CTVI method with an iterative DIR method. While CTVI

calculations per lobe provide interpretable ventilation results and can

be verified by referencing lobe segmentation outputs, iterable DIR-

methods allows for every voxel to be registered from inhale to exhale

phase instead of comparing the volume change of a lobar region.

Therefore, a combination of iterative DIR limited to a specific lobar

region outputted by the AI model, or DIR-ventilation results cross-

referenced to the AI-outputted lobe ventilation results could yield a

mathematically stable and accurate CTVI method.
4.3 Ethical considerations

Our proposed method of calculating CTVI directly from lobe

segmentations has the potential to be implemented in the clinic. In

the United States, 4DCT imaging is a standard aspect of

radiotherapy treatment planning for patients with lung cancer
TABLE 5 Spearman correlation coefficients of proposed method’s CTVI vs. IJF CTVI.

Patient ID 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

Proposed Method 0.9 0.2 -1 1 0.6 0.9 0.9 0.9 0.6 0.9 0.9 0 0.9 0.3 0.2 0.5 0.9 -1 1

DIR-Based IJF 0.54 0.52 0.39 0.45 0.56 0.27 0.48 0.59 0.64 0.71 0.27 0.17 0.54 0.42 0.33 0.35 0.56 0.41 0.41
fr
ontiers
Patient ID is the number describing each anonymous patient. Spearman coefficient was calculated from the correlations of the CTVI and PET-Galligas for all five lobes per patient. Bolded
numbers represent successful cases (correlation ≥ 0.5). Patient 7’s PET-Galligas ventilation could not be calculated as it lacks a necessary CT image.
FIGURE 6

Proposed method’s CTVI vs. PET-Galligas counts per lobe. CTVI is calculated in percent and PET-Galligas ventilation is calculated by the number of
counts. The graphs included serve to visualize strong vs. weak Spearman correlations. (A) Patient 1’s calculated Spearman correlation = 0.9,
(B) Patient 4’s calculated Spearman correlation = 1, (C) Patient 10’s calculated Spearman correlation = 0.6, (D) Patient 19’s calculated Spearman
correlation = -1.
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(28). Therefore, acquiring lobe segmentations directly from

patients’ CT images and performing CTVI calculations in local

hospital machines would not disrupt the clinical workflow or risk

patient data leaking. With the appropriate quality assurance

procedures already in place at radiation oncology clinics, AI-

defined lobe segmentations and their corresponding ventilation

values may be inspected by medical physicists and radiation

oncologists prior to implementation. The benefits of CTVI

implementation in the clinic have been shown in a 2022 study. It

was proven that CTVI as a functional imaging metric for functional

avoidance radiotherapy planning reduced pneumonitis rates in lung

cancer patients, thus proving CTVI’s potential for clinical

implementation (28).
5 Conclusion

In this work, we proposed a novel implementation of state-of-

the-art segmentation architecture for automated CT lobe

segmentation and made it publicly available to the scientific

community. We utilized a TriSwinUNETR composed of three

SwinUNETR networks for three distinct segmentation tasks: left

and right lung segmentation, right lobes segmentation, and left

lobes segmentation. Our proposed method, trained on a section of

the COPDGene dataset and fine-tuned on manual lobe

segmentations, includes minimal preprocessing and postprocessing.

Dice score comparison on a subsection of the LUNA16 dataset

showed that our proposed method outperforms currently proposed

state-of-the-art methods. Using the proposed TriSwinUNETR AI-

defined lobe volumes from a 4DCT lung cancer dataset, we have

calculated the per-patient CTVI value for each lobe. Spatial Spearman

correlation between TriSwinUNETR lobe ventilation and ground-

truth PET-Galligas ventilation indicates strong agreement, thus

possibly revealing a DIR-free alternative for calculating CTVI with

the use of an AI-based lobe segmentationmodel. Future directions for

this work include developing a more effective method to preserve

image resolution prior to the segmentation task, expanding training

datasets to include more disease states, and possibly stabilizing the

mathematical uncertainties of DIR calculations with the proposed AI-

based CTVI method.
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