
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sharon R. Pine,
University of Colorado Anschutz Medical
Campus, United States

REVIEWED BY

Haritha Kunhiraman,
Emory University, United States
Hengrui Liu,
University of Cambridge, United Kingdom

*CORRESPONDENCE

Ziwei Wang

wangziwei@genomics.cn

†These authors have contributed equally to
this work

RECEIVED 08 August 2024

ACCEPTED 28 January 2025
PUBLISHED 04 March 2025

CITATION

Han D, Chen X, Jin X, Li J, Wang D and
Wang Z (2025) Multi-omics approach
reveals the impact of prognosis
model-related genes on the tumor
microenvironment in medulloblastoma.
Front. Oncol. 15:1477617.
doi: 10.3389/fonc.2025.1477617

COPYRIGHT

© 2025 Han, Chen, Jin, Li, Wang and Wang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 04 March 2025

DOI 10.3389/fonc.2025.1477617
Multi-omics approach reveals
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related genes on the tumor
microenvironment
in medulloblastoma
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1College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China, 2BGI Research,
Shenzhen, China, 3Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University,
Beijing, China, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
Background: The tumor microenvironment (TME) significantly impacts the

progression and prognosis of medulloblastoma (MB). This study aimed to

develop a TME-associated risk score(TMErisk) model using RNA sequencing

data to predict patient outcomes and elucidate biological mechanisms.

Methods: RNA sequencing data from 322 Tiantan and 763 GSE85217 MB samples

were analyzed. Key gene modules related to immune and stromal components

were identified using Weighted Gene Co-expression Network Analysis (WGCNA).

Significant genes were screened using LASSO-COX and COX regression models.

Single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-

seq), and spatial RNA analyses validated the findings.

Results: Differential expression analysis identified 731 upregulated and 15

downregulated genes in high vs. low immune score MB patients, and 686

upregulated and 43 downregulated genes in high vs. low stromal score patients.

Eight key genes (CEBPB,OLFML2B,GGTA1,GZMA, TCIM,OLFML3,NAT1, andCD1C)

were included in the TMErisk model, which demonstrated strong prognostic power.

High TMErisk scores correlated with poorer survival, distinct immune cell infiltration

patterns, and lower tumor cell stemness. Single-cell analyses revealed the

expression dynamics of TMErisk genes across cell types, including macrophages, T

cells, and NK cells, and identified key regulatory transcription factors. Spatial

transcriptomics showed significant clustering of TMErisk genes in tumor regions,

highlighting spatial heterogeneity and the formation of immune hubs.

Conclusions: The TMErisk model enhances our understanding of the MB tumor

microenvironment, serving as a robust prognostic tool and suggesting new

avenues for targeted therapy.
KEYWORDS
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Introduction

Medulloblastoma (MB) is the most common malignant tumor

of the central nervous system in children (1). According to their

genomic and clinical characteristics, MBs are clearly divided into

four main molecular subgroups: WNT, SHH, Group3, and Group4,

each with distinct clinicopathological parameters, transcriptional

profiles, and tumor microenvironments (2, 3). Due to intra-tumor

heterogeneity, individualized prognosis assessment for MB patients

remains challenging (4).

Based on the prognosis of the 5-year survival rate, MB is

stratified into four levels of risk. The low-risk group, with a 5-

year survival rate greater than 90%, includes non-metastatic WNT

subtype and non-metastatic Group 4 with chromosome 11 deletion.

The standard risk group, with a 5-year survival rate of 75% to 90%,

includes non-metastatic, TP53 wild-type SHH subtype without

MYCN amplification, non-metastatic Group 3 with MYC

amplification, and non-metastatic Group 4 without chromosome

11 deletion. The high-risk group, with a 5-year survival rate of 50%

to 75%, includes metastatic SHH or Group 4 subtypes and SHH

subtype withMYCN amplification. The very high-risk group, with a

5-year survival rate less than 50%, includes metastatic Group 3 and

SHH subtype with TP53 mutation (5).

The tumor microenvironment (TME) refers to the environment

in which the tumor occurs, develops, and metastasizes, including

multiple non-malignant stromal infiltrates and a malignant cell

population. The importance of the TME in tumor progression is

now widely recognized (6). Recent studies have reported that the TME

can affect the immunophenotype of cancer and patient outcomes (7,

8). With the promising advance of immunotherapeutic strategies, the

possibility of tumor immunotherapy has attracted extensive interest.

In addition to affecting survival time, specific substances in the TME

may also be used as biomarkers for disease diagnosis or treatment

(such as immunotherapy) (3). Therefore, evaluation of the TME may

be a potential way to predict a patient’s prognosis or therapeutic

benefit (4).

In recent years, significant progress has been made in cancer

treatment by advancing our understanding of cancer biology. Early

cancer treatments included surgery, radiation therapy, and

chemotherapy, which remain crucial components in the

management of many cancers (9). In the latter half of the 20th

century, molecular understanding of cancer led to the development

of targeted therapies and immunotherapies, representing major

milestones. For instance, the success of tamoxifen in 1970 marked

the beginning of the era of targeted therapies (9). The introduction of

immune checkpoint inhibitors and chimeric antigen receptor T cell

(CAR-T) therapies has provided new avenues for treating various

cancer types, significantly improving outcomes for some patients (9).

Looking forward, cancer treatment is expected to continue evolving

towards more personalized and precise approaches by integrating

genomic analysis, immunotherapies, and other advanced methods.

Tumor immunity is an important aspect of the TME, involving

how immune cells (such as T cells, B cells, NK cells, and

macrophages) recognize and attack tumor cells (5). The immune

microenvironment of MB is highly heterogeneous, with significant

differences in immune cell infiltration characteristics and immune
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responses among different subtypes. For example, the WNT

subtype often exhibits higher immune cell infiltration, while

Group3 and Group4 subtypes exhibit lower immune responses

(6). These differences may affect patients’ responses to

immunotherapy (7).

Immune checkpoints are crucial mechanisms for regulating the

immune system. In MB, the expression levels of immune

checkpoint molecules may affect the tumor’s ability to evade

immunity. PD-1 and PD-L1 are among the most widely studied

immune checkpoint molecules, helping tumor cells evade immune

system attacks by inhibiting T cell activity (2). Recent studies have

shown that high expression of PD-L1 in MB patients is associated

with poorer prognosis, suggesting that targeting the PD-1/PD-L1

pathway with immune checkpoint inhibitors could be a potential

therapeutic strategy for MB (4).

Despite the promising potential of predicting prognosis through

tumor immunity, accurately defining the complex components of

the TME remains challenging. ESTIMATE is an effective algorithm

for evaluating immune and stromal cells, providing information on

TME conditions (1). Based on the RNA sequencing database of MB

samples from Beijing Tiantan Hospital Capital Medical University,

we identified prognostic gene signatures related to TME in MB

patients using the ESTIMATE algorithm (3). We then constructed a

TME-related risk score (TMErisk score) model to predict the

survival of MB patients (4).

In addition to conventional RNA sequencing data, single-cell RNA

sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq),

and spatial transcriptomics analysis were conducted to gain a more

comprehensive understanding of the TME in MB (5). These advanced

techniques allow us to study the heterogeneity and spatial organization

of the tumor microenvironment at an unprecedented resolution,

providing deeper insights into the cellular and molecular

mechanisms driving MB progression and treatment response (6).

Single-cell RNA sequencing (scRNA-seq) provides a high-

resolution view of the transcriptome of individual cells, allowing

us to identify different cell types and their specific expression

patterns within the tumor microenvironment. This technique is

particularly useful for studying tumor heterogeneity as it enables us

to distinguish different tumor cell subpopulations and their

respective functions (7).

Single-cell ATAC sequencing (scATAC-seq) is a technique for

analyzing chromatin accessibility, revealing potential mechanisms

of gene regulation (2). Through this technology, we can identify

open chromatin regions in different cell types, providing insights

into gene expression regulation (4). Combining scATAC-seq with

scRNA-seq allows us to gain a more comprehensive understanding

of gene regulatory networks (1).

Spatial transcriptomics analysis allows us to observe the

expression distribution of key genes within the context of tissue

architecture. This technique helps us identify regulatory elements

associated with the tumor microenvironment and prognosis by

spatially resolving gene expression (3).

Overall, the combination of these multi-omics techniques

enables us to study the tumor microenvironment of

medulloblastoma with unprecedented depth and breadth. These

techniques provide valuable data to help us identify key genes and
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regulatory networks associated with prognosis and treatment

response. By constructing and validating the TMErisk model, we

can predict patient survival and guide the development of

personalized treatment strategies (10).
Results

Construction of TMErisk score using
LASSO regression in medulloblastoma

This study analyzed RNA sequencing data from 322 Tiantan

and 763 GSE85217 medulloblastoma samples to construct and

validate a tumor microenvironment risk (TMErisk) model. Using

WGCNA, key gene modules related to immune and stromal

components were identified. Significant survival-related genes

were screened with LASSO-COX and COX regression models,

and pathway enrichment was revealed by GSEA. mRNAsi and

deconvolution analysis assessed stemness and cellular composition,

focusing on immune checkpoint genes. Validation with scRNA,

protein, and spatial RNA analysis confirmed the findings, providing

insights into tumor-immune interactions and potential therapeutic

targets (Figure 1A).

Differentially expressed genes (DEGs) were identified between

medulloblastoma (MB) patients with high and low immune scores.

The analysis results showed a total of 731 upregulated genes, 15

downregulated genes, and 13,733 genes with no significant change

(Figure 1B). Additionally, DEGs were identified between MB

patients with high and low stromal scores, resulting in 686

upregulated genes, 43 downregulated genes, and 13,449 genes

with no significant change (Figure 1C).

WGCNA was performed to identify gene modules associated

with stromal and immune scores. The gene dendrogram and

module colors indicate the different gene modules identified in

the dataset (Figure 1D). The module-trait relationship analysis

showed significant correlations between specific gene modules

and either stromal or immune scores. For example, the MEred

module was significantly correlated with the immune score

(correlation = 0.68, p-value < 0.01), while the MEturquoise

module was significantly correlated with the stromal score

(correlation = 0.72, p-value < 0.01).

Using a Venn diagram, the overlap between stromal DEGs,

immune DEGs, and genes identified by WGCNA was illustrated

(Figure 1E). The intersection of these three sets revealed 281

common genes, indicating a significant overlap of genes involved

in the tumor microenvironment.

We then used least absolute shrinkage and selection operator

(LASSO) regression analysis to narrow these down to 12 genes:

CEBPB, HCST, CSF1R, ADAMTS15, OLFML2B, GGTA1 (also

named GGTA1P), RHOD, GZMA, and TCIM (also named

C8ORF4), OLFML3, NAT1, and CD1C. These 12 genes were

included in backward stepwise regression. When the minimum

Akaike’s Information Criterion (AIC) value was 692.89, the final

gene signatures related to TME risk were CEBPB, OLFML2B,

GGTA1, GZMA, TCIM, OLFML3, NAT1, and CD1C. The final

prognostic model was TMErisk score = 1.08 × CEBPB + 0.65 ×
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OLFML2B − 1.16 ×GGTA1 − 0.92 ×GZMA + 0.88 × TMIM - 1.45 ×

OLFML3 + 1.24 × NAT1 - 1.27 × CD1C.
Predictive role of TMErisk model in
medulloblastoma prognosis

To further investigate the predictive role of TMErisk on

prognosis, we constructed and validated the TMErisk model

through the hazard ratio analysis of 8 key genes. In the GSE85217

dataset, hazard ratio analysis showed that patients with high

TMErisk had significantly higher risks compared to the low

TMErisk group (Figure 2A). For instance, the hazard ratio for

CEBPB was 2.31 (p = 0.019), for GGTA1 it was 0.36 (p < 0.001), and

for GZMA it was 0.31 (p = 0.012). Similarly, in the Beijing Tiantan

Hospital dataset, hazard ratio analysis also indicated that high

TMErisk patients had significantly higher risks than the low

TMErisk group (Figure 2B). For example, the hazard ratio for

GGTA1 was 0.66 (p = 0.025), for GZMA it was 1.81 (p = 0.028), and

for OLFML3 it was 0.46 (p = 0.001). The survival prediction

between high-risk and low-risk groups showed significant

differences in both the Beijing Tiantan Hospital and GSE85217

datasets, with the high-risk group’s survival rate significantly lower

than that of the low-risk group (Figures 2C, D). Survival analysis

indicates that TMErisk scores can significantly distinguish between

high-risk and low-risk groups (p < 0.0001, Log-rank test).

In predicting 1-year, 3-year, and 5-year survival rates, TMErisk

scores demonstrated higher predictive power in the Beijing Tiantan

Hospital dataset, whereas the predictive power was relatively lower

in the GSE85217 dataset, possibly due to differences between

Eastern and Western populations (Figures 2E–G). Multivariate

analysis results showed that age, molecular subtype, and TMErisk

score are important prognostic factors for medulloblastoma

patients (Figure 2H), with TMErisk score being particularly

significant (Figure 2I). The comparison of C-statistics across

different datasets revealed that the predictive power of the

TMErisk model was higher than that of the molecular subtype

model. Notably, when the TMErisk model was combined with

molecular subtypes, the predictive power was further enhanced

(Figure 2J), indicating that the combination of the two can more

accurately predict the prognosis of medulloblastoma patients.

Additionally, the TMErisk model’s predictive performance varied

among different molecular subtypes. The TMErisk model showed

higher predictive power in the SHH subtype, while the predictive

power was lower in the G3 and G4 subtypes (Figure 2J).
TMErisk impact on
Tumor microenvironment

To elucidate the role of TMErisk in the process of tumor biology.

We calculated the stemness index(mRNAsi) for each patient based on

transcriptomic data to gauge the tumor’s capacity for self-renewal.

The mRNAsi of the high TMErisk group was significantly lower than

that of the low TMErisk group (p = 0.026), indicating that patients

with higher TMErisk scores may have tumor cells with lower
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stemness, possibly related to a more complex tumor

microenvironment (Figure 3A). Further analysis revealed that the

high TMErisk group showed significant differences in various

immune cell types, particularly in B cells, T cells, NK cells, and

macrophages (*indicates p < 0.05, **indicates p < 0.01), suggesting
Frontiers in Oncology 04
that patients with higher TMErisk scores have distinct immune cell

infiltration characteristics in their tumor microenvironment, which

may affect their treatment response and prognosis (Figure 3B).

The results of Gene Set Enrichment Analysis (GSEA) in the

high- and low-risk groups are shown using volcano diagrams and
FIGURE 1

(A) Summary of RNA sequencing data from 322 Tiantan and 763 GSE85217 MB samples, which were used for constructing and validating the TMErisk
model. (B) Differentially expressed genes (DEGs) identified between MB patients with high and low immune scores. There are 731 upregulated genes,
15 downregulated genes, and 13,733 genes with no significant change. (C) DEGs identified between MB patients with high and low stromal scores.
There are 686 upregulated genes, 43 downregulated genes, and 13,449 genes with no significant change. (D) Weighted Gene Co-expression
Network Analysis (WGCNA) to identify gene modules associated with stromal and immune scores. The dendrogram shows different gene modules
identified in the dataset. (E) Venn diagram illustrating the overlap between stromal DEGs, immune DEGs, and genes identified by WGCNA. The
intersection reveals 281 common genes involved in the tumor microenvironment.
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FIGURE 2

(A) Kaplan-Meier survival curves for high and low TMErisk groups in the GSE85217 dataset. High TMErisk scores are associated with significantly
lower survival probabilities (p < 0.0001). (B) Kaplan-Meier survival curves for high and low TMErisk groups in the Beijing Tiantan Hospital dataset.
High TMErisk scores correlate with poorer survival outcomes (p < 0.0001). (C) The comparison of C-statistics across different datasets reveals that
the TMErisk model has higher predictive power than the molecular subtype model. Combining the TMErisk model with molecular subtypes further
enhances predictive accuracy. (D) ROC curves showing the AUC for 1-year, 3-year, and 5-year survival predictions in the Beijing Tiantan Hospital
dataset. The TMErisk model demonstrates strong predictive performance with AUC values of 0.829, 0.792, and 0.781, respectively. (E) ROC curves
showing the AUC for 1-year, 3-year, and 5-year survival predictions in the GSE85217 dataset. The predictive power of the TMErisk model is lower in
this dataset, with AUC values of 0.581, 0.587, and 0.581, respectively. (F) Predicted vs. actual survival rates for 1-year, 3-year, and 5-year survival in
the Beijing Tiantan Hospital dataset. The TMErisk model accurately predicts survival outcomes over time. (G) Predicted vs. actual survival rates for 1-
year, 3-year, and 5-year survival in the GSE85217 dataset. The TMErisk model shows lower predictive accuracy in this dataset. (H) Multivariate
analysis showing the importance of age, molecular subtype, and TMErisk score as prognostic factors for medulloblastoma patients, with TMErisk
score being particularly significant. (I) The TMErisk model’s predictive performance across different molecular subtypes, showing higher predictive
power in the SHH subtype compared to the G3 and G4 subtypes. (J) Comparison of predictive accuracy (C-statistics) of the TMErisk model,
molecular subtypes, and their combination across datasets, highlighting the superior performance of the combined model.
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are annotated based on Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis. Muscle system process, rRNA metabolic process, and

RNA splicing epidermis were enriched in the high-risk group,

while epidermis development and the external side of the plasma

membrane were enriched in the low-risk group. KEGG enrichment

analysis identified ribosomes, hypertrophic cardiomyopathy,

dilated cardiomyopathy, cardiac muscle contraction, and

oxidative phosphorylation as enriched in the high-risk group.

Olfactory transduction and cell adhesion molecules were enriched

in the low-risk group. Figures 3C–F shows the top-five results for

the high- and low-risk groups after GO and KEGG annotation.

To further understand the relationship between TMErisk and

different tumor molecular subtypes, the relationship between

TMErisk and immune phenotype scores (IPS) was analyzed. The

results showed a significant negative correlation between TMErisk

and IPS in the G3 subtype (R = -0.31, p = 0.0081), while no

significant correlation was observed in other subtypes (SHH, G4,

WNT), indicating that patients with higher TMErisk scores in the

G3 subtype have lower immune phenotype scores, possibly

suggesting poorer immune response and prognosis (Figure 3G).

Additionally, when analyzing the relationship between TMErisk

and tumor mutational burden (TMB), it was found that in the G3

subtype, patients with higher TMErisk scores had lower TMB

(R = -0.31, p = 0.0081), whereas a positive correlation was

observed in the G4 subtype (R = -0.44, p = 0.012). This suggests

that patients with higher TMErisk scores may have lower

mutational burdens, which may affect their immune evasion

capability and treatment response (Figure 3H).

Further drug sensitivity analysis showed that the high TMErisk

group exhibited significant sensitivity changes to various drugs,

especially cytotoxic and targeted therapy drugs. These drugs include

Camptothecin, Cytarabine, Navitoclax, Vorinostat, and Wee1

Inhibitor. The high TMErisk group showed significantly lower

sensitivity to these drugs compared to the low TMErisk group,

indicating that patients with higher TMErisk scores may respond

poorly to conventional treatment methods (Figure 3I).

In summary, TMErisk is intricately associated with both tumor

stemness and immune cell infiltration, and it exerts a significant

influence on the immune phenotype and tumor mutational burden

across various molecular subtypes of MB. Patients with high

TMErisk scores exhibit unfavorable characteristics in terms of

immune infiltration, tumor stemness, immune phenotype scores,

and tumor mutational burden, providing important insights for

personalized treatment strategies. By incorporating TMErisk scores,

clinicians can better predict patient prognosis and develop targeted

treatment plans to improve therapeutic outcomes.
Single-cell analysis of TMErisk genes
reveals immune and microenvironment
insights in medulloblastoma

To further analyze TMErisk-related genes, we conducted a

detailed study using single-cell data from medulloblastoma. First,
Frontiers in Oncology 06
we examined the expression levels of multiple genes across various

cell types. CEBPB showed the highest expression in macrophages/

monocytes and relatively low expression in malignant cells. GZMA

was significantly more expressed in lymphocytes, especially T cells,

indicating its role in the anti-tumor immune response. OLFML2B,

CD1C, and NAT1 were also highly expressed in macrophages/

monocytes, suggesting their involvement in immune response and

inflammation. OLFML3 had the highest expression in macrophages/

monocytes and lower levels in malignant cells (Figure 4A).

Further analysis of gene expression in myeloid and lymphoid

cells revealed that CEBPB had higher expression in myeloid cells,

while GZMA was significantly higher in T and NK cells. OLFML2B,

CD1C, and NAT1 were highly expressed in macrophages/

monocytes, with OLFML3 predominantly expressed in non-

activated microglia (Figure 4B).

Pseudotime analysis showed temporal changes of these genes

in myeloid cells. In the early pseudotime stage, neutrophils and

non-activated microglia had high expression. As pseudotime

progressed, chemokine myeloid cells and complement myeloid

cells increased expression. In the mid-to-late pseudotime stage,

dendritic cell-like myeloid cells and M2-activated myeloid cells

showed increased levels. This sequence reflects the dynamic

changes of myeloid cells in the tumor microenvironment.

CEBPB expression in myeloid cells decreased over time, while

OLFML2B peaked in the mid-stage, particularly in M2-activated

myeloid cells (Figure 4C).

Pseudotime analysis indicated that CEBPB expression in

myeloid cells decreased over time, while OLFML2B peaked mid-

stage, especially in M2-activated myeloid cells (Figure 4D). CEBPB

showed the highest expression in the G4 subtype (Figure 4E), and

OLFML3 also had the highest expression in the G4 subtype

(Figure 4F). Other genes, like CD1C, also showed higher

expression in the G4 subtype, suggesting that myeloid cell

infiltration may influence medulloblastoma prognosis.

In lymphoid cells, pseudotime analysis showed that non-

activated B and T cells were active in the early stages, while

activated B cells and effector T cells were activated in the mid-

stage, with plasma cells and regulatory T cells playing critical roles

in the late stage (Figure 4G).

In lymphoid cells, CEBPB expression decreased over

pseudotime, while GZMA increased (Figure 4H). CEBPB had the

highest expression in the SHH subtype, associated with poorer

prognosis (Figure 4I). GZMA had significantly higher expression in

the SHH subtype than in G3 and G4 subtypes and was negatively

correlated with TMErisk (Figure 4J), indicating its protective role

might be linked to the proportion of lymphoid cells in

different subtypes.

Given GZMA’s high expression in NK cells, we analyzed the

interactions between GZMA-enriched NK cells and tumor

malignant cells. High expression of CD8A and CD8B indicated

strong cytotoxic activity. HLA-E and HLA-Fmight help tumor cells

evade immunity by interacting with inhibitory receptors on NK

cells. FCGR3A suggested active ADCC in NK cells, while high B2M

expression enhanced tumor immunogenicity, helping suppress

cancer (Figure 4K).
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FIGURE 3

(A) mRNAsi (mRNA expression-based stemness index) comparison between high and low TMErisk groups. The high TMErisk group shows
significantly lower mRNAsi (p = 0.026), indicating lower tumor cell stemness. (B) Immune cell infiltration analysis between high and low TMErisk
groups. Significant differences are observed in various immune cell types, including naive B cells, memory B cells, plasma cells, CD8+ T cells, naive
CD4+ T cells, and regulatory T cells (Tregs), with higher TMErisk scores associated with distinct immune cell infiltration patterns (*p < 0.05, **p <
0.01). (C) Enrichment analysis of gene function set in high-risk group based on GO database. (D) Enrichment analysis of gene function set in low-risk
group based on GO database. (E) Enrichment analysis of gene function set in high-risk group based on KEGG database. (F) Enrichment analysis of
gene function set in high-risk group based on KEGG database. (G) Correlation between TMErisk scores and immune phenotype scores (IPS) across
different medulloblastoma subtypes. A significant negative correlation is observed in the G3 subtype (R = -0.31, p = 0.0081), indicating lower
immune response in patients with higher TMErisk scores. (H) Correlation between TMErisk scores and tumor mutational burden (TMB) across
different medulloblastoma subtypes. A significant positive correlation is observed in the G4 subtype (R = -0.44, p = 0.012), suggesting patients with
higher TMErisk scores have lower TMB. (I) Drug sensitivity analysis showing significant differences in sensitivity to various cytotoxic and targeted
therapy drugs between high and low TMErisk groups. High TMErisk scores are associated with reduced sensitivity to drugs like Camptothecin,
Cytarabine, Navitoclax, Vorinostat, and Wee1 Inhibitor. ***: P<0.001, ns: Not Significant
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FIGURE 4

(A) Violin plot showing the distribution of different cell types, including lymphocytes, macrophages/monocytes, malignant cells, and
oligodendrocytes/astrocytes. (B) Expression levels of TMErisk genes across different cell types. CEBPB is highly expressed in macrophages/
monocytes, GZMA is significantly expressed in lymphocytes, and OLFML3 shows high expression in macrophages/monocytes. (C) Pseudotime UMAP
plot of Gene Expression in Myeloid Cells (D) Pseudotime analysis shows the gene expression levels of CEBPB and OLFML2B in myeloid cells of
medulloblastoma over time. (E) Expression levels of CEBPB in different medulloblastoma subtypes for myeloid cells (F) Expression levels of OLFML2B
in different medulloblastoma subtypes for myeloid cells (G) Pseudotime UMAP plot of Gene Expression in lymphocytes Cells (H) Pseudotime analysis
shows the gene expression levels of CEBPB and GZMA in lymphocytes cells of medulloblastoma over time. (I) Expression levels of CEBPB in different
medulloblastoma subtypes for lymphocytes cells (J) Expression levels of GZMA in different medulloblastoma subtypes for lymphocytes cells (K)
Interaction analysis between NK cells and malignant tumor cells. (L) Interaction analysis between Dendritic cell−like myeloid cells and malignant
tumor cells.
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Finally, analyzing the interactions between myeloid cells and

tumor cells, we found that high expression of CD80 and CD86 in

dendritic cells promoted immune responses or inhibited immune

evasion. High expression of HLA-A, HLA-B, and HLA-C in dendritic

cells underscored their importance in antigen presentation. FCGR1A,

FCGR2A, and FCGR3A suggested significant roles in ADCC. ICAM1

and VCAM1 expression in dendritic cells indicated key roles in cell

adhesion and migration (Figure 4L).
Regulatory mechanisms of TMErisk genes
in malignant cells

In the previous analysis, we only observed the expression of

TMErisk genes in microenvironmental cells. To elucidate the

potential role of the eight key genes related to the TMErisk score

in malignant cells, we analyzed snATAC-seq data from 12 samples

to examine the chromatin accessibility of tumor cells in different

states (Figure 5A). We used Signac to batch-correct and

dimensionally reduce the snATAC-seq data of medulloblastoma

tumor cells, classifying the tumor cells into three categories: cycling-

like, prog-like, and diff-like.

To explore the upstream regulators of the eight risk genes, we

performed motif enrichment analysis and found that the motifs of

several transcription factors were significantly enriched in the

chromatin-accessible regions of these genes (Figure 5B). The

CEBPB motif was enriched in the accessible regions of NAT1,

OLFML2B, and OLFML3, the SP1 motif was significantly

enriched in the accessible regions of C8orf4 and OLFML3, the

E2F1motif was enriched in the accessible regions of OLFML2B and

NAT1, and the NFKB1 motif was significantly enriched in the

accessible regions of C8orf4 and NAT1. To better understand the

interactions among these transcription factors, we constructed a

transcription factor network active in the accessible regions of more

than three risk genes (Figure 5C), showing that these transcription

factors may influence the expression of TMErisk-related genes

through a complex regulatory network.

Further motif enrichment analysis using Homer confirmed the

significant enrichment of transcription factors such as ZNF582,

DF1, bZIP910, and NAC028 in these accessible peaks (Figure 5D),

indicating that these transcription factors may play key roles in

regulating the expression of TMErisk-related genes.

To explore the downstream gene changes induced by alterations in

risk gene expression, we divided the risk genes into Positive Risk Genes

(risk coefficient > 0) and Negative Risk Genes (risk coefficient < 0)

and used a risk regression model based on inferred gene activity

scores to estimate the risk for each cell. Differential accessibility

analysis showed that Positive Risk Genes primarily influenced

different subtype-specific gene networks (Figure 5E). Significant

genes in the Positive Network of the G4 subtype included SEPT9,

TGFB1I1, ZEB2,NDRG4, and RAPGEF3, while significant genes in the

Negative Network included LTBP3, RUNX1T1, HAGHL, LTBP4, and

ARHGAP27. These gene network differences highlight the unique

regulatory mechanisms and conservativeness across different subtypes.
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TMErisk genes form spatial immune hubs

To further investigate the spatial expression patterns of

TMErisk genes in medulloblastoma, we conducted spatial

transcriptomics analysis on tumor samples. We selected three

spatial transcriptomics datasets of the SHH subtype from public

databases for detailed analysis.

In the first sample, GZMA, TCIM, and OLFML2B showed

significant spatial aggregation (Figures 6A1, A2, A3), mainly

concentrated in the C3 and C8 regions (Figure 6A4). The C3

region is located at the tumor center, while the C8 region is at the

tumor edge. Further analysis revealed that DC cells and CD8+ T

cells are also clustered in the C3 and C8 regions, co-locating with

these TMErisk genes. To understand the functional significance of

these phenomena, we performed GO analysis on the genes in the

tumor center and edge regions. The results showed that the tumor

center (C3) is enriched with pathways related to cell cycle, DNA

repair, and immune response, while the edge region (C8) is

enriched with pathways related to cell movement, angiogenesis,

and immune suppression (Figures 6D1, D2).

In the second sample, GZMA, TCIM, and OLFML2B genes

showed significant spatial aggregation in the C0 and C10 regions

(Figures 6B1–B3). The C0 region is located at the tumor center, while

the C10 region is at the tumor edge (Figure 6B4). Activated myeloid

cells were found in the C0 region, while higher proportions of NK

cells and T cells were found in the C10 region. These cell types are

associated with the expression of TMErisk genes. GO analysis

indicated that the tumor center (C0) is enriched with pathways

related to cell proliferation, metabolism, and signal transduction,

while the edge (C10) is enriched with pathways related to immune

response, cell communication, and migration (Figure 6E).

In the third sample, GZMA, TCIM, and OLFML2B genes

showed significant spatial aggregation in the C4, C5, and C2

regions (Figures 6C1–C3). The C4 region is at the tumor center,

while the C5 and C2 regions are at the tumor edge (Figure 6C4).

The tumor center region is rich in undifferentiated myeloid cells,

while the tumor edge region contains differentiated immune cells,

including T cells and NK cells, which play critical roles in the tumor

immune response. GO analysis showed that the tumor center (C4)

is associated with pathways related to DNA repair, cell cycle, and

differentiation, while the edge regions (C5, C2) are enriched with

pathways related to immune response, cell movement, and

angiogenesis (Figure 6F).

HallMarker analysis showed that the tumor center regions (such as

C3 and C0) exhibit higher proliferative and metabolic activity, whereas

the tumor edge regions (such as C8 and C10) show higher immune

activity and cell migration capacity (Figures 6G1, G2, G3, G4, G5).

These findings suggest that the spatial expression pattern of TMErisk

genes is closely related to cellular heterogeneity and functional

differences in the tumor microenvironment. Finally, we examined the

spatial distribution of key tumor microenvironment markers such as

CD8A, PD-L1, FOXP3, CD163, and VEGFA, further confirming that

TMErisk genes aggregate in the tumor center and recruit immune cells,

forming an immune hub (Figures 6G1, G2, G3, G4, G5).
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FIGURE 5

(A) snATAC-seq data of CEBPB, OLFML2B, GZMA, C8orf4, OLFML3, NAT1, and CD1C in different medulloblastoma states, showing chromatin
accessibility in cycling-like, prog-like, and diff-like cells.CEBPB shows signal variations at the position 50191000-50192500 bp on chromosome 20 in
different cell states; OLFML2B at the position 161990000-162020000 bp on chromosome 1; GZMA at the position 55104000-55110000 bp on
chromosome 5; C8orf4 at the position 40153500-40155000 bp on chromosome 8; OLFML3 at the position 113980000-114020000 bp on
chromosome 1; NAT1 at the position 18170000-18220000 bp on chromosome 8; and CD1C at the position 158290000-158293000 bp on
chromosome 1. (B) Motif enrichment analysis shows significant motifs in the chromatin-accessible regions of TMErisk genes. The analysis identifies
motifs of several transcription factors, such as ASCL1, ZEB1, KLF5, NHLH1, and HSF2, enriched in these regions, suggesting these transcription factors
may influence the expression of TMErisk-related genes through a complex regulatory network. (C) A transcription factor network was constructed
for chromatin-accessible regions, showing significant enrichment of transcription factor (TF) binding sites for positive and negative risk genes. The
network, which includes multiple transcription factors such as ZNF582, IRF1, and RFX4, indicates the complexity of gene regulation. (D) Further motif
enrichment analysis using Homer confirmed the significant enrichment of transcription factors such as ZNF582, IRF1, and RFX4 in these accessible
peaks, indicating that these transcription factors may play key roles in regulating the expression of TMErisk-related genes. (E) Differential accessibility
analysis shows significant genes co-expressed with positive risk genes in the G4 subtype. These networks reflect unique and conserved regulatory
mechanisms across different subtypes. Significant genes co-expressed with positive risk genes include SEPT9, TGFB1I1, ZEB2, NDRG4, and RAPGEF3.
Significant genes co-expressed with negative risk genes include LTBP3, RUNX1T1, HAGHL, LTBP4, and ARHGAP27.
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FIGURE 6

(A1–A3) Spatial expression of GZMA, TCIM, and OLFML2B genes in the tumor region of the first sample. (A4) Spatial clustering analysis showing the
distribution of different spatial niches in the first sample. (A5, A6) Distribution maps of DC cells and CD8 T cells in different spatial clusters of the first
sample. (B1–B3) Spatial expression of GZMA, TCIM, and OLFML2B genes in the tumor region of the second sample. (B4) Spatial clustering analysis
showing the distribution of different spatial niches in the second sample. (B5, B6) Distribution maps of DC cells and NK cells in different spatial
clusters of the second sample. (C1–C3) Spatial expression of GZMA, TCIM, and OLFML2B genes in the tumor region of the third sample. (C4) Spatial
clustering analysis showing the distribution of different spatial niches in the third sample. (C5, C6) Distribution maps of DC cells and NK cells in
different spatial clusters of the third sample. (D1, D2) Gene Ontology (GO) enrichment analysis of the tumor center and edge regions of the first
sample. (E1, E2) Gene Ontology (GO) enrichment analysis of the tumor center and edge regions of the second sample. (F1, F2) Gene Ontology (GO)
enrichment analysis of the tumor center and edge regions of the third sample. (G1–G6) Enrichment of hypoxia marker genes and TGF-beta signaling
pathway-related genes in the tumor center and edge regions across all three samples.
Frontiers in Oncology frontiersin.org11

https://doi.org/10.3389/fonc.2025.1477617
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Han et al. 10.3389/fonc.2025.1477617
Immunohistochemical analysis of TMErisk
genes in medulloblastoma samples

To further validate the spatial expression and functional

relevance of TMErisk genes in medulloblastoma, we performed

immunohistochemical (IHC) analysis on normal and tumor tissue

samples, using data downloaded from the Human Protein Atlas.

This analysis provided insights into the protein expression levels of

key TMErisk genes, allowing for the comparison between normal

and tumor tissues.

Figure 7 presents the IHC results for seven TMErisk genes:

CEBPB, OLFML2B, GGTA1, GZMA, TCIM, and NAT1. The IHC

staining intensities are categorized into four levels: not detected,

low, medium, and high. The comparison between normal and

tumor tissues highlights significant differences in protein

expression, shedding light on the potential role of these genes in

medulloblastoma pathogenesis.

CEBPB: In tumor samples, CEBPB expression is high, as

indicated by strong IHC staining (CAB004213). In contrast,

CEBPB is not detected in normal tissues, suggesting a tumor-

specific upregulation (Figure 7). The high expression of CEBPB is

associated with higher TMErisk scores, indicating its potential role

in promoting tumor growth and poor prognosis.

OLFML2B: Normal tissues exhibit low OLFML2B expression

(HPA054136), whereas tumor tissues show no detectable

expression (Figure 7). This differential expression suggests that

OLFML2B might not be actively involved in tumor biology, as

previously hypothesized. The absence of OLFML2B expression in

tumor tissues indicates that its role may be limited in the context of

medulloblastoma tumor cell proliferation and survival.

GGTA1: Medium expression of GGTA1 is observed in normal

tissues (HPA023262), while low expression is detected in tumor

tissues. This differential expression suggests that GGTA1 may not

play an active role in promoting medulloblastoma, and its lower

expression in tumor tissues could indicate a reduced involvement in

tumor progression (Figure 7). The expression of GGTA1 is

negatively correlated with TMErisk scores, suggesting its potential

protective role against tumor development.

GZMA: GZMA is not detected in both tumor tissues and normal

tissues (HPA054134), suggesting that it may have limited

involvement in the medulloblastoma tumor microenvironment

(Figure 7). Given its absence, GZMA may not play a significant

role in the anti-tumor immune response in this context.

TCIM: TCIM is not detected in normal tissues, while low

expression is observed in tumor tissues (HPA027188) (Figure 7).

This suggests that TCIMmay have a specific, though limited, role in

medulloblastoma, potentially linked to its low-level expression

within the tumor microenvironment.

NAT1: High expression of NAT1 is found in tumor tissues

(CAB017782), while it is not detected in normal tissues, pointing

towards its significance in tumor metabolism and survival

(Figure 7). The high expression of NAT1 is positively correlated

with TMErisk scores, indicating its role in tumor progression.

These IHC results underscore the significant differences in the

expression patterns of TMErisk genes between normal and tumor

tissues. The high expression levels of CEBPBand NAT1 in tumor
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samples highlight their potential roles in medulloblastoma

development and progression.
Discussion

In this study, we developed and validated a TMErisk scoring

model based on RNA sequencing data from medulloblastoma (MB)

patients. Using Weighted Gene Co-expression Network Analysis

(WGCNA), we identified key gene modules related to immune and

stromal components, which were crucial in constructing the

TMErisk model. Subsequent validation through single-cell RNA

sequencing (scRNA-seq), protein, and spatial RNA analyses

confirmed our findings, providing deeper insights into tumor-

immune interactions and identifying potential therapeutic targets.

Differential expression analysis revealed significant changes in

gene expression within the MB tumor microenvironment between

high and low immune and stromal score groups. Specifically, genes

such as CEBPB,OLFML2B, GGTA1, GZMA, TCIM,OLFML3, NAT1,

and CD1C were identified as key components of the TMErisk model.

These genes showed strong prognostic capabilities, with high

TMErisk scores associated with poorer survival outcomes. This

finding was validated in both the Tiantan and GSE85217 datasets,

indicating the robustness of the TMErisk model.

The TMErisk model significantly outperformed traditional

molecular subtype models in predicting patient prognosis.

Integrating TMErisk scores with molecular subtypes further

enhanced predictive power, suggesting that this combined

approach could more accurately stratify MB patients based on

their risk profiles (10, 11).

Similar to our analysis of the tumor microenvironment in

medulloblastoma, Liu et al. (2024) (12) utilized single-cell RNA

sequencing and spatial transcriptomics to characterize exhausted

CD8+ T cells (CD8Tex) in breast cancer and constructed immune

subtypes and prognostic models. Their findings demonstrated that

CD8Tex-associated subtypes performed well in distinguishing

patients based on immune relevance and response to immune

therapy. This highlights the potential clinical application of multi-

omics approaches in studying tumor microenvironments. Such

immune cell feature-based analysis provides important insights

not only for breast cancer but also for other malignancies,

including medulloblastoma.

Additionally, the TMErisk score was significantly correlated with

various characteristics of the tumor microenvironment, including

immune cell infiltration and stemness indices. Patients with high

TMErisk scores exhibited distinct immune cell infiltration patterns,

which may affect their response to therapy. Gene Set Enrichment

Analysis (GSEA) revealed different biological pathways enriched in

high and low-risk groups, providing insights into the mechanisms

driving MB progression and treatment response (13, 14).

Single-cell RNA sequencing (scRNA-seq) analysis further

elucidated the expression dynamics of TMErisk genes across

different cell types in the tumor microenvironment. For example,

CEBPB was highly expressed in macrophages/monocytes, indicating

its role in immune response and inflammation. GZMA was

predominantly expressed in T cells, highlighting its role in anti-
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tumor immune response (15, 16). Additionally, OLFML2B, CD1C,

and NAT1 were highly expressed in macrophages/monocytes,

suggesting their involvement in immune response and

inflammation. OLFML3 showed high expression in macrophages/
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monocytes and lower levels in malignant cells, further underscoring its

role in the tumor microenvironment.

Spatial transcriptomics analysis revealed the spatial distribution

and clustering of TMErisk genes within tumor tissues. For instance,
FIGURE 7

Immunohistochemical analysis showing the differential expression levels of TMErisk genes in normal and medulloblastoma (MB) tissues. CEBPB:
CEBPB expression is not detected in normal tissues (CAB004213) but shows high expression in tumor tissues. OLFML2B: OLFML2B shows low
expression in normal tissues (HPA054136) and high expression in tumor tissues. GGTA1: GGTA1 is not detected in normal tissues (HPA023262) but
shows medium expression in tumor tissues. GZMA: GZMA expression is not detected in normal tissues (HPA054134) and shows low expression in
tumor tissues. TCIM: TCIM is not detected in both normal and tumor tissues (HPA027188). NAT1: NAT1 is not detected in normal tissues
(CAB017782) but shows high expression in tumor tissues.
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GZMA, TCIM, and OLFML2B were significantly clustered in central

(C3) and peripheral (C8) regions of the tumor. These findings

emphasize the spatial heterogeneity of the tumor microenvironment

and its impact on disease progression. Identification of immune hubs

in the tumor center characterized by high TMErisk gene expression

highlights potential focal points for therapeutic intervention (17).

Using single-cell ATAC sequencing (scATAC-seq) data, we

further explored the regulatory mechanisms of TMErisk genes,

identifying key transcription factors such as CEBPB, SP1, E2F1,

and NFKB1 that may influence the expression of TMErisk-related

genes through complex regulatory networks (18, 19). Analysis of

chromatin accessibility data revealed open regions for these genes in

different tumor cell states, identifying several significantly enriched

transcription factor binding sites. These transcription factors may

influence the expression of TMErisk-related genes through intricate

regulatory networks.

In summary, the TMErisk model provides a comprehensive

approach to understanding the MB tumor microenvironment. It

not only serves as a powerful prognostic tool but also opens new

avenues for targeted therapy. Future research should focus on

integrating these findings into clinical practice to improve

treatment outcomes for MB patients.
Materials and methods

Sample sources and analysis

The bulk mRNA expression data of 322MB patients from Beijing

Tiantan Hospital were used as the training cohort (240 patients with

complete follow-up data available). Data on sex, age, molecular

subgroup, survival status, and survival time were retrospectively

collected. All participants or their parents signed an informed

consent form for our study. The validation gene expression dataset

was obtained from GEO (GSE85217), and clinical data were obtained

from published articles (5) (Supplementary Table S1).

Our study conformed to the tenets of the Declaration of

Helsinki and was approved by the Ethics Committee of Beijing

Tiantan Hospital, Capital Medical University. (KY 2019-098-01).

The single-cell RNA sequencing (scRNA-seq) data were obtained

from the GEO database (GSE155446), comprising over 45,000 cells

from 28 patients, including 9 SHH, 7 G3, 11 G4, and 1 WNT cases.

Each subgroup contains cell subpopulations exhibiting mitotic,

undifferentiated, and neuronal differentiation transcriptional

profiles, providing high-resolution single-cell data for in-

depth analysis.

The spatial transcriptomics data were sourced from the

SpatialTME database (https://www.spatialtme.yelab.site/#!/search,

EGAS00001006124), including spatial VISIUM data from 3

human SHH subtype samples. These data offer high spatial

resolution gene expression information, allowing us to decipher

gene expression patterns within the context of tissue sections,

providing valuable insights into the tumor microenvironment.

The single-cell ATAC sequencing (scATAC-seq) data were

generated by our laboratory, with samples sourced from Beijing

Tiantan Hospital, including 3 samples each of SHH, WNT, G3, and
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G4 subtypes. The DNBelab C Series Single-Cell ATAC Library Prep

Set70 (1000021878; MGI) was used to generate snATAC-

seq libraries.
DNA and RNA sample collection and whole
genome sequencing

The tumor samples of all participants were collected, and

genomic samples were extracted using TRIzol RNA Kit. Genomic

samples were stored in EDTA tubes at -20 degrees Celsius according

to the manufacturer’s protocol. The specimens were sent to the BGI

for total RNA sequencing using the BGISEQ-50 platform (BGI,

Shenzhen, China). Bioinformatics analysis was performed using

RNA-seq (FPKM normalized) and clinical phenotypic data from

MB patients.
TMErisk scores analysis based on
gene signature

The TME of MB was evaluated by immune and stromal scores,

and the “estimate” R package provided details of the algorithm [38].

The correlation between the TME and TME scores was evaluated

using the Spearman method. The “maxstat” R package was used to

calculate the optimal cut-off point for continuous variables

(Supplementary Table S2).

Differentially expressed genes (DEGs) in the high- and low-risk

groups were screened using the Wilcoxon method. Data with an

average gene expression > 0 were filtered. Genes with P-values (false

discovery rate, FDR) adjusted by the Benjamin–Hochberg method <

0.05 and Log2 Fold-change (FC) > 1 were defined as DEGs.

Weighted gene co-expression network analysis (WGCNA) was

used to select gene modules associated with MB immunity and

stromal cell scores, and correlation coefficients greater than 0.5 were

considered to be strongly correlated with TME. The gene expression

matrix was transformed to log2 (FPKM+1). The DEGs and

WGCNA gene intersections were shown in a Venn diagram. The

least absolute shrinkage and selection operator (LASSO) algorithm

was used to screen continuous variables (15). The results of LASSO

were transformed into binary variables, and the final TMErisk

prognosis model was screened based on the Akaike information

criterion (AIC), using Cox stepwise backward regression. The MB

risk-scoring formula was calculated as follows: TMErisk = ∑

Expi*Coefi. A flowchart of the TMErisk score development

process is presented in Figure 1. UCSCXenaShiny software was

used to analyze the pan-cancer data of gene signatures in the Cancer

Genome Atlas (TGCA).
Analysis of immune microenvironment and
MB TMErisk

The correlation between the MB immune microenvironment

and TMErisk includes two parts: (1) correlation and differences
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between immune checkpoint genes and human leukocyte antigen

(HLA) family genes in TMErisk. (2) Differences in immune cell and

stromal cell infiltration among the different risk groups. We used

four algorithms to analyze immune cell infiltration: CIBERSORT

(4), xCell (1), ssGSEA (2) and MCPcounter (3). “ClusterProfiler”

packages were used for gene enrichment analysis and enrichment in

the different risk groups [39]. Cell function and pathways were

annotated using Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG).
Gene expression-based stemness index,
immune-phenoscore, and drug-
sensitivity prediction

Malta et al. used one-class logistic regression (OCLR) machine-

learning algorithms to train a stemness signature using gene

expression in pluripotent stem cells from the Progenitor Cell

Biology Consortium dataset (5). We implemented OCLR using

the “gelnet” package (https://www.rdocumentation.org/packages/

gelnet/versions/1.2.1) to determine the gene expression-based

stemness index (mRNAsi), and the results were normalized to 0–

1. We used the GDSC2 dataset after RMA standardization and log

transformation as the training set, and build the prediction model

with “oncoPredict” package (4). The sensitivity of all MB patients to

198 drugs was calculated. To assess the reactivity of MB patients, we

calculated the immune-phenoscore (IPS) of the sample using the R

script provided by the Cancer Immunome Atlas (https://tcia.at) (6).
Cell clustering and cell-type identification
in snRNA-Seq dataset

To ensure the acquisition of high-quality data for further

analysis, we first filtered the snRNA-seq data by setting a

minimum expression threshold of 500 genes per nucleus, with

each gene expressed in at least three nuclei. Nuclei with more

than 20% mitochondrial gene counts were excluded. After filtering,

the data were logarithmically transformed using the formula ln

(counts per million/100 + 1). We selected 3,000 genes exhibiting

high variability based on their average expression and dispersion.

The number of UMIs and the proportion of mitochondrial genes

were adjusted, and genes were scaled using default settings. We used

Seurat (v_4.0.3) to perform global clustering of the entire tumor

tissue dataset, with manual fine-tuning of parameters to optimize

cell clustering.

To identify cellular subpopulations, we conducted principal

component analysis on the snRNA-seq data for dimensional

reduction and employed the Louvain algorithm to reveal

community structures. In the process of clustering individual

tissues, we used the Seurat package (v_4.0.3) within R (v_4.0.2).

We normalized data from various replicates and identified the top

2,000 highly variable genes from each replicate using the

FindVariableFeatures function with the vst method. For batch
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correction, replicable variable genes were selected using the

FindIntegrationAnchors function and integrated into a unified

data assay. Clustering and visualization in this integrated assay

were carried out using default settings following the standard Seurat

workflow. Each cluster was characterized based on distinct gene

expression profiles.
Integration of snRNA-seq and snATAC-
seq data

To assign cell type identities from snRNA-seq data to cells in

snATAC-seq datasets, we utilized the TransferData function of Seurat

to establish anchors between both datasets. We conducted canonical

correlation analysis to merge the log-normalized gene activity scores

from snATAC-seq with the gene expression scores from snRNA-seq.

This integration was facilitated by Seurat’s ‘FindTransferAnchors’

function, taking as input the collection of the 2,000 most variable

genes from both snRNA-seq and snATAC-seq datasets. Subsequently,

canonical correlation analysis (CCA) was carried out using Seurat’s

default settings. For each cell analyzed by snATAC-seq, we searched

the combined CCA L2 space to locate the closest neighboring cell from

the snRNA-seq dataset. The nearest neighbors were determined using

the “FNN” R package and the “kd_tree” algorithm.
Building and visualizing the transcription
factor regulatory network

Using motif position information, we analyzed peak regions in

the snATAC-seq data. We identified transcription factors that were

commonly present in the peak regions of four genes (4/8), and

subsequently visualized the network using Gephi software. In

building the network, interactions between transcription factors

and target genes were defined as edges, and each transcription

factor and target gene were treated as nodes.
Transcription factor enrichment analysis

To identify transcription factors significantly enriched in the

peak regions of eight genes, we used SEA (https://meme-suite.org/

meme/tools/sea) for TF enrichment analysis, with motif position

information sourced from JASPAR HumanTFBS.
Cell immune gene risk scoring

Based on snATAC-seq data, we calculated both positive and

negative risk scores for each cell, and based on the averages, cells

were divided into two groups. We used Signac’s FindMarkers

function to identify characteristic peaks (LogFC > 0.1, q < 0.05)

and conducted peak gene annotation. We used Gephi software for

network visualization, where the depth of node colors represents the
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frequency of gene peak occurrences, and the color of the edges

indicates the correlation between gene activity scores and cell risk

scores (red: negative correlation, blue: positive correlation).
Pseudotime analysis

Pseudotime analysis is a powerful technique in single-cell RNA

sequencing research, which reveals the timeline of biological

processes by ordering individual cells. Using Monocle 3, this

analysis includes steps such as data preprocessing, cell clustering,

trajectory inference, and gene expression analysis. The process

begins with data normalization and batch effect correction,

followed by cell clustering using UMAP dimensionality reduction

and density-based clustering techniques. Monocle 3’s trajectory

inference feature helps identify the sequence of transitions

between cell states and establishes a trajectory that depicts the cell

differentiation process. By calculating pseudotime values, the

analysis identifies key genes that show significant expression

changes at different time points, the functions of which are

verified in subsequent experiments. This analysis not only

provides a deep understanding of the dynamics of cell

differentiation but also serves as an important tool for studying

the molecular mechanisms determining cell fate.
Cell-cell communication analysis

In our study, we utilized the CCInx tool to analyze

communication among different cell types within the tissue

microenvironment. Initially, single-cell data were standardized,

involving the removal of technical noise, data normalization, and

batch effect correction. We constructed a cell communication

network diagram to visualize the strength and specificity of

interactions between different cell types.
Spatial transcriptomics data processing

Spatial transcriptomics data is derived from the SpatialTME

database (https://www.spatialtme.yelab.site/#!/search, EGAS000010

06124), which includes spatial data from 3 human SHH subtype

samples using the VISIUM platform. The analysis of spatial

transcriptomics data is sourced from the SpatialTME database.

The STModiCluster function in Cottrazm is used for

morphology-adjusted clustering, and the “STCNVScore” function

is employed to calculate DNA copy number variation (CNV) scores,

with the BoundaryDefine function used for cluster selection. The

Seurat package is utilized for visualizing spatial structures, and

stLearn applies the Leiden algorithm to define spatial clustering on

the Slide-seq platform. Spatial expression pattern analysis is

conducted using Seurat, integrating TLS scores, cancer-related

marker gene sets from MSigDB, and KEGG gene sets. Differential
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expression analysis and functional enrichment analysis are

performed using the FindDiffGenes function in Cottrazm and the

clusterProfiler. Cell composition deconvolution analysis is carried

out using Cottrazm’s SpatialDecon function, and cell interaction

assessment is done using the CellChat package.
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