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immune responses
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Department of Molecular and Medical Pharmacology, University of California Los Angeles,
Los Angeles, CA, United States
Nucleoside metabolism regulates immune cell development and function, but

the therapeutic implications of this link have yet to be fully realized. Evidence for

the importance of nucleoside metabolism in immune system control was

provided by observations of immunodeficiency and autoimmunity across

patients with genetic errors that alter nucleoside synthesis or breakdown.

Research over the past several decades has uncovered a multifaceted role for

nucleosides in mediating immune responses that involves their function as

metabolic precursors and as ligands for immune receptors. These findings

prompted the development of treatments that block the production of the

immunosuppressive nucleoside adenosine for cancer immunotherapy.

Guanosine and pyrimidine nucleosides also mediate immune outcomes, and

the key regulators of their metabolism are promising new targets to unleash anti-

cancer immune responses or dampen autoimmune reactions. This review

provides an overview of (i) recent research concerning the mechanisms

underlying nucleoside-mediated immune regulation, (ii) the current landscape

of therapeutic targets for immune modulation within nucleoside metabolism,

and (iii) opportunities for developing improved preclinical models that

recapitulate human nucleoside metabolism, which are needed to advance new

metabolism-targeting therapies toward the clinic.
KEYWORDS

metabolism, immune activation, cancer immunotherapy, nucleotide metabolism,
autoimmune disease, immuno-metabolism
1 Introduction

Nucleosides critically regulate immune system function and targeting nucleoside

metabolism has emerged as a promising approach to unleash anti-cancer immune responses

or restrain autoimmune reactions. Nucleosides have a multifaceted role in immune system

regulation that involves their function as metabolic precursors and signaling modifiers.

Nucleosides are classical biosynthesis metabolites that fuel nucleotide production and nucleic

acid synthesis. Nucleosides are also signaling molecules that regulate biological outcomes by
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engaging intracellular or cell surface-localized receptors. The

immunosuppressive properties of the purine nucleoside adenosine

are well-studied, and therapies that block adenosine production are

currently under clinical investigation for cancer immunotherapy (1).

Recent research has revealed that nucleosides beyond adenosine

also mediate immune-related outcomes. These nucleosides include

(deoxy)guanosine and the pyrimidine nucleosides (deoxy)cytidine,

uridine, and thymidine. The mechanisms underlying the immune-

modifying properties of these metabolites are not as well-studied as

adenosine, and therapeutic strategies to leverage their immune-

modifying properties have not yet been systematically tested in the

clinic. There has been a disproportionate focus on adenosine over

pyrimidine or other purine nucleosides in the context of research

related to immune system regulation. The striking manifestations of

immune dysfunction in patients with diminished activity of the

adenosine metabolizing enzyme adenosine deaminase (ADA), first

described in the 1970s, may have contributed to this discrepancy.

However, the proteins controlling pyrimidine or guanosine

nucleoside metabolism may be equally crucial therapeutic targets

to modify immune outcomes as those controlling adenosine-

mediated immunosuppression.

New studies have highlighted the potential for targeting key

regulators of guanosine and pyrimidine nucleoside synthesis,

utilization, or breakdown to amplify immune responses against

cancer or dampen autoimmune reactions. However, there is an

incomplete understanding of the molecular mechanisms underlying

the immune-regulatory properties of nucleosides beyond

adenosine. This gap in knowledge may be addressed through

future studies in improved preclinical models and the analysis of

specimens from ongoing clinical trials testing inhibitors of

adenosine metabolism for cancer treatment.

A challenge in the development of metabolism-targeting drugs

for immune modification is the paucity of preclinical models that

recapitulate human nucleoside metabolism. Significant differences

exist in the nucleotide metabolism of humans and conventional

laboratory models such as rodents. For example, the pyrimidine

nucleosides deoxycytidine and thymidine are measured at a 100-

fold higher concentration in murine sera compared to sera from

humans or non-human primates (2). This discrepancy presents a

major obstacle to implementing the findings from laboratory
Abbreviations: PNP, purine nucleoside phosphorylase; ADA, adenosine

deaminase; dCK, deoxcytidine kinase; TK1, thymidine kinase 1; HPRT,

hypoxanthine-guanine phosphoribosyltransferase; TYMP, thymidine

phosphorylase; PET, position emission tomography; dC, deoxycytidne; dA,

deoxyadenosine; dG, deoxyguanosine; dT, thymidine; dU, deoxyuridine; U,

uridine; A, adenosine; G, guanosine; C, cytidine; TLR7, toll-like receptor 7;

TLR8, toll-like receptor 8; UPP1, uridine phosphorylase 1; CDA, cytidine

deaminase; DHODH, dihydroorotate dehydrogenase; ENT1, equilibrate

nucleoside transporter 1; ENT3, equilibrate nucleoside transporter 3; RNR,

ribonucleotide reductase; DHODH, dihydroorotate dehydrogenase; SAMHD1,

sterile alpha motif and histidine aspartate domain-containing protein 1; ADORA,

adenosine receptor; dNTP, deoxyribonucleotide triphosphate; NBMPR, S-(4-

nitrobenzyl)-6-thioinosine; ENTPD1, ectonucleoside triphosphate

diphosphohydrolase 1; NT5E, `ecto-5′-nucleotidase.
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investigations in the design of clinical trials (3). Also contributing

to the challenge of translating preclinical research findings are

differences in the expression patterns of immune sensor proteins

across humans and mouse models. Research using preclinical

models that recapitulate both human nucleoside metabolism and

immune responses may provide the insight needed to advance new

therapies to alter immune-related outcomes in patients.

The goals of this review are to (i) highlight primary research

articles that have demonstrated functions of nucleosides beyond

adenosine in immune system regulation, (ii) provide an update on

recent advances in targeting nucleoside metabolism for cancer

immunotherapy, and (iii) summarize the challenges and

opportunities related to the development of preclinical models for

human nucleoside metabolism that are needed to advance new

metabolism-targeting therapies toward the clinic.
2 Immune-regulatory functions of
guanosine nucleosides

Evidence for the immune-regulatory roles of nucleosides was

provided by the identification of immune dysfunction in patients

with hereditary loss-of-function mutations in two genes responsible

for the breakdown of purine nucleosides: ADA and purine

nucleoside phosphorylase (PNP) (4, 5). A leader of these

investigations was the physician-scientist Eloise Giblett (6), whose

interest in purine metabolism began when she identified a complete

lack of blood ADA activity in a patient with severe combined

immunodeficiency (SCID). ADA is an enzyme within the purine

salvage pathway that catalyzes the deamination of adenosine and

deoxyadenosine nucleosides to inosine or deoxyinosine,

respectively. Giblett and colleagues also identified that the

mutational inactivation of PNP, an enzyme that is also involved

in purine metabolism, produces a near-complete absence of T cells

alongside altered phenotypes of other immune lineages (5). These

foundational studies that associated defects in purine metabolism

with the development of SCID provided compelling evidence for a

role of nucleoside metabolism in regulating immune responses.

SCID is an established manifestation of PNP/ADA deficiency or

defects in other genes that control immune responses. It is rare

across the human population, occurring in 0.001-0.002% of births.

ADA deficiency constitutes 10-15% of SCID cases (7). Enzyme

replacement, hematopoietic stem cell transplantation (HSCT), and

gene therapies enable the management of ADA-linked SCID (8). In

contrast, only a very small fraction of SCID cases are due to defects

in PNP; approximately 70 cases of PNP deficiency have been

documented (9). The T cell deficiency associated with PNP

inactivation is managed in the clinic with HSCT alongside

other treatments.

PNP is a key regulator of the purine salvage pathway. PNP

catalyzes the release of purine nucleobases that can be recycled by

hypoxanthine phosphoribosyltransferase (HPRT), an enzyme

which conjugates nucleobases with phosphoribosyl pyrophosphate

(PRPP) to generate purine nucleotide monophosphate (10). In

addition to enabling the intracellular purine salvage pathway,
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PNP controls the systemic levels of purine nucleosides. PNP

deficiency results in the systemic accumulation of guanosine,

adenosine, inosine, deoxyguanosine (dG), and deoxyadenosine

(dA). PNP is also critical for the conversion of purine nucleosides

to uric acid and their subsequent excretion (10).

The observations of T cell deficiency in PNP-deficient patients

made by Giblett and colleagues have been confirmed by other

groups who have expanded the catalog of altered immune

phenotypes associated with PNP deficiency in humans (11). A

subset of patients with PNP deficiency exhibit autoimmune

phenotypes that include systemic lupus, autoimmune hemolytic

anemia, and systemic juvenile idiopathic arthritis with macrophage

activation syndrome (12, 13). Across patients with PNP deficiency,

recurring PNP mutations have been identified that lead to immune

dysfunction and susceptibility to infections (14). Partial PNP

deficiency is associated with milder symptoms than complete

inhibition, and patients with partial PNP activity can exhibit

typical development and potentially near-normal immune

activity (15).

The most profound phenotype observed in PNP-deficient patients,

a near complete T cell immunodeficiency, is linked to the uncontrolled

expansion of purine nucleotide pools in developing thymocytes

following PNP inactivation. The accumulation of the PNP substrate

deoxyguanosine and its subsequentmetabolism in cells results in dNTP

pool imbalance, DNA replication defects, and cell death. The

stabilization of deoxyguanosine following PNP inhibition results in a

massive expansion of the deoxyguanosine triphosphate (dGTP) pool in

cells, which inhibits pyrimidine dNTP synthesis via ribonucleotide

reductase (RNR) by an allosteric regulatory mechanism (Figure 1A)

(16). The entry of deoxyguanosine nucleosides into cells and their

subsequent phosphorylation to dGMP is mediated by the sequential
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activity of transmembrane nucleoside transporters and deoxycytidine

kinase (dCK) (17). The preferred dCK substrate is dC. However, dCK

also catalyzes the phosphorylation of the purine deoxyribonucleosides

deoxyadenosine and deoxyguanosine to dAMP and dGMP,

respectively (18). While dCK activity is suppressed via dCTP-

mediated allosteric regulation, it is not susceptible to feedback

regulation by purine deoxyribonucleotides. Therefore, additional

mechanisms must function to counteract purine dNTP pool

expansion in the context of PNP deficiency. Developing thymocytes

are particularly vulnerable to PNP inactivation due to limited dNTP

catabolism capacity, which exacerbates intracellular dGTP

accumulation (10). The dNTP triphosphohydrolase SAM domain

and HD domain-containing protein 1 (SAMHD1) is expressed at

low levels across the early stages of thymocyte development, and this

may explain the increased sensitivity of this lineage to PNP inhibition

and the resulting uncontrolled expansion of dGTP pools (10). PNP

inactivation is synthetically lethal with downregulation of SAMHD1,

and this collateral dependency extends to SAMHD1-deficient cells

from multiple lineages beyond lymphocytes (10). The transcriptional

down-regulation of SAMHD1 during T cell development may be

related to the increased dNTP demands of proliferating thymocytes

for DNA replication, or the direct role of SAMHD1 in DNA repair by

promoting homologous recombination (19). The lethal effects of purine

dNTP imbalance are also apparent in T lymphoblastic leukemia cells

with high levels of dCK expression alongside low levels of SAMHD1

expression (10).

The autoimmune manifestations related to PNP deficiency in

humans are not explained solely by the cell-autonomous lethality

that results from the intracellular expansion of purine dNTP pools

and the resulting impairment of pyrimidine nucleotide synthesis.

Recent research indicates that autoimmune consequences of PNP
FIGURE 1

Immune-regulatory effects of guanosine nucleosides. (A) PNP and SAMHD1 prevent dGTP-mediated proliferation inhibition resulting from impaired
dCTP synthesis. (B) PNP limits TLR7 activation by initiating guanosine nucleoside breakdown. RNR, ribonucleotide reductase; NDPK, nucleotide
diphosphate kinase; ENT1/2, equilibrative nucleoside transporter 1/2 (SLC29A1/2); dCK, deoxycytidine kinase; GMPK, guanosine monophosphate
kinase; SAMHD1, SAM and HD domain-containing protein 1; PNP, purine nucleoside phosphorylase; ENT3, equilibrative nucleoside transporter 3
(SLC29A3); TLR7, toll-like receptor 7; ssRNA-U, uridine-containing single-stranded RNA; dR1P, deoxyribose-1-phosphate; rG, guanosine;
dG, deoxyguanosine.
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deficiency may be linked to the sensing of PNP substrates guanosine

and deoxyguanosine by the endolysosomal pattern recognition receptor

toll-like receptor 7 (TLR7; Figure 1B) (20). The toll-like receptor (TLR)

family of proteins is a membrane-bound subset of pattern-recognition

receptors that are responsible for sensing pathogens and initiating

protective immune responses (21). TLRs are vital mediators of innate

immune responses that detect pathogen-associated molecular patterns

(PAMPs) and subsequently trigger a signaling cascade to activate

cytokine production and stimulate immune responses (22).

Endolysosomal TLR7 possesses two ligand binding sites that

recognize either guanosine nucleosides or single-stranded uridine-

containing ssRNA. Gain-of-function TLR7 mutations that result in

enhanced guanosine sensing have been identified in patients with early

onset systematic lupus erythematosus (23). This observation provided

functional evidence for the role of guanosine nucleosides in regulating

TLR7 activity in humans (23). Engineered mouse models with TLR7

mutations that increase its binding affinity for guanosine exhibit altered

B and T cell function alongside autoimmune manifestations that

recapitulate the clinical observations (23).

The effects of acute PNP inhibition on TLR7-mediated immune

responses have been reported by multiple groups who have

characterized immunological alterations in preclinical models

triggered by PNP inhibitors (10, 24). The elevated systemic levels

of guanosine nucleosides resulting from pharmacological PNP

inactivation impact the function, proliferation, or survival of

specific immune lineages as a function of their expression of

SAMHD1, dCK, and TLR7. PNP inactivation promotes the

expansion of germinal center B cells and populations of T

follicular helper cells within secondary lymphoid tissues in the

absence of exogenous antigen (10). PNP inhibitor-stabilized

guanosine also triggers the production of inflammatory cytokines,

such as IL-6 and TNFa, within TLR7-expressing macrophage

populations when administered alongside single-stranded uridine-

containing RNA (10).

A third manifestation of PNP deficiency is neurological

alterations. Preclinical evidence highlights the critical role of PNP

activity in neuron survival. The differentiation of induced

pluripotent stem cells (iPSC) from PNP-deficient patients

provided a platform to investigate the role of PNP in neurons

(25). PNP deficiency is associated with enhanced p53-dependent

intrinsic apoptosis in this setting, and RNR dysfunction was

implicated as a mechanism underlying this effect. PNP also

enables the utilization of inosine as a fuel for the pentose

phosphate pathway, which has been implicated in the control of

neuron function (26). In patients with partial PNP activity,

neurological development was found to be normal (15).

Neurological manifestations are also produced by genetic

defects in HPRT, a gene that functions downstream of PNP in

the purine salvage pathway. Lesch-Nyhan syndrome, caused by the

near-total impairment of HPRT, disrupts the synthesis of GMP and

IMP nucleotides from guanine and hypoxanthine via the purine

salvage pathway (27). HPRT deficiency blocks purine salvage, but

spurs increased de novo pathway synthesis (27). Diminished

guanosine salvage may alter the function of GTP-based secondary

messenger systems operating in the central nervous system (27).
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The guanosine nucleotide GTP, which can be produced via the

salvage of PNP products, functions in developmental neurology and

controls cell migration, dendrite formation, and neurite outgrowth

(28). Guanosine is also a regulator of glutamate re-uptake in glial

cells. Therefore, altered guanosine metabolism could impact

glutamatergic signaling (29). The phenotypes associated with PNP

deficiency and HPRT deficiency reinforce the critical role of purine

nucleoside salvage in a neurological context.

In summary, preclinical and clinical studies have pinpointed the

role of the nucleoside PNP substrates as critical regulators of

immune system function. These effects of guanosine (deoxy)

ribonucleosides are related to their roles as (i) ligands for the

intracellular pattern recognition receptor TLR7, (ii) substrates for

dCK and subsequently fuel for dGTP synthesis, and (iii) substrates

for the purine salvage pathway mediated by the sequential actions of

PNP and HPRT.
3 Immune-regulatory functions of
pyrimidine nucleosides

Recent preclinical studies have provided insights into the

mechanisms underlying the immune-regulatory functions of

pyrimidine nucleosides. Similar to guanosine, the function of

pyrimidine nucleosides in immune system regulation involves

their roles as metabolic precursors and as TLR ligands.

Pyrimidine ribonucleotides, such as (deoxy)cytidine, uridine, and

thymidine, can be produced by convergent de novo and salvage

pathways in cells, and this redundancy allows for metabolic

plasticity and adaption to alterations in the availability of

environmental nutrients (30, 31). The de novo pathway utilizes

glucose, glutamine, and aspartate precursors in a six-step

biochemical process to produce pyrimidine nucleotides (32). An

alternative salvage metabolic pathway for pyrimidine nucleotide

synthesis utilizes preformed nucleosides and deoxyribonucleosides

(dN) from the extracellular environment. Nucleotide synthesis via

the salvage pathway requires the transport of pyrimidine

nucleosides across the plasma membrane by nucleoside

transporter proteins and their subsequent phosphorylation by

intracellular nucleoside kinases (33, 34).

T cell activation is accompanied by the upregulation of multiple

genes in the pyrimidine salvage pathway, including nucleoside

transporters and the deoxyribonucleoside kinase dCK. This

observation prompted the development of approaches that

leverage enhanced nucleoside salvage pathway function in

activated lymphocytes to non-invasively track immune responses.

Radu and colleagues developed [18F]FAC, a pyrimidine

deoxyribonucleoside-analog positron emission tomography (PET)

probe, to visualize dCK activity as a surrogate marker for immune

activation in preclinical mouse models and in humans (35).

Following administration, deoxycytidine analog PET probes are

transported into cells via nucleoside transporter proteins and are

phosphorylated by the pyrimidine deoxyribonucleoside kinase

dCK, which effectively traps the probe within cells with elevated

dCK activity (35). The biodistribution of deoxycytidine-analog PET
frontiersin.org
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probes in preclinical models or in humans can be tracked using a

PET scanner. Early studies testing deoxycytidine-analog PET

probes in mouse models revealed a striking concentration of

pyrimidine deoxyribonucleoside salvage in lymphoid tissues such

as the spleen, lymph nodes, thymus, and bone marrow (35). This

finding indicated enhanced pyrimidine salvage activity in immune

cells in vivo. Prompted by this observation, a series of studies in

engineered mouse models were performed to evaluate the

functional role of dCK by evaluating immune phenotypes in mice

where dCK was deleted. These studies provided evidence critically

linking dCK function to hematopoiesis and lymphocyte

proliferation. The analysis of dCK knockout mice highlighted a

requirement for dCK in the development of multiple immune cell

lineages, including CD4/CD8 T cells in the thymus, B cells, and

erythrocytes (36). The requirement for dCK-mediated dC salvage in

normal murine hematopoiesis was, in part, traced to a requirement

for dCK to counteract the toxicity resulting from high levels of

thymidine in specific tissues (Figure 2A) (37). Thymidine is

phosphorylated and trapped in cells by thymidine kinase 1 (TK1),

and high levels of environmental thymidine drive the expansion of

intracellular thymidine triphosphate (dTTP) nucleotide pools. The

unbalanced expansion of dTTP pools inhibits dCDP synthesis by

RNR, which results in the depletion of dCTP and replication stress

in the S-phase of the cell cycle. dCK-mediated dC salvage bypasses

this metabolic block to enable proliferation under conditions of

high environmental thymidine (37). Preventing thymidine salvage

and dTTP pool expansion in dCK knockout mice by inhibiting TK1

prevents replication stress in thymocytes and restores T cell

development (37). This data suggests that, in mouse models, dC

and dT have major roles in immune cell development and

proliferation by functioning as substrates of nucleoside salvage
Frontiers in Oncology 05
kinases. Similar to the consequences of elevated guanosine

nucleoside abundance in PNP deficiency, elevated levels of dT

nucleosides restrict hematopoiesis by cell-autonomous lethality.

In contrast, dC itself does not appear to exert deleterious effects

in hematopoiesis.

In addition to their role as substrates for the nucleoside kinases,

nucleosides can be broken down and the resulting ribose can

substitute for glucose under conditions of nutrient scarcity.

Pancreatic ductal adenocarcinoma (PDAC) cells are resilient,

resistant to treatment, and able to thrive in hostile environments

by utilizing the pyrimidine nucleoside uridine (180). In low-glucose

conditions, uridine phosphorylase 1 (UPP1) is over-expressed,

driving the use of uridine as a carbon source that supports

macromolecule synthesis and energy generation (180). In cancer

cells, UPP1 is controlled by oncogenic KRAS-MAPK signaling and

induced by nutrient restriction. Similarly, other nucleosides have

been shown to serve as alternative carbon sources, including inosine

in CD8 T cells (181) and dT in cancer cells (182).

Altered de novo pyrimidine synthesis in humans is associated

with immune alterations in the context of the disorder Hereditary

Orotic Aciduria (HOA) (38, 39). This rare condition results in

defective pyrimidine nucleotide synthesis and is the only identified

enzyme deficiency of the de novo pyrimidine biosynthetic pathway

in humans. HOA is linked to mutational inactivation of uridine-5-

monophosphate synthase (UMPS), which leads to decreased

pyrimidine synthesis and increased excretion of orotic acid (39,

40). HOA was described as early as 1959 in an infant who passed

away before a full investigation could be performed (41). Clinical

evidence supports the notion that impaired pyrimidine synthesis

results in immunodeficiency, suggesting that pyrimidine

nucleotides have immune-strengthening effects. HOA is
FIGURE 2

Immune-regulatory effects of pyrimidine nucleosides. (A) dCK and dC prevent thymidine-mediated proliferation inhibition resulting from impaired
dCTP synthesis. (B) Pyrimidine nucleosides are TLR8 ligands. NT, nucleoside transporter TK1, thymidine kinase 1; RNR, ribonucleotide reductase;
NDPK, nucleotide diphosphate kinase; ENT1/2, equilibrative nucleoside transporter 1/2 (SLC29A1/2); dCK, deoxycytidine kinase; TMPK, thymidine
monophosphate kinase; CMPK1/2, cytidine monophosphate kinase 1/2; CDA,cytidine deaminase; ENT3, equilibrative nucleoside transporter 3
(SLC29A3); TLR8, toll-like receptor 8; ssRNA, single-stranded RNA; rC, cytidine; dC, deoxycytidine; rU, uridine; dU, deoxyuridine.
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associated with weakened T cell responses, while humoral responses

remain undamaged (38). Symptoms vary across HOA cases but

have been reported to include megaloblastic anemia, a weakened

immune system, delays in development, and failure to thrive (39).

Some symptoms can be treated by supplementation with the

pyrimidine nucleoside uridine administered as uridine triacetate.

Pyrimidine nucleosides have roles as metabolic precursors for

nucleotide synthesis, and as direct signaling mediators. The

endolysosomal pattern recognition receptor Toll-like receptor 8

(TLR8) mediates the signaling effects of pyrimidine nucleosides and

possesses a binding pocket that accepts uridine (Figure 2B) (42).

The nucleoside and oligonucleotide ligands for TLR8 are produced

within the lysosomal compartment via RNA breakdown (43).

Cytidine and deoxycytidine can be converted to uracil-containing

nucleoside TLR8 ligands by cytidine deaminase (CDA) (44). The

accumulation of nucleosides within endolysosomal compartments,

where they are sensed by TLR7 or TLR8, is mediated by their

transport across the endolysosomal membrane by equilibrative

nucleoside transporter 3 (ENT3, encoded by the gene SLC29A3).

Aberrant endolysosomal TLR signaling resulting from defective

SLC29A3-mediated nucleoside transport is linked to H syndrome,

an auto-inflammatory condition in humans (45).

Defective activity of the genes controlling the breakdown of

pyrimidine nucleosides or nucleobases is linked to the development

of various human pathologies. Dihydropyrimidine dehydrogenase

(DPYD) catalyzes the first step of uracil and thymine degradation

(46). DYPD deficiency (DPD) is a rare metabolic disorder resulting in

seizures, developmental delay, microcephaly, andmuscular hypotonia,

although some patients who are carriers are asymptomatic (47). The

activity of other genes and potential environmental factors likely

dictate the severity of the manifestations of DPD, causing some

individuals to be asymptomatic while others have life-altering

manifestations (47). DPD is observed in approximately 3-5% of the

population, but the prevalence and phenotypic manifestations vary

across ethnic groups (48). DPYD is responsible for the catabolism of

80% of bodily 5-Fluorouracil, a chemotherapy widely used for cancer

treatment (49). Therefore, 5-Fluorouracil cannot be used as a cancer

treatment for those with DPD, as drug accumulation leads to toxic

depletion of pyrimidine nucleotides in this patient population (46).

Mitochondrial neurogastrointestinal encephalomyopathy

(MNGIE) is linked to heritable loss-of-function mutations in the

gene encoding for thymidine phosphorylase (TYMP). TYMP is a

pyrimidine nucleoside phosphorylase that regulates pyrimidine

nucleoside salvage by controlling the breakdown of thymidine

and deoxyuridine. MNGIE is linked to altered systemic

pyrimidine nucleoside accumulation, large-scale disruption of

nucleoside metabolism, alongside halted cholesterol, and fatty

acid breakdown (50). TYMP deficiency in humans results in the

accumulation of thymidine and deoxyuridine, which results in

imbalanced nucleotide pools within mitochondria, disruption of

mitochondrial DNA replication, and increased mutations. The

resulting altered mitochondrial function underlies the

manifestations of MNGIE, which include eye muscle weakness,

muscle wasting, leukoencephalopathy, digestive dysmotility,

microangiopathy, and occasional psychiatric symptoms (50–52).
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TYMP dysfunction is linked to nucleoside accumulation within

lysosomes and the disruption of lysosomal transport proteins.

However, it is not clear if any of the manifestations of TYMP

deficiency are associated with altered endolysosomal nucleoside

sensing by TLR7 or TLR8 (53). Mitochondrial pyrimidine

nucleotide imbalance is also linked to the production of immuno-

stimulatory type I interferon by triggering release of mitochondrial

DNA to the cytosol and downstream cGAS/STING pathway

activation (183). The mitochondrial protease YME1L preserves

mitochondrial nucleotide pools by preventing pyrimidine

nucleotide release to the cytosol via degradation of the

mitochondrial nucleotide carrier SLC25A33.
4 Immune-regulatory functions of
adenosine nucleosides

The nucleoside adenosine is a potent regulator of anti-tumor

immune responses that weakens beneficial immune cell subsets and

strengthens suppressive cell populations. The role of adenosine in

immune system regulation is multifaceted and linked to its role as a

signaling molecule and metabolic precursor. Tumor cells co-opt the

immunosuppressive effects of adenosine to dampen immune

responses by up-regulating the key metabolic enzymes responsible

for its production. Therapies that block adenosine generation or

sensing have emerged as promising therapeutic targets to reverse

immunosuppression in the tumor microenvironment. The

mechanisms underlying the effects of adenosine on immune

system function and the landscape of therapies targeting the

adenosine pathway have been reviewed (1).

Adenosine deaminase activity in humans is mediated by

enzymes ADA1 and ADA2. Deficiency in ADA1 results in SCID,

while patients with deficiency in ADA2 (DADA2) exhibit a variable

clinical phenotype, including systemic inflammation, vasculopathy/

vasculitis, and aplastic anemia, with dysregulation of immune,

neural, and cardiovascular systems (54, 55). ADA1 does not

compensate for dampened ADA2 activity in DADA2 patients.

This difference in phenotype resulting from ADA1 or ADA2

deficiency is multifaceted and is linked to differential binding of

soluble ADA1 or ADA2 proteins to immune cells (56).

One mechanism by which extracellular adenosine exerts

immune-modifying effects is by activating specialized cell-surface

receptors which control cell fate and function that are expressed

across immune cell lineages. Multiple cell surface receptors for

adenosine (A1, A2A, A2B, and A3) have been characterized (57).

A2A is expressed across immune cell types and is well-studied for its

role in mediating the immunosuppressive effects of adenosine in the

context of anti-cancer immunity. Signaling downstream of A2A is

known to exert pleiotropic immune-suppressive functions across

immune lineages present in the tumor microenvironment (58, 59).

The signaling effects of adenosine have been harnessed for therapy,

and synthetic antagonists of adenosine receptors such as vipadenant

(BIIB-014) and ST-1535 have shown signs of efficacy in clinical trials

for Parkinson’s disease and other conditions (60, 61). Istradefyline, an

A2A antagonist, is approved in Japan for Parkinson’s treatment (62).
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Adenosine signaling via A2A promotes the production of

inflammatory cytokines and sustains inflammasome activation

following initial activation (63).

The adenosine receptor A2B is also over-expressed in specific

cancers (64). It is a low-affinity adenosine receptor compared to

A2A and is activated in conditions of high environmental

adenosine. It regulates the function of various cell types,

including immune and stromal cells, and its inhibition suppresses

the growth of tumors in mice (65). The small molecule A2B
inhibitor PSB1115 blocks cytokine signaling in stromal cells to

limit tumor growth in mouse models (64).

The production of extracellular adenosine in the tumor

microenvironment is linked to poor patient outcomes and is

driven by high expression of the ectonucleotidases CD39

(ENTPD1) and CD73 (NT5E) (57). CD39 generates AMP from

ATP, and CD73 converts AMP into adenosine (66). The expression

of adenosine-generating ectonucleotidases is positively regulated by

hypoxia and inflammation in the tumor environment (57). The

collective preclinical data suggests that therapies blocking CD39

and CD73 could help decrease adenosine production in tumors,

thereby unleashing anti-cancer immune responses. This treatment

strategy is supported by research testing the consequences of CD39

and CD73 inhibition in preclinical cancer models (57). Prostatic

acid phosphatase (PAP) generates adenosine via the breakdown of

AMP and may be responsible for immunosuppressive adenosine

signaling in prostate cancer tumors via a metabolic pathway that

bypasses CD73 (67).

Several approaches for CD73 inhibition are under clinical

evaluation as strategies for immunotherapy in patients with solid

tumors. Both monoclonal antibodies (68) and small molecule

therapeutics (69) that block CD73 activity elicit anti-tumor

immune responses and restrain metastasis in murine cancer

models. Oleclumab is a CD73-targeting antibody currently under

clinical investigation in multiple phase I and II trials and has

exhibited promising signs of anti-tumor efficacy (70). Other

CD73-targeting antibodies, CPI-006, SRF373/NZV930, and BMS-

986179, as well as CD73-targeting small molecules, such as

quemliclustat (AB680), are also under clinical evaluation (57).

The anti-cancer effects of preventing adenosine generation

using CD39 blocking antibodies have been evaluated in murine

models with success (71). POM-1 has been proven as an effective

small-molecule CD39 inhibitor that increases cytotoxic T and NK

cell activity (72). CD39 is emerging as a therapeutic target to induce

anti-cancer immune responses, whereas CD73 and adenosine

receptor inhibitors have a more substantial history of research

focus (73). Nevertheless, multiple CD39 antagonistic antibodies

are undergoing clinical investigation: AB598, TTX-030, IPH5201,

and SRF-617, with more in development (74).

Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1)

is an additional extracellular enzyme of interest in relationship to

adenosine signaling as it degrades purine nucleotides, promoting

adenosine production. ENPP1 is connected to the up-regulation of

immunosuppressive adenosine signaling and is involved in the

breakdown of ATP to AMP via a mechanism that parallels the

activity of CD39 (75). ENPP1 also produces AMP via the hydrolysis
Frontiers in Oncology 07
of the cyclic dinucleotide immuno-transmitter 2’-3’-cGAMP,

produced by the enzyme cGAS (76). Potent small-molecule

ENPP1 inhibitors such as STF-1623/CM-3163 and AVA-NP-695

are being developed with the potential for cancer therapy (77, 78).

Antibodies that target ENPP1 to prevent its enzymatic activity have

been developed and tested in preclinical models of myocardial

infarction to limit the cell death and fibrosis that is linked to

increased ENPP1 activity following cardiac injury (79, 80).

Adenosine can be produced in the extracellular environment by

the breakdown of nucleotides released by dying cells via CD39,

ENPP1, and CD73. It is also released by live cells via equilibrative

nucleoside transporters. Inhibition of nucleoside transport is

currently under investigation as an alternative approach to

ectonucleotidase inhibition to limit immunosuppressive adenosine

signaling for cancer immunotherapy (81).

The purine nucleoside inosine, a product of adenosine

deamination via ADA, has also been linked to cancer progression

and metastasis, acting as a precursor for nucleotide synthesis in the

tumor microenvironment during starvation (82, 83). In addition,

inosine regulates the phenotype of T cells (84). One emerging tactic

to leverage the immune-modifying properties of inosine is to

improve CAR-T therapy by over-expressing ADA to promote the

conversion of immunosuppressive adenosine to inosine. This

approach increases the functionality and stem cell-like properties

of CAR-T cells, which amplifies their anti-cancer effects (84).

The systemic inflammatory condition known as Still’s disease is

spurred by genetic loss-of-function mutations in the gene FAMIN,

which encodes an enzyme with a roles in adenosine, guanosine and

inosine metabolism as well as the prevention of autoimmunity and

pathogenic T cell activation. Still’s disease manifests in childhood,

with recurrent fevers and arthritis being the most common

phenotypes, although 20% of those with the condition develop

macrophage activation syndrome. The enzymatic function of

FAMIN overlaps with that of ADA, PNP and MTAP.

Compromised FAMIN function in dendritic cells is linked to

aberrant NAD/NADH metabolism antigen presentation, and

inosine metabolism that together contribute to enhanced T cell

priming (179).
5 Roles of nucleoside transporters in
immune regulation

Systemic nucleoside abundance is tightly controlled by proteins

that regulate nucleoside production, breakdown, and translocation

across plasma membranes (85). Nucleoside uptake and release in

live cells is mediated by specialized multi-pass transmembrane

transporter proteins (85). In addition to their role in controlling

the systemic levels of nucleosides, nucleoside transporters enable

the nucleoside salvage pathway for nucleotide synthesis in cells.

Equilibrative nucleoside transporters 1 and 2 (ENT1/2, encoded by

the genes SLC29A1/2) mediate the passive transport of nucleosides

across the plasma membrane along a concentration gradient,

whereas concentrative nucleoside transporters CNT1 and CNT2

(encoded by the genes SLC28A1/2) mediate the sodium-coupled
frontiersin.org

https://doi.org/10.3389/fonc.2025.1483769
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dunderdale and Abt 10.3389/fonc.2025.1483769
secondary active transport of nucleosides (86). The ENT family

member SLC29A3 (ENT3) is located on the lysosomal membrane

within cells and mediates the transfer of nucleosides across

intracellular compartments (87). SLC29A4 (ENT4) functions as a

plasma membrane polyamine transporter (88, 89).

Nucleoside transporters accept various substrates, including

natural pyrimidine and purine nucleosides, synthetic anti-

metabolite nucleoside analogs (such as gemcitabine, cytarabine,

and clofarabine), and radionuclide-labeled nucleoside-analog PET

imaging probes (such as [18F]FAC) (85). Cancer cells lacking

nucleoside transporter activity are resistant to nucleoside-analog

prodrugs (90). SLC29A1 (ENT1) is the predominantly expressed

nucleoside transporter across normal and tumor cells and facilitates

the utilization of environmental nucleosides for nucleotide

synthesis. Beyond their ability to provide metabolic precursors to

cells, nucleoside transporters also control the access of nucleosides

to their sensors (such as adenosine receptors, TLR7, and TLR8).

ENT1 mutations have been identified in human patients. The

manifestations of impaired ENT1 activity in humans include

ectopic mineralization, joint calcification, and dysregulated

erythropoiesis (94, 95). The Augustine blood group system

includes antigens encoded by various SLC29A1 alleles (96).

ENT1 mediates the immune-regulatory effects of adenosine in

part by controlling its uptake in lymphocytes. Adenosine uptake is

linked to pyrimidine synthesis inhibition via phosphoribosyl

pyrophosphate synthetase (PRPS) and a resulting proliferation

block in tumor-infiltrating T cells (91). Therefore, pharmacological

ENT1 inhibition has been suggested as a strategy to enhance anti-

cancer T cell responses and ENT inhibitors have emerged as a

rational companion therapy for immune checkpoint blockade.

Nucleoside transporters also have a critical role in dictating the

immunological outcomes driven by guanosine nucleosides as their

transport across the plasma membrane is mediated by ENTs (92, 93).

The anti-proliferative effects of guanosine supplementation in culture

are curbed by ENT1 inhibition.

Inactivation of lysosomal membrane nucleoside transport

resulting from mutations in ENT3 is associated with hyperactive

immune phenotypes in humans with genetically inherited disorders

(97). ENT3 controls the abundance of guanosine and uridine

nucleosides within lysosomes, which function as ligands for TLR7

and TLR8, respectively. Lymphocytes can use ENT3-mediated

nucleoside recycling to support nucleic acid synthesis and sustain

proliferation (97). ENT3 deficiency results in dysregulated

nucleoside transport across lysosomal membranes, leading to

nucleotide pool imbalance, metabolic stress, and aberrant TLR-

driven cytokine responses (45). Germline loss-of-function SLC29A3

(encoding for ENT3) mutations in humans are notably associated

with irregular histiocyte production and accumulation, causing

autoimmune responses presenting as the genetic disorder H

syndrome (98). Cases of H syndrome are rare, with patients

presenting with pigmented hypertrichosis with insulin-dependent

diabetes mellitus (PHID), Faisalabad histiocytosis, and sinus

histiocytosis with massive lymphadenopathy (45, 97, 99, 100).

These phenotypes are potentially linked to aberrant macrophage

activation and accumulation in the spleen and other organs due to
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nucleoside accumulation in lysosomes and subsequent TLR7 or

TLR8 activation (45, 101). Interestingly, while the manifestations of

ENT3 deficiency in mice appear to be driven by aberrant TLR7

signaling, the consequences of ENT3 deficiency in human-derived

cells are mediated by TLR8 (45).
6 Emerging therapeutic strategies to
unleash the immune-stimulatory
effects of nucleosides

6.1 PNP inhibition

Decades after the initial observations of T cell insufficiency in

patients with ADA or PNP-linked SCID by Giblett and colleagues,

their discovery was leveraged for therapy. Low PNP activity in

humans is associated with decreased T cell counts, making T cell

malignancies a natural place to examine the benefit of

pharmacological PNP inhibition (102). PNP inhibition was

hypothesized to selectively elevate deoxyguanosine levels in

malignant T cells, leading to dGTP accumulation and cancer cell

death (102, 103). In the 1990s, Schramm and colleagues applied

their knowledge of the PNP transition state substrate-enzyme

structure to design PNP inhibitors with exceptionally high

potency (104, 105) (Table 1). Pharmacological PNP inhibition

was found to selectively eradicate T cell leukemia cells in vitro,

thus mirroring the observations of T cell deficiency in patients with

PNP-linked SCID (105). These encouraging preclinical results

prompted the testing of the PNP inhibitor forodesine (also

known as BCX-1777 or Immucillin H) in clinical trials for

relapsed/refractory T and B cell leukemias and lymphomas (106).

Forodesine received approval for treating peripheral T cell

lymphoma in Japan in 2017 (102, 107). Despite excellent

tolerability and pharmacodynamic properties in humans,

evidenced by plasma accumulation of PNP substrates and

depletion of the downstream products of PNP (including uric

acid), durable responses were observed only in a subset of

patients. Additional PNP inhibitors, ulodesine and peldesine, with

potency and bioavailability comparable to forodesine, have entered

clinical trials for applications beyond cancer treatment, such as

arthritis or limiting uric acid accumulation in gout (108). It has been

noted that PNP inhibitors have lower efficacy against cancer cells in

vivo compared to cell culture experimentation. This discrepancy

may be due to the presence or absence of factors not accounted for

in cell culture models or specific genetic differences of the cancer

cells targeted in each study (106).

PNP inhibitors appear to be most effective in inducing apoptosis in

cancer cells deficient in the dNTP triphosphohydrolase SAMHD1 (10,

109). SAMHD1 degrades dNTPs to their corresponding nucleosides

and prevents the expansion of intracellular dNTP pools (110). When

challenged with PNP inhibitors, human and mouse cells without

SAMHD1 are eradicated, while cells expressing SAMHD1 survive,

indicating that SAMHD1 and PNP are a pair of synthetic lethal genes

(109). SAMHD1 has, therefore, emerged as a crucial biomarker for the

anti-cancer effects of PNP inhibitors. This insight has increased the
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TABLE 1 Landscape of therapeutic targets for immune modulation within nucleoside metabolism.

Target Notable Therapeutic
Agents

Notes on Function and References

PNP -Forodesine (106)
-Ulodesine (108)
-Peldesine (108)

-PNP inhibitors stabilize purine nucleosides (16)
-PNP inhibitors promote germinal center reactions by stabilizing the TLR7 ligand guanosine (10)
-Forodesine is approved for the treatment of T Cell lymphoma (Japan) (102, 107)
-PNP inhibition is synthetic lethal with SAMHD1 inactivation (10, 109)

DHODH -Leflunomide (138)
-Teriflunomide (138)

-DHODH inhibitors prevent de novo pyrimidine synthesis (138)
-Lefunomide is approved for the treatment of rheumatoid arthritis and psoriatic arthritis (138)
-Teriflunomide is approved for the treatment of patients with relapsing forms of multiple sclerosis (138)
-DHODH inhibition enhances tumor cell antigen presentation and response to immune checkpoint blockade (144)
-DHODH inhibitors tune the developmental trajectory of immunization-elicited T cells elicited from predominantly
short-lived effectors to a memory phenotype (145)

SLC29A1
(ENT1)

-Dipyridamole (124)
-NBMPR (128)
-Dilazep (128)

-ENT inhibitors block nucleoside uptake in cells and cause systemic nucleoside accumulation (81)
-Blocking ENT1-mediated adenosine uptake in T cells enhances anti-tumor immunity in mouse models (91)

dCK -TRE-515 (119) -dCK inhibitors block the salvage of intact pyrimidine deoxyribonucleoside dC, dA and dG (10, 37)
-dCK inhibition is effective for the treatment of multiple sclerosis in mouse models (184, 185)
-TRE-515 is under clinical investigation for the treatment of solid tumors (NCT05055609) (119)

CD73
(NT5E)

-AB680 (57)
-Oleclumab (70)

-CD73 inhibition prevents the production of immunosuppressive adenosine (57, 60)
-CD73 inhibition is currently under clinical investigation for the treatment of solid cancers in combination with
chemotherapy (70)

CD39
(ENTPD1)

-AB598 (74)
-TTX-030 (74)
-IPH5201 (74)
-SRF-617 (74)

-CD39 inhibition stabilizes ATP and prevents its conversion to immunosuppressive adenosine (57, 66)
-CD39 inhibition is currently under clinical investigation for the treatment of solid tumors (74)

ENPP1 -AG-3132/AG-3292 (77)
-AVA-NP-695 (78)

-ENPP1 inhibitors prevent the breakdown of immuno-stimulatory 2'-3'-cGAMP and the resulting production of
adenosine (76)
-Currently advancing towards clinical trials for the treatment of solid cancers (77, 78)
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potential clinical utility of PNP inhibitors by providing the rationale for

treating solid tumors with low SAMHD1 expression (105). Loss-of-

function SAMHD1 mutations occur in several cancer types, including

lymphocytic leukemia, lung, and colon cancer (105, 111). SAMHD1

expression is controlled in part by transcriptional upregulation

downstream of signaling driven by the cytokine interferon (112).

PNP is up-regulated in certain cancers, such as pancreatic

adenocarcinoma, where it may be a therapeutic target (113).

While PNP inhibitors were initially applied to eradicate

malignant lymphocytes, immune-activating effects were noted in

patients receiving this new type of treatment. These effects included

enhanced responses to vaccines and beneficial effects in the context of

post-HSCT relapse in patients with leukemia (114). Based on these

observations, it was hypothesized that the immune stimulatory

properties associated with PNP inhibitor treatment may result from

the activation of immune sensor molecules such as TLRs. Consistent

with this model, recent studies have indicated that the PNP substrates

guanosine and deoxyguanosine activate TLR7.

Oral treatment with PNP inhibitors triggers transcriptional

alterations in B cells, dendritic cells, and macrophages via TLR7

activation (10, 24). The transcriptional alterations in macrophages

driven by PNP inhibitors, resulting from an accumulation of the

endogenous TLR7 ligand guanosine, are distinct from those elicited

by synthetic guanosine-analog TLR7 agonists, such as R848. An

advantage for PNP inhibitors over synthetic agonists for therapeutic

TLR7 agonism is the difference in the duration and magnitude of

cytokine responses elicited by either therapy. While synthetic TLR7
Frontiers in Oncology 09
agonists trigger an acute, transient high-level of TLR7 activation,

PNP inhibitors may induce a lower level of activation but a long-

lived response resulting from the sustained systemic accumulation

of the purine nucleoside TLR7 ligands. Targeting the PNP-regulated

immune checkpoint in patients may enhance anti-tumor immune

responses or vaccine-driven humoral and T cell responses.
6.2 Nucleoside salvage kinase inhibition

The development of selective, potent, and orally bioavailable dCK

inhibitors was guided by structural analysis and preclinical imaging

studies that leveraged dCK-specific PET probes (115–119). The dCK

inhibitor DI-87 (TRE-515) was developed to eradicate pathogenic cell

types that rely on dCK activity (119). dCK inhibitors are well-tolerated

in preclinical models and have minimal effects on normal cells. The

first-in-class dCK inhibitor TRE-515 is currently under clinical

investigation for the treatment of solid tumors (NCT05055609).

dCK inhibition is a promising anti-cancer treatment strategy, as

tumor cells exhibit an increased demand for pyrimidine nucleotide

synthesis to fuel DNA replication and repair. dCK inhibitors trigger

replication stress alongside lethal DNA damage in tumor cells, and

improve survival in mouse models of acute lymphoblastic leukemia

(ALL) when administered alongside inhibitors of de novo dCTP

synthesis, such as thymidine or triapine (117, 120). As a mono-

therapy, dCK inhibitors may be most effective for treating specific

tumors that exhibit a diminished capacity for de novo pyrimidine
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nucleotide synthesis resulting from transcriptional suppression,

mutational inactivation, or nutrient scarcity (119).

Based on their strong safety profile and unique mechanism of

action, dCK inhibitors are a promising companion for established

treatments that induce DNA damage or restrict de novo pathway

activity in tumor cells. dCK mediates radiation resistance by

supplying the pyrimidine dNTP precursors needed for DNA

repair (121). dCK inhibitors also have potent anti-cancer effects

against cells deficient for the tumor suppressor gene BRCA2 (122).

Therefore, dCK inhibitors are potentially a high-priority

companion therapy for PARP inhibitors for this genetically-

defined cancer type.

Preclinical observations of altered immune phenotypes in dCK

knockout mice prompted the testing of a dCK inhibitor for treating

autoimmune diseases. In this setting, dCK inhibitors may block a

selective requirement of disease-driving lymphocyte populations on

enhanced dCK activity while sparing normal cells that utilize the de

novo pathway to satisfy their dNTP requirements. dCK inhibitors

have demonstrated the potential to mitigate the manifestations of

multiple sclerosis in mouse models, and dCK-specific PET probe

accumulation has been proposed as a potential non-invasive

biomarker for these inhibitors in patients (37, 123, 184, 185).

Based on promising preclinical data, dCK inhibitors are

progressing toward clinical development to curtail aberrant

immune activation.
6.3 Nucleoside transport inhibition

Nucleoside transport across the plasma membrane is a critical

step for nucleotide synthesis via salvage pathways and controlling

the nucleoside levels in the extracellular environment. ENT

inhibition is currently under evaluation as an approach to limit

immunosuppressive adenosine signaling in tumors (81). Targeting

ENT1 may enhance T cell-mediated tumor cell killing by (i)

limiting the release of adenosine by tumor cells to prevent

adenosine receptor signaling, and (ii) blocking the anti-

proliferative effects resulting from adenosine uptake in immune

cells. FDA-approved dipyridamole inhibits ENT1, effectively

preventing adenosine uptake, particularly across inflammatory

states with excessive adenosine production (124). The immune-

stimulatory and anti-cancer effects of nucleoside transporter

inhibition are also linked to the protection of tumor-infiltrating

lymphocytes by preventing the pyrimidine de novo synthesis

pathway defect triggered by excessive adenosine salvage (91).

Dipyridamole has cellular targets beyond ENT1. Therefore, its

clinical utility in cancer immunotherapy is limited. NBMPR is a

potent ENT1 inhibitor but has not been used directly as an anti-

cancer therapeutic (127). The crystal structures of ENT1 in complex

with two established inhibitors of adenosine re-uptake, NBMPR

and Dilazep, have been solved (128), and this information may

guide the development of new ENT inhibitors with improved target

engagement and specificity that are suitable for clinical use.

Nucleoside transport inhibitors may have anti-cancer effects when

applied as a mono-therapy (125) and can potentially prevent
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resistance to DNA-damaging chemotherapeutics by limiting the

synthesis of nucleotides via the salvage pathway that may support

DNA repair (126).
6.4 TYMP inhibition

The link between MNGIE and altered TYMP activity prompted

an investigation into the mechanisms linking thymidine

metabolism to mitochondrial function in other contexts, such as

cancer. TYMP up-regulation is associated with pro-tumor functions

such as cancer cell proliferation, metabolic alterations, and

increased angiogenesis (129). Many cancers utilize TYMP-

mediated pathways to form 2-deoxyribose that can fuel

biosynthetic processes (129). Therefore, blocking TYMP

represents a potential anti-cancer treatment strategy. The TYMP

inhibitor tipiracil hydrochloride (TPI) restrains basement

membrane incursion to prevent metastasis and trigger apoptosis

(130). In addition to their role in inhibiting pyrimidine salvage,

TYMP inhibitors may have utility for restraining the production of

the TLR8 ligand deoxyuridine from thymidine to limit uncontrolled

immune responses.
6.5 MTAP inhibition

5’-methylthioadenosine (MTA) phosphorylase (MTAP) is an

enzyme with a role in the metabolism of polyamine as well as the

salvage pathway for the synthesis of adenine and methionine (131).

MTAP degrades MTA into S-adenosyl-L-methionine (SAM) (132).

The deleted form of the MTAP gene occurs in approximately 15%

of cancers and has been linked to immune evasion (133, 134).

MTDIA (Methylthio-DADMe-Immucillin-A) is an MTAP

inhibitory molecule (133). In mouse models of lung and

colorectal cancer, MTDIA therapy exhibited considerable anti-

tumor effects, extending survival and reducing tumor growth

(132, 135, 136). Unlike many other therapies, there is little high-

dosage toxicity with MTDIA treatment, indicating that this therapy

is suitable for extended use (132). When MTDIA is not

administered, MTAP metabolizes MTA into adenosine and 5-

methylthioribose-1-phosphate (MTR-1-P), allowing for cancer

cell proliferation. When MTDIA is administered and MTAP is

inhibited, PRMT5-mediated histone methylation and intron

splicing are competitively decreased, resulting in the restraint of

cancer growth (132).
6.6 DHODH inhibition

The increased requirement of activated lymphocytes on

nucleotide synthesis has been leveraged therapeutically, as the

inhibition of de novo pyrimidine nucleotide synthesis is an

established treatment strategy for the management of autoimmune

disorders (137). Inhibition of de novo pyrimidine synthesis using

dihydroorotate dehydrogenase (DHODH) inhibitors is an FDA-
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approved approach to combat multiple sclerosis and rheumatoid

arthritis (138). The DHODH inhibitor Leflunomide was approved in

1998 for treating rheumatoid arthritis. This was followed by the

approval of Teriflunomide for multiple sclerosis in 2012. In these

autoimmune disorders, pyrimidine synthesis-targeting drugs are

administered to prevent the aberrant proliferation of immune cells

that drive the autoimmune manifestations (139).

There is potential for DHODH inhibitors in cancer treatment,

as DHODH has a central role in sustaining cancer cell proliferation

and regulating anti-cancer immune activity. DHODH inhibition

using small molecule drugs is effective for the treatment of

preclinical cancer models such as small cell lung cancer (140),

MYC-amplified medulloblastoma (141), and IDH1 mutant glioma

(142). In addition to promoting nucleotide synthesis, DHODH

activity strengthens cancer cells by providing defense against

ferroptosis (143). DHODH inhibitors also reprogram myeloid

differentiation, and this effect may be relevant for treating

myeloid leukemias (137).

In mouse models, DHODH inhibition enhances the efficacy of

immune checkpoint blockade using anti-CTLA-4 with anti-PD-1

antibodies by up-regulating the expression of antigen presentation

pathway genes in cancer cells (144). The modulation of pyrimidine

nucleotide synthesis using DHODH inhibitors also impacts T cells

directly and has been shown to tune the developmental trajectory of

immunization-elicited T cells elicited from predominantly short-

lived effectors to a memory phenotype (145). The impact of

nucleoside transport or salvage pathway inhibition on this process

has yet to be defined.
6.7 Modified nucleoside therapies

While the structural basis for the sensing of guanosine by TLR7

has only recently been described, the immuno-stimulatory effect of

small molecule guanosine analogs has been known for decades (146,

147). Guanosine analogs have immuno-stimulatory properties via

the activation of TLR7, and guanosine-analog TLR7 agonists have

been evaluated as a form of cancer immunotherapy (147). TLR7

activation by synthetic guanosine analogs bypasses the requirement

for TLR7 binding to ssRNA. Guanosine derivatives, such as

Loxoribine, have been developed as therapeutic agents to activate

TLR7. This class of agonists initiate intracellular signaling cascade

involving proteins such as p50 and p65, which drive the expression

of pro-inflammatory cytokines (148, 149).
7 Lost in translation: differences
between mouse and human
metabolism is a significant obstacle in
the preclinical study of the immune-
regulatory functions of nucleosides

The disparities between mouse and human nucleoside

metabolism limit the translational impact of the promising results
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obtained from experiments that use mouse models (150). These

significant differences may produce confounding results and hinder

the translation of new therapeutics. For example, pyrimidine

deoxyribonucleoside concentrations are measured at levels that

are orders of magnitude higher in rodent plasma than in humans

(2, 151, 152). The variation in the systemic levels of nucleosides

across species is related to differences in the expression and activity

of enzymes involved in nucleoside breakdown. Distinct diet and

behavioral patterns may also contribute to these differences.

The discrepancy in the expression and activity of nucleoside

catabolism-related genes across species is a central contributor to

the differences in the measured levels of systemic nucleosides. Mice

are deficient for the enzyme ADA2 (encoded by the gene CECR1),

which catalyzes the conversion of (deoxy)adenosine to (deoxy)

inosine and has a ~100-fold lower affinity for free adenosine

nucleosides than ADA1. ADA2 is broadly expressed in human

cell types and is reported to function within endolysosomes to

regulate TLR9 signaling with DNA as its primary substrate (153,

154). This cross-species metabolic incongruence complicates the

extension of findings in mouse models regarding the links between

adenosine deamination and immune activation in the human

setting. The disconnect between human and mouse models is also

highlighted by research involving the adenosine-generating enzyme

CD73. CD73 deficiency in humans is associated with calcification of

small joints, vascular calcification, and arteriomegaly; in contrast,

CD73-deficient mice do not exhibit an apparent phenotype (155).

Studies of the bio-distribution of deoxyribonucleoside-analog PET

probes across mice, dogs, non-human primates, and humans reinforce

the differences in nucleoside metabolism across species. The thymidine

analog PET probe [18F]FLT exhibits no specific tissue accumulation

pattern in rodent models (156, 157). However, in humans, this probe

accumulates in tumors and secondary lymphoid tissues characterized

by high levels of cell proliferation and TK1 expression. One factor

underlying this difference is differential systemic levels of plasma

thymidine concentrations across mice and humans (2). Both

thymidine and [18F]FLT require transport by plasma membrane

transporters and phosphorylation by TK1 for their intracellular

trapping. Thymidine competes with [18F]FLT for phosphorylation by

TK1 as the fluorine substitution significantly decreases its affinity for

TK1 (158, 159). One explanation for the difference in thymidine

metabolism between mice and humans is the differential expression

or activity of the enzyme responsible for thymidine breakdown, TYMP.

Differences in thymidine metabolism between mice and

humans complicate the application of mice for MNGIE studies

and result in diverging immune responses following TYMP

inhibition (152). This discrepancy is due to several factors,

including low TYMP levels in murine blood compared to

humans, altered nucleoside levels in plasma, and the

complementary role of uridine phosphorylase to TYMP in

catabolizing dT and dU, providing a biochemical route to degrade

these deoxyribonucleosides (152). In mice engineered to be

deficient in uridine phosphorylase and TYMP, there is 1/10th the

level of dU and dT increase compared to humans (160). This

correlates with an incomplete pallet of symptoms in mice, which

often lack the hallmark gastrointestinal and muscular
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manifestations (160). Furthermore, a heightened pyrimidine pool in

mice could make specific cancer treatments appear more effective,

as depletion of pyrimidines would result in a more drastic decrease

in murine models than in humans. Similarly, while mice with PNP

deficiency recapitulate the T cell deficiency observed in humans

lacking PNP, mice experience a less severe phenotype, often lacking

neurological symptoms (10, 161).

A similar challenge was encountered in translating the

deoxycytidine-analog PET probes to monitor dCK activity non-

invasively in vivo. While the first-generation dCK-specific PET

probe [18F]FAC effectively visualized cell proliferation in

lymphoid tissues in mice, it did not exhibit a specific uptake

pattern in humans (2, 162). This species-specific tissue

accumulation pattern of the dCK-specific PET probes was traced

to the differential activity of CDA, the enzyme responsible for

deoxycytidine catabolism, across mice and humans (163). Mice

exhibit lower CDA activity, which may explain their higher plasma

concentrations of pyrimidine nucleosides. This difference could

account for variations in pyrimidine analog drug breakdown, as

the slower breakdown in rodents is likely due to less active CDA

(164). In addition to the natural pyrimidine deoxyribonucleosides,

[18F]FAC is susceptible to CDA-mediated catabolism. This finding

prompted the development of a next-generation dCK-specific PET

probe resistant to CDA. [18F]CFA is a purine nucleoside analog that

requires phosphorylation by dCK for its intracellular trapping but is

not a substrate for CDA (2). [18F]CFA has shown promise for the

noninvasive measurement of dCK activity in humans using PET

imaging (2, 165).

Significant disparities also exist between mouse and human

immune systems (150). While there are distinct patterns of

expression or activity of genes within nucleoside metabolism

between mice and humans, PRR-family nucleoside sensors also

exhibit species-specific expression patterns. In particular, the

uridine nucleoside sensor TLR8 is expressed at low levels in

murine cells compared to human cells. This difference may

underly the discrepancy in the manifestations of ENT3 deficiency

across mice and humans, with humans presenting with auto-

inflammation that is not fully recapitulated in SLC29A3 knockout

mice (101). Transgenic mice have been developed to recapitulate

the expression of TLR8 observed in humans (166). Nevertheless,

this difference in PRR expression exemplifies the different biological

environments of the two species that need to be considered when

performing experiments in preclinical models.
8 Challenges and opportunities in the
development of model systems to
study the links between the human
immune response and nucleoside
metabolism

Improved preclinical tissue culture systems and mouse models

that recapitulate both human nucleoside metabolism and immune

responses are needed to facilitate the translation of new
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metabolism-targeting therapies. Promising advances have been

made in engineering new mouse models for human immune

responses. Interestingly, these models also recapitulate some

aspects of human nucleoside metabolism, and may enable the

evaluation of the effects of nucleoside metabolism-targeting

therapies on immune system function. One approach for this is

“humanized mouse models,” a system where mice are engineered

with human tissues to recapitulate components of the human

immune system, which is useful to study human tumor

conditions and therapy responses (167). These models have been

applied to evaluate antibodies, adoptive cell therapies, oncolytic

viruses, and small molecule inhibitors (167). Immunodeficient mice

are often the hosts for the immune engraftments, and there have

been steady improvements to mouse strains and techniques over the

last 50 years, allowing for decreased rejection of human cells upon

transplantation (168). Multiple murine humanization techniques

have been developed, including Hu-PBL, Hu-SRC, and Hu-BLT.

Hu-PBL is a relatively straightforward humanization method

that involves the transplantation of human peripheral blood

mononuclear cells (PBMC) into immunocompromised murine

hosts (168). This engineering technique results in a human

immune system mainly composed of T cells, albeit with

diminished human cytokine levels and weak propagation of B

and NK cells (168). This model is, therefore, best suited to test

therapeutics and systems focusing on T cell behavior. A limitation

of this model is that it often results in graft-versus-host disease

(GVHD), limiting the scope and potential time frame for

experiments (167).

The Hu-SRC technique more accurately captures the spectrum

of human immune cell types (168). It involves the transfer of CD34+

hematopoietic stem cells (HSCs), which allows for the development

of more complex innate and adaptive immune systems. Compared

to Hu-PBL, it is a more stable model, with fewer instances of

rejection (168). However, it may involve deficiencies of innate cell

lineages and reduced B cell functionality (167).

Hu-BLT (bone marrow, liver, thymus) is a complex and more

complete immune modeling system. It combines the Hu-SRC

protocol of CD34+ hematopoietic stem and progenitor cell

(HSPC) injection with particles of the human fetal thymus and

fetal liver into immunodeficient mice (168, 169). This results in the

growth of a human thymus analog within the mouse (167).

However, there is still susceptibility to GVHD and rejection

(168). Although certain strains of mice appear to resist rejection,

obtaining sufficient human tissue for implantation complicates the

engineering of this model (167). Notably, BLT mice recapitulate

some aspects of human purine and pyrimidine metabolism,

including lower systemic pyrimidine levels and enhanced

pyrimidine catabolism (10, 169). BLT humanized mice, or next-

generation humanized mice, may provide a powerful foundation for

the investigation of new therapies that target nucleoside metabolism

for immune modulation.

An alternative system for monitoring the interactions between

human nucleoside metabolism and immune responses is the ex vivo

culture of human tissue. These models involve the culture of

primary human cells or explanted human donor material to
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recapitulate the heterotypic cellular composition of tissues,

including tumors. These ex vivo models are an emerging platform

to evaluate immune-based therapies and may be suitable for

studying the immuno-modulatory effects of nucleoside

metabolism-targeting therapies.

Patient-derived organoids are an ex vivo method for studying

individual tumor responses to intervention. This method involves

the collection of tissue from a patient, from which cancer cells are

isolated and cultured to form 3D organoid structures (170).

Organoids have been successfully formed from various tumor

types (170). These models can potentially test whether a patient

would respond to specific therapy (170).

Precision-cut tumor slices (PCTS) offer an experimental platform

to model the intricate in vivo tumor environment in cell culture

conditions (171). This system involves the culture of thinly sliced

human or mouse tissue sections under specialized culture conditions.

PCTS maintain integrity for 3–12 days, depending on culture

methods and cancer type (171, 172). In contrast to organoid

models, PCTS more completely encompass the heterotypic cellular

composition of tissues. Several challenges with this model must be

considered, including ischemia, hypoxia, loss of integrity during

slicing, and the preservation of slices using cell culture methods

(173). Multiple reports also suggest significant transcriptional

changes in the hours after slices are prepared, and down-regulation

cytokine production has been observed (173, 174). These models offer

opportunities for developing personalized therapeutic approaches for

cancer, as immunotherapies can be specified to the patient after

tumor testing (173). The PCTS model has been applied to model

immunosuppressive mechanisms operating in the tumor

microenvironment and monitor the effects of immune-based anti-

cancer therapies (175–178). PCTS models are a promising platform

for future investigations of the immune-modifying properties of

nucleoside metabolism-targeting therapies.
9 Conclusions

Over the past several years, substantial progress has been made

in understanding the mechanisms underlying the immune-

modifying effects of purine and pyrimidine nucleosides. This

advancement was possible due to the commitment of scientists

and physicians toward the development of new tools to measure

and modify nucleoside metabolism in humans. However, the full

therapeutic potential of nucleoside metabolism-targeting

interventions for patient care has yet to be fully realized. Results
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from ongoing clinical trials evaluating the modification of

adenosine signaling for cancer immunotherapy will undoubtedly

provide new insight that may be applied in future clinical

investigations. The development of new preclinical models that

recapitulate human nucleoside metabolism is a central obstacle in

translating new mechanistic insights from laboratory experiments

into therapies. These models may provide insights into the

therapeutic contexts and disease types where specific metabolism-

targeting therapies will be most effective. New mouse models that

possess a humanized nucleoside metabolism and immune system

hold immense promise as a platform for these studies. Ex vivo

cultures of primary human tissues may also serve as a valuable and

relevant platform for future investigations of the intersections

between nucleoside metabolism and immune system function.
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