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Background: Cellular imaging analysis using the traditional retrospective

approach is extremely time-consuming and labor-intensive. Although AI-based

solutions are available, these approaches rely heavily on supervised learning

techniques that require high quality, large labeled datasets from the same

microscope to be reliable. In addition, primary patient samples are often

heterogeneous cell populations and need to be stained to distinguish the

cellular subsets. The resulting imaging data is analyzed and labeled manually

by experts. Therefore, a method to distinguish cell populations across imaging

devices without the need for staining and extensive manual labeling would help

immensely to gain real-time insights into cell population dynamics. This

especially holds true for recognizing specific cell types and states in response

to treatments.

Objective: We aim to develop an unsupervised approach using general vision

foundation models trained on diverse and extensive imaging datasets to extract

rich visual features for cell-analysis across devices, including both stained and

unstained live cells. Our method, Entropy-guided Weighted Combinational FAISS

(EWC-FAISS), uses these models purely in an inference-only mode without task-

specific retraining on the cellular data. Combining the generated embeddings in

an efficient and adaptive k-nearest neighbor search allows for automated, cross
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1480384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1480384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1480384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1480384/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1480384&domain=pdf&date_stamp=2025-06-18
mailto:gabriel.kalweit@criion.org
https://doi.org/10.3389/fonc.2025.1480384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1480384
https://www.frontiersin.org/journals/oncology


Kalweit et al. 10.3389/fonc.2025.1480384

Frontiers in Oncology
device identification of cell types and states, providing a strong basis for AI-

assisted cancer therapy.

Methods: We utilized two publicly available datasets. The WBC dataset includes

14,424 images of stained white blood cell samples from patients with acute

myeloid and lymphoid leukemia, as well as those without leukemic pathology.

The LISC dataset comprises 257 images of white blood cell samples from healthy

individuals. We generated four in-house datasets utilizing the JIMT-1 breast

cancer cell line, as well as Jurkat and K562 (leukemic cell lines). These datasets

were acquired using the Nanolive 3D Cell Explorer-fluo (CX-A) holotomographic

microscope and the BioTek Lionheart FX automated brightfield microscope. The

images from the in-house datasets were manually annotated using Roboflow

software. To generate the embeddings, we used and optimized a concatenated

combination of SAM, DINO, ConvNeXT, SWIN, CLIP and ViTMAE. The combined

embeddings were used as input for the adaptive k-nearest neighbor search,

building an approximate Hierarchical Navigable Small World FAISS index. We

compared EWC-FAISS to fully fined-tuned ViT-Classifiers with DINO-, and

SWIN-backbones, a ConvNeXT architecture, as well as to NMTune as a

lightweight domain-adaptation method with frozen backbone.

Results: EWC-FAISS performed competitively with the baselines on the original

datasets in terms of macro accuracy. Macro accuracy is the average of class-

specific accuracies, treating all classes equally by averaging their individual

accuracies. EWC-FAISS ranked second for the WBC dataset (macro accuracy:

97.6 ± 0.2), first for cell state classification fromNanolive (macro accuracy: 90 ± 0),

and performed comparably for cell type classification from Lionheart (macro

accuracy: 87 ± 0). For the transfer to out-of-distribution (OOD) datasets, which

themodel had not seen during training, EWC-FAISS consistently outperformed the

other baselines. For the LISC dataset, EWC-FAISS achieved a macro accuracy of

78.5 ± 0.3, compared to DINO FT’s 17 ± 1, SWIN FT’s 44 ± 14, ConvNeXT FT’s 45 ±

9, and NMTune’s 52 ± 10. For the cell state classification from Lionheart, EWC-

FAISS had a macro accuracy of 86 ± 1, while DINO FT, SWIN FT, and ConvNeXT FT

achieved 65 ± 11, 68 ± 16, and 81 ± 1, respectively, and NMTune 81 ± 7. For the

transfer of cell type classification from Nanolive, EWC-FAISS attained a macro

accuracy of 85 ± 0, compared to DINO FT’s 24.5 ± 0.9, SWIN FT’s 57 ± 6,

ConvNeXT FT’s 54 ± 4, and NMTune’s 63 ± 4. Additionally, building EWC-FAISS

after embedding generation was significantly faster than training DINO FT (∼ 6

minutes compared to > 10 hours). Lastly, EWC-FAISS performed comparably in

distinguishing cancerous cell lines from Peripheral BloodMononuclear Cells with a

mean accuracy of 80 ± 5, compared to CellMixer with a mean accuracy of 79.7.

Conclusion: We present a novel approach to identify various cell lines and

primary cells based on their identity and state using images acquired across

various imaging platforms which vary in resolution, magnification and image

quality. Despite these differences, we could show that our efficient, adaptive k-

nearest neighbor search pipeline can be applied on a large image dataset

containing different cell types and effectively differentiate between the cells

and their states such as live, apoptotic or necrotic. There are several

applications, particularly in distinguishing various cell populations in patient

samples or monitoring therapy.
KEYWORDS

artificial intelligence, deep learning, foundation models, nearest neighbor search,
cell imaging
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Highlights
Fron
• Foundation models, even without domain-specific training,

provide effective discriminative features for both stained

and unstained cellular imaging. EWC-FAISS as an adaptive

k-nearest neighbor search on embeddings generated from a

combination of foundation models achieved high accuracy

across various datasets.

• General features from a combination of foundation models

demonstrated superior transferability to new experimental

settings, including both stained and unstained cells across

different recording devices.

• Fast inference with EWC-FAISS allows for quick

development cycles, supporting efficient differentiation of

cell types and states, crucial for AI-assisted cancer therapy.

• A combination of DINO, ConvNeXT and SWIN proved to

be a general, robust and versatile combination leading to

good trans fe r per formances in ce l l s ta te and

type classification.
1 Introduction

In medical and biological research, data acquisition is often

challenging and involves high costs and labor-intensive processes

(1). This is especially true in cellular imaging analysis, where

traditional approaches rely heavily on supervised learning

techniques that require high-quality, large-scale labeled datasets,

which are expensive and time-consuming to produce. Additionally,

the heterogeneity of imaging equipment (e.g., different

microscopes) and protocols (e.g., varying media and lighting

conditions) introduces variability, complicating the task and

degrading the performance of narrowly trained models. Training

these models demands costly GPUs, extensive training time, and

frequent retraining for new tasks. Addressing these challenges

necessitates methodologies that leverage existing data more

efficiently and generalize across diverse imaging conditions

without extensive retraining or fine-tuning.

Recent advancements in machine learning, particularly in the

development of general foundation models (2), present a promising

solution. Particularly models like DINO (3, 4) and Segment

Anything (SAM) (5), have significantly influenced medical and

cellular image processing domains. MedSAM (6) has extended the

utility of SAM to general medical imaging tasks, while models like

UNI (7), WTC-11 DINO (8), DINOBloom (9) and scDINO (10)

have adapted DINO-style approaches to histopathology and (multi-

channel) cellular image analysis. The scDINO (10) model

demonstrated that a k-nearest neighbor (k-NN) search using

DINO features, fine-tuned and adapted to multi-channel cellular

imaging, can be competitive with other methods for cell

classification tasks. Israel et al. (11) introduced with CellSAM an

adaptation of SAM specifically designed for cell segmentation. Also,

self-supervised masked autoencoders have been shown to be

capable of capturing cellular biology when trained on massive

datasets (12). Despite these advancements, training foundation
tiers in Oncology 03
models specifically for medical applications often requires

substantial computational resources (6, 7, 12), limiting

accessibility for multiple iterations during model development. In

their work, Doron et al. (8) showed that DINO features could

predict expert-defined cellular phenotypes, enhance the prediction

of compound bioactivity, and facilitate unbiased profiling of cellular

morphology. However, this study also revealed that ImageNet

features can generalize in some settings more effectively than fine-

tuned models in the cellular domain, especially in (rather) low-data

regimes. Generally, foundation models, characterized by their vast

scale and versatility, are pre-trained on a variety of abstract

objectives, enabling them to capture a wide array of features

applicable across domains.

DINO leverages self-distillation, allowing the model to teach

itself by comparing different versions of the same image. SAM

focuses on segmentation, learning to identify specific objects within

an image based on prompts such as points and bounding boxes.

SWIN (13, 14) builds a layered understanding of the image through

hierarchical feature maps and directs its attention to specific regions

using a shifted window approach. ConvNeXT (15, 16) rethinks the

traditional convolutional neural network architecture. CLIP (17)

learns to associate image content with natural language

descriptions. Finally, ViTMAE (18) employs a masked

autoencoder technique, hiding parts of the image and tasking the

model to reconstruct them. These diverse objectives and

architectures enable these models to extract complementary and

orthogonal information from the data, potentially leading to better

generalization on unseen data outside the training distribution. In

line with the Platonic Representation Hypothesis (19), we believe this

makes them particularly suitable for tasks like cellular imaging

analysis, where acquiring large amounts of labeled data can

be challenging.

Following this rationale, this study explores the utility of various

foundation models without fine-tuning for the task of cellular

imaging analysis. In this context, we developed an automated

pipeline, Entropy-guided Weighted Combinational FAISS (EWC-

FAISS), combining different foundation models as pre-trained

feature-extractors to generate concatenated embeddings, which

are then used to build an approximate Hierarchical Navigable

Small World (HNSW) (20) FAISS index (21) for an efficient k-

NN search (see Figure 1). To enhance robustness, we propose an

entropy-based search for the optimal number of neighbors at

runtime, and to alleviate class imbalance through distribution

reweighting. Recent research has investigated how to best select

foundation models and hyperparameters for cost-efficient fine-

tuning for the task at hand (22) and how to make the general

features learned from foundation models more robust for

downstream tasks via covariance and dominant singular value

regularization (23). Our proposed approach stands orthogonal to

this line of research by leveraging a combination of features from

various foundation models as feature extractors, even when trained

on non-domain specific data. This methodology aims to achieve

better generalization and adaptability in cellular imaging analysis

without any fine-tuning typically required. By building a FAISS

index, model iteration can be executed much faster compared to
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training a full parameterized classifier while still being able to

benefit from the generalization capabilities of sophisticated

feature extractors (cf. Figure 2). We were able to demonstrate,

that combining features from multiple foundation models, trained

on natural images, can outperform single-model approaches,

including DINO, in terms of performance and transferability.

Finally, in this work we successfully validated the effectiveness of

our approach in multiple scenarios. First, we performed an evaluation

on the WBC dataset (24) containing stained blood cell smears, as well

as a transfer to the LISC dataset (25). Second, we conducted an

analysis of EWC-FAISS on live cell state classification, with a transfer

from the Nanolive CX-A to the BioTek Lionheart FX microscopes.

Third, we challenged our approach on live cell type classification,
Frontiers in Oncology 04
with a transfer from the BioTek Lionheart FX to the Nanolive CX-A.

Lastly, we evaluated NMTune (23) in these domains.
2 Materials and methods

2.1 Data

We utilized two publicly available datasets, i.e. WBC (24) and

LISC (25), and created four new datasets (CELL DEATH

NANOLIVE, CELL DEATH LIONHEART, CELL TYPE

NANOLIVE and CELL TYPE LIONHEART, cf. Figure 3). For all

datasets, external and in-house, the labeling was performed by a
FIGURE 1

(A) Unsupervised cell embedding generation from cell images using a combination of foundation models, with embeddings generated in pure
inference-only mode without task-specific fine-tuning. (B) Generation of training database and HNSW FAISS index from cell embeddings. (C)
Retrieving the set of nearest neighbors from the index for a new query image. (D) Inference of EWC-FAISS for the prediction of a new image.
frontiersin.org
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human domain expert (24, 25). The distribution can be found

in Figure 3.

2.1.1 Stained white blood cells
The WBC (24) dataset includes 14,424 cell images from

microscopic blood smear images from 36 leukemic and 45 non-

leukemic peripheral blood smears, collected from 78 anonymized

patients. This cohort includes 18 patients with acute myeloid

leukemia, 15 with acute lymphoid leukemia, and 45 with no

leukemic pathology. Blood smears were stained using May-

Grünwald and Giemsa-Romanowski solutions, and blast cell

lineage was determined by flow cytometry. Images were captured

using an Olympus BX51 brightfield microscope with a Basler

acA5472-17uc camera, achieving a resolution of approximately 42

pixels per 1µm under a magnification of 100×. The dataset contains

nine different annotated blood cell types: neutrophil segments and

neutrophil bands (3300), eosinophils (1017), basophils (1023),

lymphocytes (3046), monocytes (2040), normoblasts (510),

myeloblasts (2534), and lymphoblasts (2557). Due to the low

number of neutrophil bands, we have merged them with the

neutrophil segments. The LISC (25) dataset contains

hematological images from peripheral blood of 8 healthy

individuals, resulting in 257 white blood cell images from 100

microscope slides. These slides were stained using the

GismoRight technique, imaged with a Zeiss Axioskop 40

brightfield microscope at 100× magnification, and recorded by a

Sony SSCDC50AP digital camera in BMP format. We converted the
Frontiers in Oncology 05
images to grayscale. Each image was collected from the

Hematology-Oncology and BMT Research Center at Imam

Khomeini Hospital, Tehran. A hematologist classified the images

into five normal leukocyte categories: basophil (55), eosinophil (39),

lymphocyte (59), monocyte (48), and neutrophil (56).

2.1.2 Live cell state imaging
The CELL DEATH NANOLIVE dataset comprises 7,420

images of JIMT-1 cells, captured at 60× magnification using a

Nanolive CX-A microscope. The microscope generates several cross

sections which are combined to generate a high-resolution 3D

holotomographic projection and can be represented as a 2D

maximum intensity projection. The dataset is categorized into

Dead (728), Living (4,613), Apoptotic (707), and Necrotic (1,372)

cells. An additional test set includes 1,122 images, with Dead (255),

Living (500), Apoptotic (99), and Necrotic (268) cells. The images

are 2D projections of 3D volumes. JIMT-1 cells were cultivated

using Dulbecco’s modified eagle medium (DMEM) FluoroBrite

(Gibco), supplemented with 10% fetal bovine serum (FBS; Gibco),

1x L-glutamine (Gibco), and 1% Pen Strep (10,000 Units/ml

penicillin, 10,000 μg/ml streptomycin; Gibco). JIMT-1 cells were

either non treated or treated with 2.5 μM, 5 μM and 10 μM of

Raptinal (Sigma Aldrich) for 24h to induce cell death. 300 nM of

Biotracker Apo15 (Sigma) was used as a fluorescence marker to

detect early stage apoptosis. The cells were seeded in a μ dish 35

mm, low glass bottom (Ibidi). Brightfield Images were acquired

every 15 min and fluorescence every 3h. For each image, we used
FIGURE 2

Prediction of EWC-FAISS on query images from the LISC dataset, the four nearest neighbors in the WBC dataset and the ground truth labels.
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contrast limited adaptive histogram equalization (CLAHE) to

normalize its contrast. We used Roboflow for annotations. The

CELL DEATH LIONHEART dataset contains 59 annotated test

images at 20×, categorized into dead (23) and living cells (36). The

breast carcinoma cell line JIMT-1 (ACC 589, DSMZ) was used as

adherent cells. JIMT-1 cells were cultivated using Dulbecco’s

modified eagle medium (DMEM) (Gibco), supplemented with

10% fetal bovine serum (FBS; Gibco), 1x L-glutamine (Gibco),
Frontiers in Oncology 06
and 1% Pen Strep (10,000 Units/ml penicillin, 10,000 μg/ml

streptomycin; Gibco). Cells were incubated at 37°C in a

humidified atmosphere containing 5% CO2 and passaged twice a

week. For treatment, JIMT-1 cells were seeded in an 8-well chip

(Ibidi) and either left untreated or treated with 25 μM of Etoposide

(Sigma Aldrich) for 72 hours. Propidium Iodide (0.25 μg/ml, Sigma

Aldrich) was used as a fluorescent marker to stain dead cells.

Brightfield and fluorescence images were acquired every 2 hours
FIGURE 3

Used datasets: stained white blood cells of the WBC (Original) and LISC dataset (Transfer), live cell state recorded by the Nanolive (Original, CELL
DEATH NANOLIVE) and BioTek Lionheart FX microscopes (Transfer, CELL DEATH LIONHEART), and two cell lines recorded by BioTek Lionheart FX
(Original, CELL TYPE LIONHEART) and Nanolive (Transfer, CELL TYPE NANOLIVE). (top) Exemplary images. (bottom) Class distributions of all datasets.
frontiersin.org
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using a BioTek Lionheart FX automated brightfield microscope.

Examples can be found in Figure 4.

2.1.3 Live cell type imaging
The CELL TYPE LIONHEART dataset includes 456,366 images

of homogeneous K562 (264,904) and Jurkat cell images (191,462),

captured using a BioTek Lionheart FX automated brightfield

microscope at 20× magnification. The CELL TYPE NANOLIVE

dataset consists of 206,742 images of Jurkat cells captured with the

Nanolive CX-A holotomographic microscope at 60×. Each image

was segmented using SAM, and the type of each crop was assigned

accordingly. Contrast normalization was applied to each image

using CLAHE. Jurkat and K562 cells were cultivated in RPMI 1640

medium (Gibco), supplemented with Advanced RPMI, 4% FBS, 1x

L-glutamine, and 1% Pen Strep. All cells were incubated at 37°C in a

humidified atmosphere containing 5% CO2 and passaged twice a

week. Peripheral Blood Mononuclear Cells or PBMCs were isolated

from LRS chambers obtained from healthy donors from the Institut

fur¨ Transfusionsmedizin und Gentherapie, Medical Center -

University of Freiburg. Contents of the LRS chambers were

diluted in Histopaque®-1077 (Sigma Aldrich) and centrifuged

according to the manufacturer’s protocol. The isolated PBMCs

were counted and viability was estimated using Trypan blue

exclusion dye using a Neubauer chamber. PBMCs were

maintained in RPMI 1640 medium (Gibco) supplemented with
Frontiers in Oncology 07
10% FBS, 1x L-glutamine and 1% Pen Strep. PBMCs were seeded in

an 18 well chip (Ibidi) either separately or mixed with Jurkat and

K562 cell lines at various ratios (25:75, 75:25 and 50:50) and

brightfield images were acquired using Biotek Lionheart

automated microscope.

Unless single-cell images were already available, cell images

were segmented and masked using SAM, where we cropped 224 ×

224 pixel crops around the centers of the found cell masks.

Examples can be found in Figure 4. We split the original datasets

to 90% train, 9% validation, and 1% test sets and used the transfer

datasets only for evaluation.

2.1.4 Magnification adaption
We adapted the resolution between Lionheart and Nanolive

microscopes. The Lionheart microscope, operating at 20× with a

field of view of 291x394μm2, generates images of 904x1224 pixels,

corresponding to approximately 0.322μm/pixel. In contrast, the

Nanolive microscope, set at 60× with a field of view of 85x85μm2,

produces images of 448x448 pixels, resulting in a resolution of

about 0.19μm/pixel. To match the resolution of the images from the

Nanolive microscope to those from the Lionheart microscope, a

scaling factor of 0.59 was applied, calculated by dividing the

Nanolive pixel size by the Lionheart pixel size. Hence, the

Nanolive images were downscaled to match the pixel size of

the Lionheart.
FIGURE 4

2D maximum intensity projection of the 3D holotomographic Nanolive microscope and images of the brightfield Lionheart microscope showing
various cell types. (a) CELL DEATH NANOLIVE image of JIMT-1 breast cancer cells. (b) CELL TYPE NANOLIVE image of Jurkat cells. (c) CELL DEATH
LIONHEART image of JIMT-1 cells. (d) CELL TYPE LIONHEART image of K562 cells. (e) CELL TYPE LIONHEART image of Jurkat cells.
frontiersin.org
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2.2 Models

For DINO, we used facebook/dinov2-giant, for ConvNeXT we

used facebook/convnextv2-large-22k-224, for SWIN we used

microsoft/swinv2-large-patch4window12-192-22k, for CLIP we

used openai/clip-vit-large-patch14 and for ViTMAE we used

facebook/vit-mae-huge, with their respective AutoImageProcessor

from the HuggingFace Transformers Library (26). For SAM, we

used samvith4b8939 from the official implementation at https://

github.com/facebookresearch/segment-anything.
2.3 EWC-FAISS

Next, we outline how to build, train, and query a latent

embeddings database using EWC-FAISS.

2.3.1 Foundation model embedding generation
We utilize a set of foundation models as encoders to generate

embeddings for our data. Each foundation model Mi in the set
Frontiers in Oncology 08
M1,M2,…,Mnf g processes the input data X to produce a

corresponding embedding Ei = Mi(X). Fora given encoder subset

M⊆ M1,M2,…,Mnf g, we concatenate the embeddings Ei from

each encoder Mi ∈ M to form a full feature representation E =

½jjm∈MEm�. This concatenated embedding E serves as the input for

subsequent tasks.

2.3.2 Database and FAISS index construction
We construct a database D consisting of embeddings Ei

n
i=1j gcf

and labels for each cell c (cf. Figures 5, 6 (top)). This results

in D = Ei
n
i=1j gNc=1

�
, where N is the total number of cells. D is then

used to train a HNSW FAISS index (20) on concatenated

embeddings Ec.

2.3.3 Class weight and entropy calculation
To address the issue of class imbalance in our training data,

class weights were calculated based on the frequency of each class

once after adding the embeddings to the index. The total number of

samples was divided by the product of the number of classes and the

count of each class. The fixed class weight for class i is given by
FIGURE 5

Alignment, similarity and dimensionality analysis of foundation model embeddings for WBC. (first row) 2D projections of individual encoders and SAM
+ConvNeXT+SWIN+CLIP (Best Combination). Samples from LISC in black. (second row) Mean cosine similarity scores per cell type or state. (third
row) RBF CKA similarity matrix and pairwise comparisons of the combined embedding (Comb) to individual models. Blue indicates low similarity,
yellow high similarity. (fourth row) PCA-based intrinsic dimensionality plots, showing the number of components required to explain 95% of the
variance, and intra-dataset block contributions of individual encoders to the top PCA components.
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wi = N=(C · Ni), where N is the total number of samples, C is the

number of classes, and Ni is the number of samples in class i in D.

This approach ensures that less frequent classes receive higher

weights, thereby reducing the impact of imbalance. We then

quantify the normalized entropy of labels from the nearest
Frontiers in Oncology 09
neighbors per sample to estimate the uncertainty in label

distribution independent from the re-weighting by Equation 1:

Hnorm =
−om

i=1pi  log  (pi)

log  (k)
, (1)
FIGURE 6

(top) 2D projections of individual encoders and the best combination for CELL DEATH NANOLIVE (left). Embeddings from 15 cells tracked until
apoptosis. Color indicates time to apoptosis smoothed by nearest neighbors (right). (middle) Similarity and dimensionality analysis for CELL DEATH
NANOLIVE: mean cosine similarity scores (first row); RBF CKA matrix and pairwise comparisons of the combined embedding (Comb) to individual
models (second row; blue = low, yellow = high); PCA plots showing components explaining 95% variance and intra-dataset encoder contributions
to top components (fourth row). (bottom) Similarity and dimensionality analysis for transfer to CELL DEATH LIONHEART: mean cosine similarity
scores (first row); PCA plots and inter-dataset contributions (second row).
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where pi is the probability of the i-th class and k is the number

of nearest neighbors. By normalizing the entropy, it is scaled

between 0 and 1 regardless of the number of drawn neighbors. A

lower entropy indicates a higher purity of the neighborhood in

terms of class labels, which is desirable for accurate classification.

2.3.4 Nearest neighbor search and prediction
The core of our method involves an adaptive nearest neighbor

search to determine the optimal number of neighbors (k) for

classification. Starting from a minimum value kmin, k is increased

exponentially until the entropy of the nearest neighbors falls below

a pre-defined threshold or kmax is reached. This adaptive approach

balances the need for accuracy and computational efficiency by

dynamically adjusting k based on the neighborhood’s label

distribution. During the search process, which approximately

doubles the runtime per test sample, the class weights are used to

perform a weighted vote among the nearest neighbors to account

for minority classes. The predicted class is then determined by the

class with the highest weighted vote as indicated in Equation 2:

ypred = arg max
l o

k

j=1
wj · 1fyj = lg, (2)

where 1 yj = l
� �

is an indicator function that is 1 if the label of

the j-th nearest neighbor yj is l and wj is the weight of the j-th

nearest neighbor’s class label.
2.4 Experimental setup and
hyperparameters

We optimized EWC-FAISS to use the best combination of

foundation models (on a validation set) and compared to

multiple fine-tuned classification models. Since most related work

uses DINO to represent cellular morphology (8, 10), we compared

to a (fully-)fine-tuned DINOv2-based vision transformer model

(DINO FT), as well as fully-fine-tuned variants of the encoders

SWIN and ConvNeXT (SWIN FT and ConvNeXT FT).

Furthermore, we compared to a domain-adaption method,

NMTune, optimizing a hidden layer following the frozen

encoders, as a lightweight addendum to foundation models

aiming at making performances more robust on (unseen)

downstream tasks.
2.4.1 EWC-FAISS
To create an adaptive and high-performing configuration for

EWC-FAISS, we optimized several parameters, including the subset

of foundation models used. Given our set of up to six foundation

models, we evaluated every possible model combination (all

subsets) to find the one that maximized performance. For each

subset, we measured macro accuracy on the validation set, selecting

the combination with the highest accuracy as the final or incumbent

configuration. The parameters for kmin, kmax and the entropy

threshold were selected empirically based on validation results in

preliminary experiments. We did not apply (L2-)normalization or
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dimensionality reduction, as preliminary validation results also

indicated better performance without these steps.

The best-performing index for the WBC dataset used a

combination of SAM, ConvNeXT, SWIN, and CLIP with k

between kmin = 3 and kmax = 1000, an entropy threshold of 0.3,

and L2-distance. For the transfer to LISC, we used a combination of

DINO, ConvNeXT, SWIN, and ViTMAE. For the cell state

classification from the Nanolive microscope, we used a

combination of SAM, ConvNeXT, SWIN, CLIP and ViTMAE

with k between kmin = 3 and kmax = 100, an entropy threshold of

0.6 and Canberra distance. For the transfer to the Lionheart

microscope, we set k between 10 and 1000 and an entropy

threshold of 0.1 with a combination for SAM, DINO and SWIN.

For the cell type classification from the Lionheart microscope, as

well as for the transfer to the Nanolive microscope, we used a

combination of SAM, DINO, ConvNeXT, and CLIP, with k

between 20 and 1000, an entropy threshold of 0.2 and L2-

distance. For the segmentation experiment for real Jurkat and

K562 mixtures with PBMCs, we used a combination of SAM,

DINO, ConvNeXT, SWIN and CLIP with k between 33 and 1000

and an entropy threshold of 0.2 without reweighting.

2.4.2 Fine-tuning baselines
To contextualize our results, we compare against standard fine-

tuning approaches using state-of-the-art vision transformers.

Specifically, we fine-tune a pre-trained DINOv2 model for 50

epochs using the AdamW optimizer with cosine learning rate

decay and warm-up (from an initial learning rate of 10−5 to 0).

Additionally, we apply the same training setup to SWIN and

ConvNeXT backbones. During training, we use horizontal

flipping, normalization, and color jitter as data augmentations.

2.4.3 Domain adaption baseline
As a baseline for domain adaptation, we followed a strategy in

which the encoder parameters were kept fixed and only an

intermediate hidden layer was fine-tuned. Specifically, we employed

NMTune, which has been shown to be more robust than conventional

layer-wise fine-tuning (23). Following the recommended setup in (23),

we set l = 0.01 to balance the regularization terms for feature

consistency, covariance alignment, and dominant singular value

preservation. We applied NMTune to the optimized embeddings

described in Section 2.4.1, as these outperformed the individual

encoder embeddings. To reduce computational costs, embeddings

were first reduced to 200 principal components using PCA. A two-

layer MLP with 800 hidden units was trained for 10 epochs using the

Adam optimizer with a learning rate of 10−3.
3 Results

First, we utilized a set of foundation models as encoders to

generate cell sample embeddings as described in Section 2.3.1.

Then, we used these embeddings to construct a database and

resulting FAISS index as described in Section 2.3.2 to use this as a

k-nearest neighbor classifier.
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3.1 Separation of cell sample embeddings
generated from a combination of
foundation models

A first intuition into the discriminative capabilities of the

general features from foundation models can be seen at the top of

Figure 5, which depicts a UMAP 2D projection of the latent

representations for the different foundation models and the best

combination for the WBC dataset. Despite being untrained on

domain-specific data, all foundation models except for ViTMAE

preserve the local neighborhoods of the different classes, as

indicated by the class-specific color coding. When projecting

samples from the LISC dataset (i.e., for transfer), which contains

only samples from healthy donors, it is evident that ConvNeXT,

among all single foundation models, distinguishes best between

blasts and non-blasts, with only two miscategorized examples. The

best-found combination then has only a single misclassified

example according to the 2D visualization. We compared the

similarities among cell embeddings within one foundation model

exemplary for the WBC dataset in Figure 5 (second row) by the

mean of the cosine similarity scores of all embeddings per cell type

projected via Principal Component Analysis (PCA) to 100

dimensions. The best combination of foundation models achieved

the highest intra-class similarity with a mean diagonal similarity of

0.355 and the lowest inter-class similarity with a mean off- diagonal

similarity of −0.043. In contrast, the ViTMAE model showed the

noisiest results, indicating less distinct feature separation.

Additionally, we studied the similarity across foundation model

representations, using Radial Basis Function (RBF) Centered Kernel

Alignment (27) in Figure 5 (third row). ConvNeXT and SWIN

achieved the highest similarity compared to the best combination of

models (being part of the best combination SAM+ConvNeXT

+SWIN+CLIP). The fourth row of Figure 5 shows PCA-based

intrinsic dimensionality estimates, revealing that the best

combination has substantially higher intrinsic dimensionality

than any individual model, indicating that it aggregates

complementary, non-redundant features across models. To assess

how each encoder contributes to the combined embedding, we

projected the concatenated representation onto its principal

components and quantified the average loading of each encoder’s

feature block across the top components, revealing their relative

influence on the informative variance. Similarly, a projection of

embeddings for cell states from CELL DEATH NANOLIVE can be

found at the top left of Figure 6. The latent representation from the

best combination of foundation models shows the best overall

separability between classes, as also depicted in Figure 6 (middle,

first and second row). The third row of Figure 6 (middle) further

shows that this combined embedding retains a higher intrinsic

dimensionality, indicating complementary information across

models. Lastly, the first row of Figure 6 (bottom) shows the

cosine similarities between states from CELL DEATH

NANOLIVE and CELL DEATH LIONHEART. It can be seen,

that the different encoders have complementary strengths and

weaknesses for separating the single cell states. The found best
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combination offers a sweet-spot with best overall separation. The

bottom row of Figure 6 (bottom) shows PCA-based estimates of

intrinsic dimensionality for embeddings transferred from CELL

DEATH NANOLIVE to CELL DEATH LIONHEART. The best

combination retains a substantially higher number of informative

components, coming from multiple different encoders, than any

individual model, suggesting robust generalization.

Tables 1, 2 summarize the mean intra-class similarity (average

of the diagonal), mean inter-class similarity (average of the off-

diagonal), and class separability, defined as the average per class of

the difference between the diagonal entry and the sum of off-

diagonal entries. These metrics are based on cosine similarity and

are reported for all foundation models and their best combination,

using embeddings from the WBC and CELL DEATH

NANOLIVE datasets.

Finally, we present a 2D projection of latent representations

from the trajectories of 15 cells taken from the CELL DEATH

NANOLIVE dataset and tracked over time by a human domain

expert until apoptosis in Figure 6 (top right). The color indicates the

time to apoptosis, smoothed across the respective nearest neighbors.

While this does not constitute definitive proof of correct alignment,

it illustrates the general tendency of foundation models to capture

even subtle morphological differences related to cell state. We

further investigate this hypothesis by evaluating classification

performance on cell states in Section 3.2.
3.2 EWC-FAISS classification performance
compared to fine-tuned methods on the
original dataset and on transfer datasets

An overview of the classification results over five runs is given in

Table 3. In terms of within-dataset performance (i.e., trained and

tested on the same dataset), EWC-FAISS performs on par or better

than the fine-tuned baselines: it achieves the highest accuracy on

WBC (97.6%), ties for best on CELL DEATH Nanolive (90%), and

performs competitively on CELL TYPE Lionheart (87%). In the

transfer setting, EWC-FAISS demonstrates clearly superior

generalization. It outperforms all fine-tuned and domain-adapted

models by large margins on LISC (78.5% vs. 52% for the next best),

CELL DEATH Lionheart (86% vs. 81%), and CELL TYPE Nanolive

(85% vs. 63%). Notably, models like DINO FT and SWIN FT

degrade significantly in these transfer scenarios, especially on LISC,

where DINO FT drops to 17% and SWIN FT to 44%. NMTune,

while more than the fine-tuned models, still trails behind EWC-

FAISS across all transfer tasks.

In addition to performance, EWC-FAISS offers substantial

computational advantages. Once the embeddings are computed,

building EWC-FAISS is multiple orders of magnitudes faster than

training DINO FT (∼ 6 minutes compared to > 10 hours, cf.

Figures 7, 8) . Lastly, we created real mixtures of Jurkat and K562

cell lines with PBMCs from healthy donors. Our results

demonstrate that EWC-FAISS performs comparably to (semi-)

supervised segmentation methods (28) in identifying cancerous
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cell lines within the collection of healthy PBMCs (cf.

Table 4; Figure 9).
3.3 Application demonstration:
classification of fixed cells

We implemented EWC-FAISS as a web application to provide a

subtype detection for white blood cells using our model trained on

WBC. The streamlit1 application, shown in Figure 10 allows to

upload an image and shows the prediction together with a certainty

measure and the m = 5 nearest neighbors of the training set. As

measure of certainty, the normalized entropy Hnorm was calculated

from the label counts of the k nearest neighbors. This entropy was

normalized relative to the number of nearest neighbors to produce a

certainty percentage as an intuitive measure of classification

confidence:

C = (1 −Hnorm)� 100%

This application serves as an initial step toward practical clinical

use, with the potential to be integrated with a microscope for real-

time WBC subtype classification in clinical diagnostics.
1 https://streamlit.io/
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3.4 Application demonstration: longitudinal
classification of cell type and state during
live cell analysis

The subtype detection classifier trained on the CELL DEATH

NANOLIVE dataset was used to classify the cell state for all images

at each time point t = 1,…, te, where te is the final time frame of the

experiment. Additionally, as a control signal, we calculate the

fluorescence intensity by thresholding each Apo-15 fluorescence

image using the Otsu method, which determines the optimal

threshold by maximizing inter-class variance. A binary mask was

created from the thresholded image to highlight regions of interest.

These regions were then labeled, and the total fluorescence intensity

was quantified by summing the area of the labeled regions. This

analysis provides a quantitative measure of the cellular response

over the course of the experiment. The analysis of a live cell

experiment for JIMT-1 cells treated with 10 μM Raptinal is

shown in Figure 11.
4 Discussion

Using AI-based approaches to optimize cancer therapy, in

general, is gaining momentum (29–31). However, distinguishing

between different cell types or states from microscopic images,
TABLE 1 Mean intra-class and inter-class similarities, as well as class separability for the WBC dataset.

Model Intra-class similarity Inter-class similarity Class separability

Best Combination 0.355 –0.043 0.654

SWIN 0.349 –0.041 0.637

ConvNeXT 0.33 –0.04 0.612

CLIP 0.244 –0.027 0.431

ViTMAE 0.179 –0.021 0.329

DINO 0.183 –0.014 0.283

SAM 0.144 –0.019 0.274
All metrics are based on cosine similarity. Class Separability is defined as the average per class of the difference between the diagonal entry and the sum of off-diagonal entries.
Values in bold indicate best separability.
TABLE 2 Mean intra-class and inter-class similarities, as well as class separability for different cell states in the CELL DEATH NANOLIVE dataset.

Model Intra-class similarity Inter-class similarity Class separability Class separability (Transfer)

Best Combination 0.188 0.009 0.162 0.0772

ConvNeXT 0.147 -0.004 0.159 0.0626

CLIP 0.176 0.007 0.154 0.0596

ViTMAE 0.130 -0.007 0.152 0.0168

DINO 0.140 -0.001 0.143 0.0769

SWIN 0.215 0.032 0.120 0.0736

SAM 0.290 0.128 -0.093 -0.0003
All metrics are based on cosine similarity. Class Separability is defined as the average per class of the difference between the diagonal entry and the sum of off-diagonal entries.
Values in bold indicate best separability.
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TABLE 3 Classification results for models with fully fine-tuned feature extraction (FE), domain adaptation using a frozen backbone (NMTune), and
EWC-FAISS with unsupervised FE.

Feature extraction Method Macro accuracy Macro precision

Original: WBC (8 classes)

DINO FT 94.0 ± 0.9 98 ± 2

FINE-TUNED SWIN FT 92.9 ± 0.8 99.4 ± 0.1

CONVNEXT FT 92.7 ± 0.5 98 ± 1

DOMAIN-ADAPTED NMTUNE 98.4 ± 0.5 98.1 ± 0.9

UNSUPERVISED EWC-FAISS 97.6 ± 0.2 98 ± 0

Transfer: LISC (5 classes)

DINO FT 17 ± 1 33 ± 2

FINE-TUNED SWIN FT 44 ± 14 35 ± 3

CONVNEXT FT 45 ± 9 49 ± 8

DOMAIN-ADAPTED NMTUNE 52 ± 10 59 ± 6

UNSUPERVISED EWC-FAISS 78.5 ± 0.3 81.9 ± 0.5

Original: Cell Death Nanolive (4 classes)

DINO FT 89.5 ± 0.9 89 ± 1

FINE-TUNED SWIN FT 90 ± 4 91 ± 2

CONVNEXT FT 89 ± 2 91 ± 2

DOMAIN-ADAPTED NMTUNE 88.4 ± 0.6 89 ± 1

UNSUPERVISED EWC-FAISS 90 ± 0 92 ± 0

Transfer: Cell Death Lionheart (2 classes)

DINO FT 65 ± 11 80 ± 21

FINE-TUNED SWIN FT 68 ± 16 75 ± 14

CONVNEXT FT 81 ± 1 85 ± 2

DOMAIN-ADAPTED NMTUNE 81 ± 7 80 ± 6

UNSUPERVISED EWC-FAISS 86 ± 1 84.9 ± 0.8

Original: Cell Type Lionheart (2 classes)

DINO FT 91.9 ± 0.1 92.0 ± 0.1

FINE-TUNED SWIN FT 90.6 ± 0.2 90.7 ± 0.2

CONVNEXT FT 92.32 ± 0.08 92.33 ± 0.05

DOMAIN-ADAPTED NMTUNE 92.1 ± 0.2 91.9 ± 0.1

UNSUPERVISED EWC-FAISS 87 ± 0 87 ± 0

Transfer: Cell Type Nanolive (1 class)

DINO FT 24.5 ± 0.9 –

FINE-TUNED SWIN FT 57 ± 6 –

CONVNEXT FT 54 ± 4 –

DOMAIN-ADAPTED NMTUNE 63 ± 4 –

UNSUPERVISED EWC-FAISS 85 ± 0 –
F
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Models were trained on the ORIGINAL set and evaluated on both the test and TRANSFER sets. Results are reported over five runs as mean ± standard deviation, rounded to one significant digit.
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especially in a heterogeneous sample population, still pose

significant challenges. Importantly, our results provide evidence

that adaptive k-NN search on fixed features from combinations of

foundation models (cf. Figure 8) can yield matching or better

performances in the domain of cellular imaging to distinguish

between different cell types or cell states. However, combining

features from foundation models also is no panacea and except

for the WBC dataset, we had to adapt the combinations and

hyperparameters when transferring to a new device. Nonetheless,

we were always able to find a good working combination in the

realm of minutes instead of hours of training fully fine-tuned

models, even for full iterations over the whole power set. This

highlights the versatility and accessibility of the proposed

framework, as performing several development cycles is very cost-

effective and fast; all experiments have been executed on consumer

hardware, specifically an AMD Ryzen 9 7950X3 CPU and an

NVIDIA GeForce RTX 4090. NMTune on the best found set of

foundation models also is a well-performing alternative to a fully-

trained classification model, although the generalization capabilities

toward out-of-distribution samples appear to be inferior compared

to approximate k-NN search. While an exhaustive search over the

power set is reasonably cost-effective for smaller sets of foundation

models, optimizing the best combination may be challenging in

resource-constrained environments or with larger candidate sets. In

such cases, the combination of DINO, ConvNeXT, and SWIN has
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demonstrated consistent performance, particularly for transfer

tasks across all evaluated datasets.

The adaptive similarity search on general-purpose features from

foundation models proved robust across various microscopy

scenarios and devices. This robustness is further demonstrated by

achieving not only the highest transfer performance in terms of

mean macro-accuracy but also the lowest associated standard

deviations. In the LISC transfer task, EWC-FAISS shows

exceptional stability with a standard deviation of only ±0.3,

compared to NMTune’s ±10, SWIN FT’s ±14 or ConvNeXT FT’s

±9, and less than half of Dino FT’s ±1. For transfer of cell state

detection, EWC-FAISS and ConvNeXT FT achieve a variance up to

an order of magnitude smaller than Dino FT or SWIN FT (± 1 vs. ±

11 and ±16) and notably lower than NMTune’s ±7. Finally, in the

cell type detection transfer task, EWC-FAISS shows negligible

variance, compared to NMTune’s ±4, underscoring its consistent

performance across various transfer tasks. Finding robust

representations of cells is crucial for AI-assisted analysis of the

effects of cancer therapies. This robustness is particularly important

given the common challenges in medical research, such as small

sample sizes and limited data availability. The ability to accurately

classify different cell types and tracking changes in real-time using

AI-based methods is essential for assessing and accelerating

therapeutic impacts. In our study, we successfully distinguished

multiple cell types, including leukemic cell lines and PBMCs. This

capability is significant, as PBMCs from healthy donors can serve as

a model for the tumor microenvironment, providing a

heterogeneous mixture of cells similar to patient tumor samples.

This aspect of our study underscores the potential application of our

method in clinical settings, where differentiating malignant cells

from normal immune cells can provide insights into immune

infiltration and tumor biology. Furthermore, our methodology

demonstrates the capability to identify cell states such as live,

apoptotic, necrotic, or dead cells, which for example is vital for

evaluating the efficacy of cancer therapies. This functionality is

particularly relevant in the context of cancer therapy. Our cell

similarity search approach could potentially streamline this process,
FIGURE 7

Results on the transfer from a BioTek Lionheart FX to the Nanolive 3D Cell Explorer. (left) EWC-FAISS is robust to distribution shift induced by the
second device compared to DINO FT. (right) Once the embeddings are generated (Emb. Gen.), EWC-FAISS is multiple orders of magnitude faster
(Idx. Build).
TABLE 4 Results of EWC-FAISS on mixtures of PBMCs and Jurkats and
PBMCs and K562s.

Method PBMC
+Jurkats

PBMC
+K562s

∅

mAcc mAcc mAcc

CellMixer
(28)

95.8 63.7 79.7

EWC-FAISS 85.3 ± 0.7 75.2 ± 0.5 80 ± 5
Results are reported as mean ± SD (denoted with one significant digit).
CellMixer results as reported in (28).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1480384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kalweit et al. 10.3389/fonc.2025.1480384
FIGURE 9

Exemplary inference results for EWC-FAISS evaluated on real mixtures of PBMCs with Jurkats and PBMCs and K562s. Expert annotations were non-
exhaustively given for Jurkats and K562s, PBMCs are not annotated.
FIGURE 8

Balanced accuracies of the foundation models and the best combination using EWC-FAISS in black and DINO FT in red on WBC (left) and on the
transfer to LISC (right).
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facilitating the identification of donor cells with strong anti-tumor

activity and thus optimizing the preparation and effectiveness

of immunotherapies.

In our study, we validated this approach across diverse datasets

encompassing various staining techniques and imaging platforms,

from conventional microscopy to advanced holotomography-based

imaging. The consistent performance across these different datasets

highlights our method’s robustness, particularly in clinical contexts

involving complex, heterogeneous cell populations. This robustness

also suggests potential beyond oncology, where our method’s ability

to distinguish molecular characteristics in stained cells could

accelerate cytological investigations, helping to identify clinically
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relevant features in settings such as point-of-care diagnostics. For

example, a stained blood sample could be imaged with a basic

microscope, uploaded via a web application, and analyzed in real

time, providing rapid diagnostic insights. While our study primarily

utilized optical and hologram-based microscopy, our approach

could generalize effectively to other high-resolution imaging

methods. Techniques, which capture high-contrast, visually

distinct features, align well with our approach. The data efficiency

of EWC-FAISS further supports adaptability, even in domains with

limited image throughput.

Going forward, the rapid evolution of foundation models

presents a valuable opportunity to enhance our framework. With
FIGURE 10

WBC EWC-FAISS classifier within a Streamlit web application predicting a monocyte correctly, showing the classification certainty and the nearest
neighbors found in the database.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1480384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kalweit et al. 10.3389/fonc.2025.1480384
EWC-FAISS, foundation models can be seamlessly replaced as new

models emerge: embeddings can be generated from updated

models, and the index rebuilt without altering the underlying

workflow. Models such as CellSAM, which have recently

emerged, may offer richer feature representations that could

further improve the accuracy and robustness of our method.

Incorporating more advanced models into our pipeline will likely

yield significant benefits, particularly in handling the increasingly

complex data generated in modern biomedical research. However,

as the diversity of visual foundation models continues to expand,

there is a growing need for sophisticated hyperparameter

optimization techniques to identify the most effective

model combinations.

Lastly, exploring metroid-based solutions offers a promising

direction for future research. These methods could provide more
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efficient alternatives to the full (approximate) k-NN search

currently employed, particularly in scenarios involving even large

datasets or limited computational resources. By optimizing the

computational efficiency of our approach, we can further lower

the barriers to its widespread adoption and application in

diagnostics and therapy response monitoring.
5 Conclusion

In this study, we presented a robust and versatile method for

distinguishing between various cell types and states using adaptive

k-NN search on fixed features derived from combinations of

foundation models. Our approach demonstrated high adaptability

and efficiency across different microscopic imaging devices,
FIGURE 11

AI-Detection of JIMT-1 cell states using EWC-FAISS trained on NANOLIVE CELL DEATH. The cells were treated with Raptinal (10 µM). (a) Timepoint
1.75 hours. (b) Timepoint 9.25 hours. (c) AI-assisted cell state counts over 12 hours and the fluorescence intensity.
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highlighting its potential for broad applicability in both research

and clinical settings. The method’s ability to rapidly adapt to

different datasets and experimental conditions, while maintaining

accurate classification performance, underscores its utility in

dynamic and resource-constrained environments.
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