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Objective: Although preoperative prediction of axillary lymph nodes status has

been achieved using radiomics and combined models, there is a dearth of

research on internal mammary lymph node (IMN) metastasis status prediction.

We developed a predictive model by combining clinicopathological factors with

preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) radiomics to accurately predict IMN metastasis in breast cancer.

Methods: Patients who had no evidence of IMN metastasis on preoperative

images but underwent internal mammary sentinel lymph node biopsy (IM-SLNB)

were included in this study. Preoperative DCE-MRI and clinicopathological data

of 124 patients with breast cancer were obtained, to developed Clinical,

radiomics, and clinical–radiomics models, separately. Decision curve analysis

(DCA) was employed to assess the models’ clinical applicability.

Results: The resulting area under the curves (AUCs) were 0.913, 0.831, 0.964 for

the clinical model, the radiomics model, and the clinical–radiomics model,

respectively. The Delong test revealed significant differences in the receiver

operating characteristic (ROC) curves only between the clinical and clinical–

radiomics models (all P<0.05). DCA substantiated the clinical–radiomics model’s

optimal predictive efficiency, enhanced discriminatory ability, and maximum

benefit. The AUC (95% confidence interval: 0.935-0.993) of the clinical–

radiomics model is 0.964. Repeated k-fold cross validation showed that

average accuracy and Standard deviation of clinical–radiomics model are

90.23% and 8.45%, respectively. And the calibration slope of clinical–radiomics

model is 1.08(p=0.071).

Conclusions: Although the clinical model was effective in predicting IMN status,

the addition of DCE-MRI radiomics significantly improved the predictive value of

the clinical–radiomics model, which showed excellent discrimination,

calibration, and stability. This suggests that the clinic-radiomics model has
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potential for preoperative assessment of IMN metastasis risk in breast cancer

patients, but external validation is needed to confirm its clinical utility. IMN

irradiation is recommended for early patients with high IMN metastasis risk,

and overtreatment should be avoided for patients with low metastasis risk.
KEYWORDS

breast cancer, internal mammary nodemetastasis, clinicopathological factors, DCE-MRI
radiomics, predictive model
1 Introduction

Precise staging of lymph node metastasis forms an integral part

of breast cancer staging and serves as a prerequisite for accurate

determination of the treatment strategy and prognostication (1).

The internal mammary lymph nodes (IMN) are situated posterior

to the intercostal muscles and costal cartilage, adjacent to the

internal mammary veins and arteries and receive lymphatic

drainage from the nipple-areola complex, medial aspect of the

breast, anterior chest wall, precostal pleura, and upper abdominal

wall (2, 3). IMNs constitute a significant pathway for the lymphatic

spread of breast cancer. The IMN metastasis rate was 5-17% in

axillary lymph node (ALN)-negative patients and 28-52% in ALN-

positive patients (4–7). Studies have revealed that the prognostic

value of IMNmetastasis is comparable to that of ALNmetastasis (8,

9). The presence of IMN metastasis significantly increases the

likelihood of distant metastasis compared to the absence of IMN

involvement (6, 10–12). Therefore, accurate assessment of IMN

status is crucial for precise therapeutic decision-making and

achieving favorable outcomes.

The most critical aspect of detecting metastasis in IMNs is

identifying suspicious lymph nodes on imaging tests such as

ultrasound, MRI, or PET. However, owing to the complex

anatomy of the internal mammary region, the diagnostic accuracy

rates of clinical examination and imaging are limited. Therefore,

despite advances in precision medicine, pathological examination

remains the gold standard for IMN diagnosis. Extended radical

mastectomy (ERM) has been discarded as a treatment option since

it is extremely traumatic and lacks survival benefits (13). Minimally

invasive approaches for lymph node management, internal

mammary sentinel lymph node biopsy (IM-SLNB), and video-

assisted thoracic surgery have emerged as alternatives, owing to

the widespread popularity of SLNB (6, 14). However, these
; ALN, axillary lymph

rnal mammary sentinel

ced magnetic resonance
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procedures are invasive with potential complications, can only be

performed once at a specific spatial location, and cannot be

repeated. Therefore, it is necessary to explore effective

noninvasive methods for assessing the status of the IMN and

identifying patients at high risk of IMN metastasis who would

benefit from postoperative radiotherapy, while avoiding

unnecessary treatment/intervention in the IMN drainage area for

low-risk patients.

Although predictive models for noninvasive ALN status

assessment in clinical practice are being developed gradually, few

studies have investigated IMN metastasis prediction (15–20).

Hence, this study aimed to establish a clinical and radiomics

model based on clinicopathological factors and dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) radiomics

characteristics and combine them to construct a clinical–

radiomics model, compare the predictive efficiency of different

models for IMN metastasis, and provide a basis for individualized

decision-making in IMN radiotherapy after breast cancer surgery.
2 Methods

2.1 Patients

This study enrolled patients with operable non-advanced breast

cancer without IMN metastasis on preoperative imaging who

underwent IM-SLNB with or without IMN dissection and

treatment at Shandong Cancer Hospital from January 2013 to

December 2019. The preoperative DCE-MRI scans and

preoperative clinicopathological data were collated. The inclusion

criteria were as follows: (i) patients newly diagnosed with operable

non-stage IV breast cancer, (ii) absence of IMN metastasis

confirmed on preoperative diagnostic imaging, (iii) patients who

underwent IM-SLNB with or without IMN dissection, and (iv)

complete preoperative DCE-MRI data for primary breast tumors.

The exclusion criteria were patients who received neoadjuvant

therapy, patients with regional lymph node metastasis except for

ALN and IMN, and patients with incomplete clinicopathological or

imaging data.

All patients included in this study had both preoperative DCE-

MRI images and complete clinicopathological data. To ensure data
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consistency, we carefully matched each patient’s imaging data with

their corresponding clinical records before feature extraction and

model construction. This approach eliminated any potential

inconsistencies in the number of instances between the image-

derived dataset and the clinical dataset.

The requirement for written informed consent from patients was

waived due to the retrospective nature of the investigation

(retrospective single-institution cohort study). The institutional

research ethics board of Shandong Cancer Hospital and Institute

approved this study (SDTHEC201703014), and all methods were

performed in accordance with the relevant guidelines and regulations.
2.2 Clinicopathological data collection

The patients’ clinicopathological data included age, primary

tumor location, presence or absence of tumor thrombus, menstrual

status, pathological type, histological grade, estrogen receptor (ER)

status, progesterone receptor (PR) status, human epidermal growth

receptor (HER)-2 expression level, Ki67 expression level, molecular

subtype, number of ALN metastasis (ALN), and T stage. And all of

the pathological data obtained from samples obtained after surgery.
2.3 DCE-MRI acquisition

The preoperative DCE-MRI images of all patients were collected.

All MR images were acquired using a Philips Achieva 3.0-T MR

scanner with the patient in the prone position, with both breasts

falling naturally. The scanning range encompassed both breasts and

axillary soft tissues. The complete MRI sequence included bilateral

breast cross-sectional T1-weighted imaging, sagittal T2-weighted

imaging with fat suppression, diffusion-weighted imaging, and DCE

scanning using gadopentetate meglumine as the contrast medium for

enhanced imaging. The following DCE-MRI parameters were used:

repetition time=4.4 ms; echo time= 2.2 ms; field-of-view=34 cm × 34

cm; slice thickness=4.0 mm; and flip angle=12°. In this study, DCE

was divided into eight phases, with tumor enhancement being the

most prominent in the second phase. Therefore, segmentation and

analysis were performed on the second-phase DCE images.

Subsequently, continuous preoperative DCE-MRI images were

imported into a deformation registration software called 3D Slicer

(version 4.13.0, http://www.slicer.org, USA).
2.4 Establishment of the clinical prediction
model

Continuous variables such as age, preoperative neutrophil

count, preoperative lymphocyte count, and preoperative

monocyte count were entered into the univariate analysis of

clinicopathological factors. Student’s t-test or Mann-Whitney U

test were used for the analysis. Categorical variable included

primary tumor location, presence or absence of tumor thrombus,

menstrual status, pathological type, histological grade, ER status, PR
Frontiers in Oncology 03
status, HER-2 expression, Ki-67 expression, molecular

classification, number of ALN metastasis, and T stage. Analysis

was performed using the chi-squared or Fisher’s exact test. A

clinical predictive model was established based on the

independent risk factors for IMN metastasis identified by

univariate and multivariate logistic regression analysis. Variables

with p-values < 0.1 in the univariate analysis were included in the

multivariate logistic regression analysis. Among these, only

variables with p-values < 0.05 in the multivariate analysis were

retained to establish the final prediction model.
2.5 Establishment of the radiomics model

The process of radiomics analysis consists of segmentation of

the regions-of-interest (ROIs) on MRI (Figure 1); image pre-

processing, feature extraction, and selection of radiomics; and

establishment of a radiomics model.

2.5.1 ROI segmentation on DCE-MRI
Using 3D Slicer, the ROI was segmented on the second-

enhancement phase of preoperative diagnostic MRI. The ROI was

manually delineated by a radiation oncologist blinded to the

patients’ IMN status. All ROIs were examined and evaluated by

another radiation oncologist with over 10 years’ experience. In this

study, the primary breast tumor served as the ROI, whose contour

was meticulously delineated layer-by-layer along its boundary,

excluding the adjacent blood vessels, fat tissue, and normal

structures, while minimizing the inclusion of edematous areas

surrounding the tumor.

2.5.2 Image pre-processing, feature extraction,
and radiomics feature selection

Before feature extraction, each image was subjected to pre-

processing. The Caret package in R software was utilized for data

pre-processing, which facilitates faster algorithm convergence and

yields a more reasonable model. To reduce noise and enhance

image quality, we applied Gaussian smoothing to the DCE-MRI

images. This technique helps to suppress high-frequency noise

while preserving the structural details of the tumor. Intensity

normalization was performed to standardize the voxel values

across different images. This step ensures that the radiomics

features are comparable across patients, reducing variability

caused by differences in imaging protocols or scanner settings. 3D

Slicer was used for voxel-based radiomics feature extraction,

encompassing first-order statistics, and shape and texture

features. Texture features effectively capture tumor heterogeneity

by utilizing a gray-level dependence matrix, gray-level run-length

matrix, gray-level co-occurrence matrix, gray-level size zone matrix,

and neighborhood gray tone difference matrix. Feature selection

plays a pivotal role in training classifiers because it reduces the

computational complexity while enhancing the classification

accuracy. This process entails evaluating the linear correlation

between each feature and category label, followed by eliminating

variables with strong correlations with other independent variables
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and those exhibiting multicollinearity. Subsequently, data

centralization was performed along with standard deviation

normalization [(x-mean)/SD)]. Finally, the most relevant features

were selected from the entire set using the least absolute shrinkage

and selection operator (LASSO) logistic regression method,

followed by the forward method based on partial maximum

likelihood estimation, to identify the best predictive features

related to IMN metastasis prediction.

2.5.3 Establishment of the radiomics score
After feature selection, a radiomics signature, also known as the

Radiomics Score (RS), was created from a linear combination of

features and corresponding weights, and calculated as RS=b0 + b1×1
+ b2X2 +… + bnXn + compensation coefficient, where b0 is a

constant, bi is the logistic regression coefficient, and Xi is the value of

the selected feature. The RS, which reflects the risk of IMNmetastasis,

was calculated for each patient using a linear combination of selected

features weighted by the respective coefficients.
2.6 Establishment of the clinical-radiomics
model

To integrate the radiomics features with the clinicopathological

factors, we first calculated the RS based on the selected radiomics
Frontiers in Oncology 04
features of their respective coefficients. The RS was then combined

with the independent clinicopathological risk factors identified

through multivariate logistic regression. The combined model was

used to construct a nomogram for predicting the risk of IMN

metastasis. The integration of these two datasets allowed us to

leverage both imaging and clinical information to improve the

predictive accuracy of the model.
2.7 Model testing and comparison

The Delong test was employed to compare the performance of

the receiver operating characteristic (ROC) curves across different

models. It evaluates whether the differences in predictive

performance between models are statistically significant by

calculating the variance and covariance of the AUC values.

Decision curve analysis (DCA) was used to assess the clinical

applicability of the three models, ultimately determining the

optimal prediction model for IMN metastasis risk. Model

goodness-of-fit was evaluated using the Hosmer–Lemeshow test

and calibration curve. The validity, calibration and stability of the

model were verified using repeated k-fold CV(cross-verification).

The number of cross-verification folds is 5(k=5). And then

performed 100 replicate cross-validation times, each time using a

different random seed for data division.
FIGURE 1

MR Image for patient with positive (1a) and negative (2a) IMLN and ROI delineating based on DCE-MR image (1b, 2b).
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2.8 Statistical analysis

Statistical analyses were conducted using SPSS 26.0, and R

(version 3.6.0, http://www.r-project.org) software packages. The

LASSO logistic regression method was employed to identify the most

discriminative features. Radiomics features were computed by

combining their weighted coefficients. Cross verification of the

clinical–radiomics model was performed using repeated k-fold CV.

Model performance evaluation included ROC analysis, calibration

curve assessment, and DCA. Differences in the ROC curves among

the three models were compared using the Delong test, which is a

significance test for area under the curve (AUC) values obtained by

calculating the variance and covariance across different ROC curves.

Generally, p-values<0.05 indicated statistically significant differences

between AUC values from two ROC curves tested at an a level of 0.05.
Frontiers in Oncology 05
3 Results

3.1 Patients’ characteristics

124 patients were included in the final analysis. The baseline

characteristics of all patients are presented in Table 1. Twenty-one

patients had IMN metastasis and 103 did not. The overall incidence

of primary tumors in the medial quadrant was 38.7%, 20.8% of

which exhibited IMN metastases. Eight patients with IMN

metastasis had lateral quadrant primary tumors and three had

central region primary tumors. IMN metastasis occurred in the

medial quadrant, lateral quadrant, and central region in 20.8%,

11.8%, and 37.5% of patients, respectively. IMNmetastasis occurred

in 90.5% and 9.5% patients in the ALN-positive and ALN-negative

groups, respectively.
TABLE 1 Clinicopathological characteristics of the patients.

Clinicopathologic characteristics IMN metastasis No. (%) No IMN metastasis No. (%) All No. (%)

IMN 21 (16.9) 103 (83.1) 124

Age

≤50 13 (18.9) 56 (81.1) 69 (55.6)

>50 8 (14.5) 47 (85.5) 55 (44.4)

Primary tumor location

medial 10 (20.8) 38 (79.2) 48 (38.7)

lateral 8 (11.8) 60 (88.2) 67 (54.8)

central 3 (37.5) 5 (62.5) 8 (6.5)

Vascular invasion

yes 5 (33.3) 10 (66.7) 15 (12.1)

no 16 (14.7) 93 (85.3) 109 (87.9)

Menstrual status

postmenopausal 7 (13.5) 45 (86.5) 52 (41.9)

premenopausal 14 (19.4) 58 (80.6) 72 (58.1)

Pathological subtypes

ductal 21 (17.8) 97 (82.2) 118 (95.2)

lobular 0 1 (100) 1 (0.8)

other 0 5 (100) 5 (4.0)

Histological grade

I 0 2 (100) 2 (1.6)

II 14 (19.7) 57 (80.3) 71 (57.3)

III 7 (14.0) 43 (86.0) 50 (40.3)

uncertain 0 (0) 1 (100) 1 (0.8)

ER

positive 19 (20.7) 73 (79.3) 92 (74.2)

negative 2 (6.3) 30 (93.7) 32 (25.8)

(Continued)
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3.2 Clinical model

Univariate logistic regression analyses and multivariate logistic

regression analyses (Table 2) revealed that primary tumors located

in the medial quadrant, positive PR status, and ALNmetastasis were

independent risk factors for IMN metastasis. Subsequently, a

clinical prediction model was developed based on tumor location,

PR status, and ALN metastasis status. ROC curve analysis showed

that the AUC for predicting IMN metastasis was 0.913 (95%

confidence interval [CI]: 0.862-0.965) (Figure 2).
3.3 Radiomics model

A total of 850 radiomic features were extracted from each patient.

Features with a correlation coefficient greater than 0.9 were

eliminated, and 185 features remained. Further elimination of

collinear features reduced the number to 123 and subsequent rank-
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sum testing further narrowed the number to 122. Following LASSO

feature selection, four radiomics features with nonzero coefficients

were ultimately chosen to construct the radiomics model: one shape

feature (original_shape_Elongation) and three texture features

(wavelet-LHL_glcm_Correlation, wavelet-LHL_glcm_Correlation,

and wavelet-LHH_ngtdm_Contrast). These features were utilized to

establish a predictive radiomics model, where the RS was calculated

using the following formula: RS=0.730 × original_shape_Elongation

+ 0.916 × wavelet-LHL_glcm_Correlation + 1.271 × wavelet-LHL_

first order _Skewness - 1.267 × wavelet-LHH_ngtdm_Contrast -

2.305. Performance evaluation yielded an AUC value of 0.831 (95%

CI: 0.741-0.921) (Figure 3).
3.4 Clinical-radiomics model

The clinical–radiomics prediction model was established

using the selected clinicopathological features and RS. To
TABLE 1 Continued

Clinicopathologic characteristics IMN metastasis No. (%) No IMN metastasis No. (%) All No. (%)

PR

positive 19 (25.0) 57 (75.0) 76 (61.3)

negative 2 (4.2) 46 (95.8) 48 (37.5)

HER-2

positive 16 (18.4) 71 (81.6) 87 (70.2)

negative 5 (13.5) 32 (86.5) 37 (29.8)

Ki-67

high expression 12 (13.8) 75 (86.2) 87 (70.2)

low expression 9 (24.3) 28 (75.7) 37 (29.8)

Molecular subtypes

luminal A 12 (24.0) 38 (76.0) 50 (40.3)

luminal B 3 (17.6) 14 (82.4) 17 (13.7)

her2-enriched 5 (13.2) 33 (86.8) 38 (30.7)

three negative 1 (5.3) 18 (94.7) 19 (15.3)

Number of ALN metastases

0 (N0) 2 (2.9) 68 (97.1) 70 (56.5)

1-3 (N1) 9 (24.3) 28 (75.7) 37 (29.8)

4-9 (N2) 4 (44.4) 5 (55.6) 9 (7.2)

>10 (N3) 6 (75.0) 2 (25.0) 8 (6.5)

T grade

T1 8 (13.1) 53 (86.9) 61 (49.2)

T2 11 (20.8) 42 (79.2) 53 (42.7)

T3 2 (22.2) 7 (77.8) 9 (7.3)

T4 0 1 (100) 1 (0.8)
IMN, internal mammary lymph node; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2.
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enhance its clinical applicability and provide a more intuitive

representation, we established a nomogram (Figure 4), whose

AUC for predicting IMN metastasis was 0.964 (95%CI: 0.935-

0.993). As shown in Figure 5, the calibration curves of the model

was plotted. The x-axis represents the predicted risk, and the y-

axis represents the actual probability. The diagonal dashed line
Frontiers in Oncology 07
represents a perfect prediction by an ideal model and the orange

curve represents the performance of the model, of which a closer

fit to the diagonal dashed line represents a better prediction. But

the orange curve dips below the reference line, which means the

predicted probability is higher than the actual probability, that is,

the model has overestimated the actual probability between 0.2
TABLE 2 Univariate and multivariate logistic analysis.

Clinicopathologic
characteristics

Univariate logistic analysis Multivariate logistic analysis

p OR 95%CI p OR 95%CI

Age 0.668 0.99 0.94~1

Tumor location

lateral quadrant

medial quadrant 0.096 0.44 0.17~1 0.019 0.17 0.04~0.75

Vascular invasion 0.081 2.91 0.88~9 0.233 0.30 0.04~2.16

Menstrual status 0.383 0.64 0.24~1

Pathological subtypes

ductal

lobular 0.997 0.00 0.00~Infinite

other 0.993 0.00 0.00~Infinite

Histological grade

I 1.000 1.00 0.00~Infinite

II 0.995 3912840 0.00~Infinite

III 0.995 2547896 0.00~Infinite

ER 0.079 3.90 0.86~1 0.805 0.71 0.05~10.64

PR 0.008 7.67 1.70~3 0.035 12.14 1.20~122.88

HER-2 0.509 0.69 0.23~2

Ki-67 0.157 0.50 0.19~1

Molecular subtypes

luminal A

luminal B
0.589 0.68 0.17~2

2.77

her2-enriched
0.208 0.48 0.15~1

1.50

three negative
0.107 0.18 0.02~1

1.46

Number of
ALN metastases

<0.001 4.37 2.37~8
0.000 8.63

3.25~22.9222.9

T grade

T1

T2 0.992 116998231701111 0.00~Infinite

T3 0.992 17017924 0.00~Infinite

T4 1.00 1.00 0.00~Infinite
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and 0.4. We calculate the calibration curve of the model, and use

the slope of the calibration curve to evaluate the match between

the probabilistic predictions of the model and the actual results. It

is found that the prediction model has bias or error in the range

between 0.2 and 0.4. The calibration slope is 1.08 (p=0.071),

indicating no statistically significant difference from 1. And it

indicates that the predicted probability of this model matches well

with the actual event. The mean, standard deviation, minimum

and maximum of the calibration slopes from repeated cross-

validation were 1.076, 0.023, 1.034 and 1.123, respectively.

Ideally, the calibration slope should be close to 1, and a value of

1.08 indicates that the model’s prediction probability is slightly

high, but still performs relatively accurate overall. The calibration
Frontiers in Oncology 08
curve demonstrated strong concordance between the probability

predicted by the clinical–radiomics model and the actual rate of

IMN metastasis in patients (Figure 5).
3.5 Comparison and testing of the three
prediction models

The Delong test did not identify significant differences in the

ROC between the clinical and radiomics models (Z=1.4996,

p=0.134), but found significant differences between the clinical

and clinical–radiomics models (Z=-2.4294, p=0.015) and between

the radiomics and clinical-radiomics models (Z=-3.252, p=0.001).

Based on the AUC of the three models, the clinical–radiomics

model provided the most efficient prediction for the IMN status

(Figure 6). DCA was performed to visually demonstrate the

differences between the models and their clinical applicability

(Figure 7). Cross validation of clinical radiomic models using

repeated k-fold CV, average accuracy and standard deviation of

clinical–radiomics model are 90.23% and 8.45%, respectively, which

demonstrate the stability of the model. The Hosmer–Lemeshow

tests were performed to assess the goodness-of-fit of the clinical-

radiomics model (c2 = 2.287, P=0.971), and the results indicated

that the model had good calibration.
4 Discussion

ERM has gradually been phased out because of the long

operative time and attendant postoperative complications (13).

Owing to the recent and ongoing advancements in minimally

invasive techniques, IM-SLNB or video-assisted IMN dissection

can provide less invasive means of IMN metastasis status

evaluation. However, the learning curve for minimally invasive

surgery is beset by challenges, including operative time, SLNB false-

negative rate, and sensitivity (21). Several studies have confirmed

that the Memorial Sloan Kettering Cancer Center nomogram based

on nine clinicopathological variables, such as age, tumor size, tumor

type, tumor location, lymphovascular invasion, multifocality,

histological grade, ER status, and PR status, can be utilized to

accurately and noninvasively assess the risk of ALN-SLNB

metastasis in patients with breast cancer (15, 18).

The incidence rate of IM-SLN metastasis was 17.0% to 33% for

patients clinically diagnosed with ALN positivity, and 10% for

ALN-negative patients based on IM-SLNB (19, 20). And tumor

size, tumor location, lymphovascular invasion, and number of

positive ALNs were independent factors influencing IM-SLN

metastasis (19, 20). Therefore, this clinical prediction model can

also predict the IMN metastasis status before surgery (19–22).

Huang et al. (22) also found that the medial quadrant location,

PR positivity, and ALN metastasis were predictive factors for IMN
FIGURE 2

ROC curve of the clinical model. ROC, receiver operating characteristic.
FIGURE 3

ROC curve of the radiomics model. ROC, receiver operating characteristic.
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metastasis. Our model focused on predicting the risk of IMN

metastasis in Chinese patients with breast cancer, and our results

support its accuracy, with a statistically significant AUC of 0.913.

Radiomics is a high-throughput data-mining technique that

extracts quantitative image features from various imaging

modalities such as ultrasonography, computed tomography, MRI,

and positron-emission tomography, etc., enabling the conversion of

image information into extractable data. Subsequently, these

radiomics data can be further analyzed and applied to clinical

decision-making systems. The clinical implementation of

radiomics models offers a novel approach to establishing lymph

node metastasis prediction models to enhance the accuracy of

diagnosis, prognostication, and prediction (23–25). Currently,

numerous radiomic models based on mammography, ultrasound,

and breast MRI modalities exist for breast cancer ALN metastasis

prediction, with AUC values ranging from 0.799-0.920. These
FIGURE 4

Nomogram for predicting the risk of IMN metastasis based on clinical-radiomics. IMN, internal mammary lymph node.
FIGURE 5

Calibration curve of the clinical–radiomics model.
Frontiers in Oncology 09
FIGURE 6

Comparison of ROC curves of the three models. RS, radiomics
model; Clinical, clinical model; RS+Clinical, clinical–
radiomics model.
FIGURE 7

Decision curve analysis.
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findings underscore the potential of radiomics models for

preoperative ALN metastasis prediction (26–29).

We retrospectively analyzed the clinicopathological

characteristics and preoperative DCE-MRI radiomics features of

patients with breast cancer to establish distinct clinical and

radiomics models to perform noninvasive preoperative prediction

of IMN metastasis status more effectively, and combined the two

models into a comprehensive prediction tool. The aim was to

explore an optimal prediction model for IMN metastasis that

could guide risk assessment and individualized treatment

strategies. Among the various MRI sequences available, DCE is

widely regarded as the optimal sequence for identifying primary

breast tumors (15). Therefore, we extracted radiomics information

from DCE-MRI scans. Considering the varying evaluation effects of

different DCE sequences, study has proved that the second-phase

(CE2) image performed best when acquired 60-90 s after contrast-

medium administration, because it provided the strongest contrast

between the tumors and surrounding tissues (30). Similarly, our

radiomics model was developed based on the ROI delineated from

the second phase of preoperative DCE-MRI to further extract and

screen the relevant radiomic features. The AUC value for this

radiomics model utilizing preoperative DCE-MRI information

alone was 0.831, which indicated accurate prediction of IMN

status among patients with breast cancer.

As mentioned before, the findings of our study indicate that

both the clinical model based on clinicopathological features and

the radiomics model based on DCE-MRI features had good

predictive ability for the risk of IMN metastasis. We compared

the ROC performance of the clinical and radiomics models to

determine the optimal prediction model for predicting the IMN

metastasis status. Although the AUC of the clinical model was

higher than that of the radiomics model (0.913 vs. 0.831), the

Delong test revealed no statistically significant difference (p=0.134).

To further ascertain the more effective model for IMN metastasis

risk prediction, a combined model was developed by integrating the

clinicopathological and radiomic features, and its effectiveness was

validated. A nomogram that incorporates clinical factors and

radiomics features provides clinicians with visual support for

decision-making and highlights the predictive potential of the

fusion model (31). The fusion model also demonstrates promising

prospects for predicting lymph node metastasis in breast cancer.

Preoperative prediction of axillary lymph nodes status has been

achieved using radiomics and combined models (25, 29, 30, 32).

Although preoperative prediction of ALN status has been

achieved using radiomics and combined models, there is a dearth

of research on IMN metastasis status prediction. In this study, we

combined clinicopathological features, viz. tumor location, PR

status, and N stage, with radiomics features to establish a clinical–

radiomics model. This model achieved a higher AUC value of 0.964

compared to the clinical and radiomics models alone. Internal

validation of the combined model further confirmed its good

discriminatory ability (Hosmer–Lemeshow goodness-of-fit test:
Frontiers in Oncology 10
c²=2.287, P=0.971). Therefore, our clinical–radiomics model was

deemed the optimal predictive tool for risk assessment of IMN

metastasis. These results show that incorporating radiomics into

predictive models can improve the accuracy of IMN metastasis risk

assessment and aid in identifying patients who may benefit from

avoiding overtreatment or receiving additional interventions such

as IMN radiotherapy (IMN-RT). To facilitate clinicians’ predictions

of IMN metastasis risk based on clinicopathological factors and

preoperative MRI features, we developed a nomogram that

visualizes the results and confirms the superior predictive value of

our combined model; however, it cannot replace the individualized

decision-making for IMN-RT. The potential utility of this

prediction model may lie in identifying patients at very low or

high risk of IMNmetastasis who would derive the maximum benefit

from its implementation.

Our study has certain limitations. First, this single-center

retrospective study included a relatively small sample size and a

relatively low number of patients with IMN metastasis. Therefore, we

employed data integration techniques to construct a predictive model

that was internally validated by 1000 rounds of bootstrapping. Second,

the study lacked external validation, which is a crucial step in

establishing the credibility of the predictive model; multicenter

validation is imperative to enhance the level of evidence for clinical

application. Additionally, the utilization of only one imaging modality

resulted in a limited number of extracted radiomic features. If more

imaging modalities can be combined, the feature library can be further

expanded to obtain more valuable radiomics information.
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