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Simulation approach involves the use of computers and mathematical models to

simulate real systems for experimentation or tests that evaluate the behavior and

performance of a system or predict the results of various hypothetical scenarios.

Due to its rapid development in the context of cancer, we introduce commonly

used cancer simulation approach, and review the application of these approach

in common cancers of women, such as breast, cervical, ovarian and endometrial

cancers, to provide new ideas and directions for cancer study as well as

clinical treatment.
KEYWORDS
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1 Introduction

Cancer, characterized by the abnormal proliferation of cells in an uncontrolled manner,

is a leading cause of death worldwide. According to the WHO, approximately 19.3 million

cancer cases were diagnosed in 2020, accounting for one in six deaths, and the number of

cases is expected to rise to 28.4 million by 2040 (1).

The traditional methods of cancer research are mainly clinical trials, in vitro

experiments and in vivo experiments, which are important but also have their own

shortcomings. For example, clinical trials are not only a lengthy process, but also involve

the influence of trial design, patient selection and follow-up, and complex data analysis (2).

In vitro experiments are studied by extracting cells from patients, but cannot fully simulate

the physiological environment in vivo, etc. (3); the main advantage of in vivo experiments is

the use of replacement animals, but they may be affected by individual differences,

environmental factors, time, and ethical issues, etc. (4).

Compared to traditional research methods, cancer simulation is a valuable research

direction that can provide an ethical, rapid, and cost-effective approach to various

hypotheses and predictions for cancer prevention, diagnosis, and treatment (5).

Simulation modeling involves the use of computer and mathematical models to simulate
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real systems for experiments or tests that evaluate the behavior and

performance of a system or predict the outcomes of various

hypothetical scenarios (6).

Cancer simulation is capable of investigating the complex

interactions of multiple factors such as molecular pathways, cell

proliferation, and tissue microenvironment (2), assessing patient

clinical data and developing individualized screening strategies

through a multiscale approach (7), obtaining accurate, rigorous,

and reproducible predictions of spatiotemporal progression of

cancers (8), and mimicking the growth dynamics of cancer genesis,

metastasis, tumor angiogenesis or immune microenvironment

formation processes (9).

Therefore, this paper provides new ideas for future cancer

research and clinical treatment by summarizing existing

simulation approaches and presenting the results achieved in

current common cancer types in women, respectively, as well as

perspectives for the future. The rest of the paper is organized as

follows. Section 2 describes the methods. Section 3 shows the results

of breast, cervical, ovarian, and endometrial cancer simulations.

Section 4 is our discussion. Section 5 is the conclusion.
2 Main methods of cancer simulation
modeling

With the advent of multidisciplinary collaborations, cancer

simulation modeling has become a powerful tool for in-depth

mechanism research, the development of improved therapeutic

strategies, and the prediction of cancer outcomes. In the existing

literature, Monte Carlo simulation, multi-scale modeling and

simulation, agent-based modeling, and other computational biology

methods are currently in common use for cancer simulation modeling.
2.1 Simulation modeling based on Monte
Carlo method

The Monte Carlo method enables systems to be modeled

according to first principles and is a form of computation that

uses random sampling and iteration to model the evolution of a

physical or biological system, involving the use of a probability

distribution function to make decisions. Geant4 is the commonly

used Monte Carlo platform, along with joint modeling with other

platforms or computer algorithms and codes. For example, Masurel

et al. applied a kinetic Monte Carlo algorithm to directly simulate

the kinetic equations with a DSMC approach to develop a

theoretical model of the controlled thermostatic dynamics of

tumor growth, providing some clues as to how tumors respond to

mimic the cyclic dual disruption of vaccinations and chemotherapy

(10). Chatzipapas et al. used the Geant4-DNA Monte Carlo toolkit

to simulate the computational environment of human cancer cell

radiation to gain a more conclusive understanding of radiation-

induced biological damage (11). Based on Indian buffet process

(IBP) modeling, Ogundijo demonstrated that the use of a Monte

Carlo modeling algorithm SeqClone for the de-convolution of
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variant allele fractions (VAFs) from tumor sequencing data was

an effective solution to address the genetic heterogeneity of tumor

samples (12).Liu R et al. designed and implemented a coupled

simulation method by merging the cell biology simulation

platform-CC3D and the open-source Monte Carlo platform-

Geant4 to develop a “bridging” module RADCELL, which

combines radiative transport models and cell biology models,

allowing us to simulate the dynamics of biological tissues in the

presence of ionizing radiation. This provides a framework to

quantify the biological consequences of radiation therapy, and it

can be applied to study the use of radiation therapy in vascularized

tumors (13). Table 1 shows more biotechnological cases of how to

use Monte Carlo Simulation for radiation therapy optimization,

tumor growth modeling, and genetic heterogeneity analysis.
2.2 Multi-scale simulation modeling

Tumor growth encompasses multi-cellular dynamics at different

spatial and temporal scales for intracellular and extracellular

processes, and the existing literature mainly applies the Statecharts

language, SimuLife visualization and other methods, and simulation

tools such as Rhapsody, Matlab, IncuCyte and CompuCell3D

simulation are used to investigate the multi-scale simulation study

of tumor cell dynamics. For example, Bloch used the Statecharts

language and Rhapsody tool to create comprehensive 3D models of

solid tumors and their microenvironments, and combined with

SimuLife visualization to simulate the angiogenesis process in

tumors and their microenvironments (19). Bouchnita et al.

modelled the physiological process of tumor growth at different

scales to study the effect of acquired mutations in the EGFR/ERK

pathway on single-cell dynamics (20). Lima et al. developed a coarse-

grained two-scale ABM via Matlab and IncuCyte software to simulate

tumor cell motility, growth, and phenotypic transformations, and

thus to study the interactions between tumors and glucose

consumption (21). Jafari et al. developed a multiscale model of 2D

tumor vascular growth to couple multiple time and length scales

through the CompuCell3D simulation environment to explore the

consequences of targeted receptor inhibition in tumor development

(22) (Figure 1). The essence of multi-scale integration lies in

identifying “scale-bridging molecules”. For instance, in reference

(20), the scale-bridging molecules enabling multi-scale integration

are the epidermal growth factor receptor (EGFR), its ligand (EGF),

and downstream signaling molecules (e.g., MEK and ERK), which

play central roles in extracellular and intracellular signal transduction

processes; while in reference (21), the scale-bridging molecule

facilitating multi-scale integration is glucose, which, as a key

nutrient for cell growth and metabolism, bridges the tissue scale

and the cellular scale.
2.3 Agent-based modeling

Agent-based modeling (ABM) is a computational model used to

simulate the actions and interactions of autonomously conscious
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agents, which is capable of reproducing and predicting complex

phenomena (23). ABM-based cancer simulation can describe

biological phenomena in an intuitive and modular multi-scale

manner (24, 25) and study aspects of angiogenesis (26, 27) and
Frontiers in Oncology 03
immune response (28, 29), while Netlogo, Python, etc., are the main

software used to carry out cancer simulation studies using ABM.

For example, Ponce-de-Leon et al. proposed PhysiBoSS 2.0 based

on the stochastic Boolean and ABM modeling frameworks for
TABLE 1 Biotechnological Cases of Monte Carlo Simulation.

Application Biotechnological Cases Reference

Radiation Therapy Optimization

Case: Head and Neck Cancer Survival Prediction Study.
Method: Monte Carlo method applied via Bootstrap resampling (1000 times) for model
validation. This method randomly generates splits for training and validation sets to
estimate the confidence interval of Harrell’s C-index.
Parameters (1): CT converted to Hounsfield Units (HU), PET converted to Standardized
Uptake Value (SUV); images resampled to 1mm isotropic voxels (2); Extraction of 42
features (21 CT + 21 PET) (3);Bags of Bags of Visual Words (BoVW) clustering using
Gaussian Mixture Models.

(14)

Case: Cross-dose assessment for intrahepatic tumors in Radiopharmaceutical Therapy
(RPT).
Method: Monte Carlo method implemented via Geant4 hybrid geometry simulation for
cross-dose evaluation.
Parameters (1): ICRP110 adult male voxel phantom (2.14mm³ voxels), with cuboidal
tumors implanted in liver (1×1×1 to 3×3×3 voxels) (2); Adenocarcinoma (9.9% H, 26.9%
C, 56.9% O) (3). 90Y (pure b emitter, max tissue range 11mm), 177Lu (b emitter + 113keV/
208keV g rays, b max range 2.2mm) (4); Specific Absorbed Fraction (SAF), S-value (mGy/
MBq/h); validated against ICRP133, OpenDose & IDAC-Dose2.1

(15)

Tumor Growth Modeling

Case: Formation of tumor spheroids by GFP-HEK-293 cells in 3D-printed PDMS
microwells.
Method: Monte Carlo simulation used to predict tumor spheroid formation process within
microwells. A 30×30×30 grid model established in MATLAB simulates cell diffusion,
division & interaction, gravity, and directionality.
Parameters (1): Microwell diameter: 400/600/800 mm (2); Cell seeding density: 500/1000/
1500 cells/well (3); Centrifugation conditions: 1000g, 5 minutes (to distribute cells) (4);
Surfactant: Anti-adhesion solution pretreatment (5); Culture time: 7 days (6); Spheroid size:
454 ± 15 mm (400 mm well), 459 ± 7 mm (600mm well), 451 ± 18 mm (800mm well) (7);
Sphericity: >0.8; Cell viability: >90%.

(16)

Case: Mouse brain glioma model
Method: Multiscale Monte Carlo simulation (TOPAS + CompuCell3D) investigating the
influence of tumor growth and vascular spatial distribution on Microbeam Radiation
Therapy (MRT) efficacy.
Parameters (1): Tumor volume: Day 12 stage 0.019mm³ → Day 20 stage 0.195mm³ (2);
Vascular spatial homogeneity decrease rate: Day 12 stage 6.2% → Day 20 stage 18.5% (3);
pO2 diffusion coefficient: 2×10³ mm²/s (4); Tumor cell oxygen consumption rate: 10 ×
normal cells (0.6 mmHg/s) (5); Irradiation depth: 5.5mm.

(17)

Genetic Heterogeneity Analysis

Case: Sequential Monte Carlo (SMC) algorithm for inferring tumor subclone genotype and
proportion matrices.
Method: Utilizes a state-space model and Indian Buffet Process (IBP) to process variant
allele fraction (VAF) data, addressing tumor heterogeneity. The algorithm supports
dynamic addition of new SNV data to optimize estimation, suitable for large-scale genomic
locus analysis.
Parameters (1): Simulated dataset (sequencing depth r ∈ {50, 200, 1000} (2); Number of
subclones C ∈ {3, 4, 5} (3); Number of samples S ∈ {3, 4,…, 10}; Number of loci T ∈ {20,
40, 60, 80, 100, 5000} (4); Real chronic lymphocytic leukemia (CLL), samples: patients
CLL077, CLL006, CLL003.

(12)

Case: Tumor and its microenvironment (TME), exhibiting density gradients from center,
periphery, to intermediate zones.
Method: Monte Carlo simulations analyze the impact of tumor hypoxia heterogeneity on
radiotherapy.
Parameters (1): Using a 200×200 square lattice divided into multiple shells as an example,
simulating scenarios where cell removal probability differs per shell (2); Parameter r is
defined as the rate of decrease in removal probability from one shell to the next (towards
the center) (3); When r=0.1 and divided into five shells, removal probabilities are p=[0.66,
0.73, 0.81, 0.9, 1] (4); Simulations calculate the lattice percolation threshold pc for different
r values, finding pc increases linearly with r (e.g., pc≈0.5915 at r=0, pc=0.608 at r=0.1,
pc=0.642 at r=0.2), indicating tumor hypoxia heterogeneity affects radiotherapy efficacy.

(18)
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studying interactions between the microenvironment, signaling

pathways controlling cellular processes and population dynamics,

as well as drug action and synergism in cancer cell line models, and

introduced the Python package for handling and processing

simulation outputs (30).Jalalimanesh et al. used ABM as a new

approach to calculate the optimal dose of radiation therapy for

tumor, modeling the process of tumor angiogenesis and oxygen

diffusion to simulate the effect of radiation therapy on tumor

angiogenesis (31).Rojas-Dominguez et al. used Netlogo to build a

cancer immunoediting model through logical functions to simulate

the confrontation between cancer and immune response, in order to

understand the interaction between the immune system and tumor

cells occurring in the tumor microenvironment (32).Rivera et al.

simulated peritoneal implantation, intravascular and hematogenous

metastasis of ovarian cancer to distant organs in the OCMetSim-

Single Cells and OCMetSim-Spheroids models by Netlogo, which

was used to investigate the effect of RAC1 gene expression on

metastasis of ovarian cancer (33) Figure 2.
3 Simulation modeling applications for
malignant tumors in women

In this section, we mainly introduce the research methods

and results of simulation models in breast cancer, cervical cancer,

ovarian cancer and endometrial cancer in recent years

(see Figure 3).
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3.1 Breast cancer

Breast cancer is one of the most common malignant cancers in

women worldwide, with 80–90% of patients surviving more than 5

years after diagnosis (34). It has been reported that the incidence of

breast cancer in China is on the rise (35), but the 5-year survival rate is

only between 40 and 60 percent (36). In the simulation study of breast

cancer, simulation modeling can not only simulate complex

multicellular phenomena, but also optimize clinical treatment,

making individualized treatment possible. For example, Hassan et al.

simulated the luminous flux and diffuse reflectance distributions in

normal and cancerous breast tissues exposed to planar and Gaussian

NIR beam shapes by MCML and MCXLAB calculations based on the

GPU-based Monte Carlo eXtreme model, which provides the

knowledge needed to improve the quality of dosimetry data and can

help clinicians choose the best tool for measuring radiation dose (37).

Foraster et al. developed a Monte Carlo tool to simulate breast cancer

screening procedures, which combined with the results of breast

screening programs (BSPs), found that there was an overdiagnosis of

between 7 and 20 percent and that it was associated with ductal

carcinoma in situ (38).In addition, Deutsch et al. constructed a

biological lattice-gas cell automaton (BIO-LGCA) based on Langevin

models (see Figure 4 as an example), using a code of equations that are

combined in a modular fashion to simulate complex multicellular

phenomena, elucidating the nature of the recently discovered invasive

plasticity of breast cancer cells in a heterogeneous environment

(39).To further explore breast cancer-specific mechanisms and
FIGURE 1

Three-phase cancer immunoediting process. This is a computational model simulating the three-phase cancer immunoediting process. The
illustration demonstrates the 3D spatial architecture of the tumor microenvironment cross-section and the dynamic progression through the
elimination, equilibrium, and escape phases.
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therapeutic approaches, Lai et al. for the first time combined relevant

bispecific mechanisms and multi-type individual patient data with

pharmacokinetics and multi-scale dynamics in a mechanical and

multi-scale manner to conduct a personalized computer simulation

of breast cancer therapy, demonstrating the realistic possibility of

simulating personalized therapy (40).
3.2 Cervical cancer

Cervical cancer is a common gynecological malignancy, with

cervical cancer in situ occurs at the age of 30~35 years, and that of

invasive carcinoma occurs at the age of 45~55 years. Due to the
Frontiers in Oncology 05
near-universal application of cervical cytology screening in recent

decades, cervical cancer and pre-cancerous lesions can be detected

and treated at an early stage, and its morbidity and mortality rates

have been significantly reduced (41). In cervical cancer, simulation

modeling has demonstrated the feasibility of early cervical cancer

screening on a therapeutic basis, making the realization of early

diagnosis and optimal treatment called possible. Using Monte Carlo

modeling, Arifler et al. simulated a range of changes in the optical

properties of normal and highly dysplastic cervical tissues by

spectral measurements and provided a quantitative understanding

of the specific contribution of different epithelial and stromal optical

parameters to the overall spectral response, successfully describing

the differences in the intensity and shape of reflectance spectra
FIGURE 2

The angiogenesis process in tumors and their microenvironments. The tumor core region (dark, irregular cellular mass) is surrounded by an aberrant
neovascular network (tortuous, leaky, immature). Blood vessels deliver oxygen along a gradient (red [high] → deep blue [low]), with the core
exhibiting significant hypoxia (deep blue). Actively proliferating tumor cells (brightly stained, mitotic figures) localize near vasculature, while invasive
tumor cells (amoeboid morphology, pseudopods) migrate toward hypoxic zones and tissue boundaries. Diverse immune cells infiltrate: Tumor-
Associated Macrophages (TAMs, large volume, peritumoral), Cytotoxic T Lymphocytes (CTLs, attempting tumor cell contact but partially inhibited).
The Extracellular Matrix (ECM, reticular fiber structure) appears thickened/disorganized (fibrotic).
FIGURE 3

Simulation modeling applications for different cancer types.
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obtained from normal and CIN3+ tissue sites (42).Abe et al. used

model-based dose calculation algorithms (MBDCAs) to evaluate

high-dose-rate brachytherapy (HDR-BT) treatment regimens in

seven patients with cervical cancer (43). Burger et al. evaluated

the age of acquisition and duration of residence of HPV infection

through comparative modeling and analysis through the Modeling

Network (CISNET), which showed that 50% of unscreened women

were infected with HPV between the ages of 19 and 23 years and

that the time fromHPV acquisition to cervical cancer was 17.5 to 26

years. It also elucidated the important factors of vaccination and

cervical cancer screening and emphasized the value of comparative

models in evaluating public health policy (44).
3.3 Ovarian cancer

Ovarian cancer is a malignant cancer with the highest mortality

in women. Due to its insidious onset, approximately 70% of patients

are already in an advanced stage when they are diagnosed (45). Multi-

scale models combining mathematical methods, clinical data and

computer code modeling are widely used in ovarian cancer. Kwon

et al. simulated opportunistic salpingectomy as a preventive strategy

for ovarian cancer based on the Monte Carlo model and found that

salpingectomy reduced the risk of ovarian cancer by 39.8% compared

to hysterectomy alone. Compared with tubal ligation, the risk was
Frontiers in Oncology 06
29.2% lower (46). Zhang et al. simulated IL-6-stimulated ovarian

cancer cell proliferation, migration, and apoptosis, as well as STAT3

pathway activation processes, based on a multi-scale ovarian cancer

model, and the simulation results were consistent with recent

experimental evidence that STAT3 ovarian cancer cells have high

levels of survival and drug resistance (47). Hart et al. proposed a

variant-based functional assessment and the computerized sequential

computer modeling of potential pathogenicity by predicting the

functional impact of BRCA1 and BRCA2 variants. The author

showed that the functional studies of variants of BRCA1 coincided

with those of BRCA2, and that the 130 destructive and potentially

pathogenic variants identified may significantly increase the risk of

developing breast, ovarian, and other cancers (48).
3.4 Endometrial cancer

Endometrial cancer is a prevalent gynecologic malignancy in

which women have a risk of developing endometrial cancer of

approximately 3% (49), and with an average total cost per patient

per month of $17,210 prior to treatment and an average of $6,859

during treatment (50), the financial burden is an urgent issue that

needs to be addressed. Therefore, in endometrial cancer, simulation

modeling focuses on treatment and finding the best cost treatment

options. One piece of evidence suggests that Feng et al. used TreeAge
FIGURE 4

Bio-Lattice Gas Cellular Automaton (BIO-LGCA) model. This is a Bio-Lattice Gas Cellular Automaton (BIO-LGCA) model based on Langevin
dynamics, modularly integrated to simulate invasive plasticity in breast cancer. Within the 3D lattice space: (1)Pink nodes represent breast cancer
cells; (2) Blue nodes denote normal cells; (3) Green nodes indicate stromal cells; (4) Probabilistic transition arrows between lattice points model cell
state transitions.
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Pro 2020 software to develop a Markov model to simulate the disease

process in patients with advanced endometrial cancer, and found that

in pretreated patients with advanced endometrial cancer, lenvatinib

plus pembrolizumab was not cost-effective compared with

chemotherapy (51).Zhang et al. used Fortran code for Monte Carlo

modeling in conjunction with a linear-quadratic (LQ) model to

compare the efficacy of high-dose-rate (HDR) vaginal cuff

brachytherapy (VCBT) with external beam radiotherapy EBRT,

and found that for homogeneous distribution of cancer cells and

radiation-resistant normal tissues, radiobiological outcomes of HDR

VCBT did not show superiority over EBRT (52).Havrilesky et al.

constructed a Markov model through TreeAge Pro to compare

conventional hysterectomy with lymph node dissection (LND and

no LND), and used Monte Carlo to explain the uncertainty of the

model, showing that LND was much less likely to be cost-effective for

patients with grade 2 and 3 endometrial cancer (53).Mahema et al.

developed a ligand-based pharmacophore model of intercellular

adhesion molecule 1 (ICAM1) inhibitors by kinetic simulation and

quantum mechanics, continuously screened a variety of anticancer

drugs exhibiting pharmacophore profiles that inhibit ICAM1, and

combined free-energy and kinetic simulations to show that

lanreotide-ICAM1 complexes, when used in the treatment of

endometriosis, may delay or prevent endometrial cancer (54).
4 Discussion

4.1 Simulation approach is an important
development for women’s cancers

Monte Carlo methods, multi-scale simulation modeling and

ABM are commonly used simulation methods for the study of

common cancers in women, and the main simulation tools include

Matlab, Rhapsody, IncuCyte, Netlogo, Python, and Geant4, etc.

From the received literature, it can be seen that women’s cancer

simulation has evolved from simulation of tumor growth models to

more detailed simulation of how blood vessel growth, oxygen

distribution, immunity and the microenvironment affect tumor

cell proliferation and invasion, including solving the problem of

the economic burden of cancer treatment, providing computational

support for women’s cancer clinical treatment, cancer screening,

optimal radiation dosage, and reduction of treatment costs. In the

information age, women’s cancer simulation has become an

important development in computational medicine, and even

computational biology, providing important new directions for

women’s cancer treatment and accelerating the speed at which

individualized treatment becomes possible.
4.2 Trends in women’s cancer simulation
research

The integration of simulation research methods with traditional

or emerging research methods is an important trend in women’s

cancer simulation research (1). Integration of simulation modeling
Frontiers in Oncology 07
and clinical trials, Chen et al. developed a model of drug-directed

therapy for pancreatic cancer and explored the impact of

immunotherapy on patient survival based on simulation studies

using Monte Carlo methods and validation of the model using

clinical data from two patients (55) (2); Integration of simulation

modeling and biological experiments, Hashemi et al. studied the effect

of gold nanoparticles (GNPs) combined with electron brachytherapy

in an ocular tumor model through Monte Carlo modeling. It was

verified through experiments, showing that the concentration of

GNPs could increase the target dose and could be used as a dose

enhancer in the tumor area. This is expected to be a beneficial method

for the treatment of superficial ocular lesions and tumors (56) (3);

Integration of simulation modeling and machine learning methods,

Lu et al. developed a deep-learning-based algorithm for tumor origin

assessment, which trained a model with the whole-section images of

known primary tumors to simultaneously identify whether a tumor

was primary or metastatic and predict its site of origin (57).
5 Conclusions

We introduce commonly used cancer simulation research

methods and tools, and review the application of these methods

and tools in common women cancers such as breast, cervical, ovarian

and endometrial cancer. At the same time, we found that the study of

women cancer simulation is helpful to reduce research costs, help to

understand the micro-mechanisms of processes such as cancer cell

proliferation, invasion and metastasis, angiogenesis, and the micro-

environment, as well as help to identify optimal therapeutic strategies

and explore personalized treatments, which constitutes an important

research content and research direction of computational medicine.

Finally, in the discussion, we further proposed that the integration of

simulation research with other types of research methods as a future

trend for simulation research in women’s cancers.

With the advent of the artificial intelligence era, women’s cancer

simulation research will be able to bring more important help to

women’s life and health. However, unfortunately, this study mainly

focuses on the importance and development trend of simulation

methods in women’s cancer research, without a detailed description

of the specific application of specific simulation tools and the simulation

process. In future studies, we will try to use specific women cancers (e. g.

ovarian cancer) as case studies, and use a combination of simulation

methods, experimental studies and clinical observations to carry out the

studies, as well as to simulate and compare the efficacy of various drugs

and establish prognostic models. In the process, we will try to provide a

comprehensive and specific cancer simulation model as well as an

introduction to the operation process, with a view to providing

researchers and clinicians with research assistance.
Author contributions

YS: Conceptualization, Funding acquisition, Methodology,

Project administration, Supervision, Validation, Writing –

original draft, Writing – review & editing. CL: Formal analysis,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1479225
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1479225
Software, Validation, Writing – original draft, Writing – review &

editing. M-YT: Writing – original draft, Writing – review & editing.

Z-YH: Conceptualization, Supervision, Methodology, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by National Natural Science Foundation of China 2023, Grand No.

82305301; Heilongjiang Province Traditional Chinese Medicine

Research Project, grand No. ZHY2024-048; Youth Talent Support

Project of Heilongjiang Traditional Chinese Medicine Association

(2022–2024), grand No.2022-QNRC1-18.
Frontiers in Oncology 08
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Deo SVS, Sharma J, Kumar S. GLOBOCAN 2020 report on global cancer burden:
challenges and opportunities for surgical oncologists. Ann Surg Oncol. (2022) 29:6497–
500. doi: 10.1245/s10434-022-12151-6

2. Marcu LG, Harriss-Phillips WM. In silico modelling of treatment-induced
tumour cell kill: developments and advances. Comput Math Methods Med. (2012)
2012:960256. doi: 10.1155/2012/960256

3. Fontana F, Figueiredo P, Martins JP, Santos HA. Requirements for animal
experiments: problems and challenges. Small. (2021) 17:e2004182. doi: 10.1002/
smll.202004182

4. Karp NA, Pearl EJ, Stringer EJ, Barkus C, Ulrichsen JC, Percie du Sert N. A
qualitative study of the barriers to using blinding in in vivo experiments and
suggestions for improvement. PloS Biol. (2022) 20:e3001873. doi: 10.1371/
journal.pbio.3001873

5. Clarke MA, Fisher J. Executable cancer models: successes and challenges. Nat Rev
Cancer. (2020) 20:343–54. doi: 10.1038/s41568-020-0258-x

6. Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker’s guide to cancer
models. Trends Biotechnol. (2022) 40:1361–73. doi: 10.1016/j.tibtech.2022.04.003

7. Mahdavi SR, Rezaeejam H, Shirazi A, Hosntalab M, Mostaar A, Motamedi M.
Conformal fields in prostate radiotherapy: a comparison between measurement,
calculation and simulation. J Cancer Res Ther. (2012) 8:34–9. doi: 10.4103/0973-1482.95171

8. Valentinuzzi D, Jeraj R. Computational modelling of modern cancer
immunotherapy. Physics in medicine and biology. Phys Med Biol. (2020) 65.
doi: 10.1088/1361-6560/abc3fc

9. Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P,
et al. The 2019 mathematical oncology roadmap. Phys Biol. (2019) 16:041005.
doi: 10.1088/1478-3975/ab1a09

10. Masurel L, Bianca C, Lemarchand A. Space-velocity thermostatted kinetic theory
model of tumor growth. Math Biosci Eng. (2021) 18:5525–51. doi: 10.3934/
mbe.2021279

11. Chatzipapas K, Dordevic M, Zivkovic S, Tran NH, Lampe N, Sakata D, et al.
Geant4-DNA simulation of human cancer cells irradiation with helium ion beams.
Phys Med. (2023) 112:102613. doi: 10.1016/j.ejmp.2023.102613

12. Ogundijo OE, Wang X. SeqClone: sequential Monte Carlo based inference of
tumor subclones. BMC Bioinf. (2019) 20:6. doi: 10.1186/s12859-018-2562-y

13. Liu R, Higley KA, Swat MH, Chaplain MAJ, Powathil GG, Glazier JA.
Development of a coupled simulation toolkit for computational radiation biology
based on Geant4 and CompuCell3D. Phys Med Biol. (2021) 66:045026. doi: 10.1088/
1361-6560/abd4f9

14. Fontaine P, Acosta O, Castelli J, De CR, Müller H, Depeursinge A. The
importance of feature aggregation in radiomics: a head and neck cancer study. Sci
Rep. (2020) 10:19679. doi: 10.1038/s41598-020-76310-z

15. Muhammad S, Susanna G, Rosenfeld AB, Alessandra M. Assessment of cross-
dose contributions from tumors within computational phantoms using a Geant4
radiation dosimetry tool exploiting hybrid analytical/voxelised geometries. Med Phys.
(2023) 50:6580–8. doi: 10.1002/mp.16544
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