
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Vahid Rashedi,
University of Social Welfare and Rehabilitation
Sciences, Iran

REVIEWED BY

Theodore Holford,
Yale University, United States
Mohammadjavad Hosseinabadi-farahani,
University of Social Welfare and Rehabilitation
Sciences, Iran
Mahmood Bahramizadeh,
University of Social Welfare and Rehabilitation
Sciences, Iran

*CORRESPONDENCE

Ana F. Best

ana.best@nih.gov

RECEIVED 22 August 2024
ACCEPTED 21 February 2025

PUBLISHED 28 March 2025

CITATION

Best AF, Filho AM and Rosenberg PS (2025)
Forecasting cancer incidence and
prevalence using age–period–cohort
and survivorship models: a practical,
flexible, and interpretable framework.
Front. Oncol. 15:1484896.
doi: 10.3389/fonc.2025.1484896

COPYRIGHT

© 2025 Best, Filho and Rosenberg. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 28 March 2025

DOI 10.3389/fonc.2025.1484896
Forecasting cancer incidence
and prevalence using age–
period–cohort and survivorship
models: a practical, flexible, and
interpretable framework
Ana F. Best1*, Adalberto M. Filho2 and Philip S. Rosenberg3
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Age–period–cohort (APC)model outputs have been used extensively to produce

forecasts of cancer incidence, identify emerging public health concerns, and

quantify the impact of potential interventions. However, these models have not

been extended to forecast cancer prevalence—the number of cancer survivors

per capita. Recent advancements in cancer screening and therapeutics have

substantially improved survival for many malignancies, leading to an increased

need to gauge the future health resource needs of cancer survivors. Concurrent

shifts in cancer incidence trends require new methods to identify the separate

and joint impacts of incidence and survival changes. In this paper, we formalize

methods for forecasting incidence and introduce novel forecasting methods for

prevalence that are highly flexible and interpretable. Our approach has three

steps. First, we model cancer incidence trends by age, period, and birth cohort

using the New APC Model. Second, we model all-cause mortality by age at

diagnosis and year of diagnosis using flexible regression splines. Third, we

estimate cancer prevalence as the convolution of cancer incidence and all-

cause mortality, accounting for the need for backward projection of incidence to

estimate prevalence during early periods. We illustrate our methods using data

on invasive female breast cancer, stratified by estrogen receptor status, based on

1992–2019 SEER data. Our analysis illustrates how to calculate the relative

impact of period vs. cohort effects on future incidence trends, the

contributions of incidence trends and survival trends on future prevalence

trends, and total case count estimation.
KEYWORDS
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Introduction

Age–period–cohort (APC) models provide an essential tool for

modeling cancer incidence rates in populations (1). Age effects in

the APC model describe the underlying age-associated cancer

natural history; period effects quantify the impact of factors that

affect all age groups simultaneously, e.g., changes in diagnostic

practice; and cohort effects characterize net changes in incidence

from one birth year to the next.

It is widely recognized that outputs from APCmodels can produce

forecasts of cancer incidence (2). The underlying construction is

especially straightforward using the Fundamental Decomposition

Principle of the New APC Model. In essence, this approach makes

predictions under the assumptions that the natural history stays the

same; the birth cohort effects for observed cohorts hold steady; and

plausible changes in incidence attributable to future periods and

younger birth cohorts can be obtained by extrapolation from recent

period and cohort trajectories, respectively. Such cancer incidence

forecasts have identified emerging public health problems and

provide a means to quantify the potential impact of future

interventions (3–6). Other incidence forecasting methods include

applying fixed incidence rates to population projections (7);

extrapolating delay-adjusted average annual percentage change (8);

Bayesian APC analyses (9); spatiotemporal models considering

variation in sociodemographic, lifestyle, and health-related factors

(10); and machine learning algorithms (11).

While APC models for incidence projection are established, we

introduce novel methods to rigorously forecast cancer prevalence—

the number of cancer survivors per capita over time by age group—

under the APC structure. In recent decades, many types of

malignancies have seen substantial improvements in therapeutic

outcomes due to advances in treatment (e.g., targeted therapy and

immunotherapy) and early detection via screening is well accepted

for neoplasms of the colon, rectum, cervix uterus, and breast (12).

In turn, this has increased the number of people in the population

whose cancers have been cured, are in remission, or are manageable

as long-term chronic diseases. Other work has established methods

for estimation and projection of prevalence using the Mortality

Incident Approach Model, which uses relative overall survival and a

Weibull mixture cure model for survival extrapolation, and thus

assumes constant survival rates during the projected period (13, 14).

Other researchers have used linear regression models (15) or stock-

and-flow models and observed prevalence proportions (16). It is of

particular interest to establish APC-based prevalence forecasting

methods due to the flexibility and interpretability of APC models

and their widespread use in cancer surveillance research.

Forecasting cancer prevalence makes it possible to estimate the

size of the cancer survivor community in a population over time

and gauge their current and future healthcare needs (17). Indeed,

cancer survivors typically require follow-up imaging, physician

visits, and medications, and they may be affected by prolonged or

delayed side effects of their cancer therapy, including second

cancers and organ damage. Prevalence forecasts allow for

anticipation of such needs up front rather than as a post-

hoc reaction.
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APC prevalence forecasts also extrapolate and incorporate

temporal trends for survival, allowing for a much more

comprehensive evaluation of prevalence trends than existing

methods; under our novel model, it is possible to disentangle

“conflicting” signals between incidence and prevalence rates in

the population. In the absence of advances in treatment, cancer

incidence and prevalence rates move in parallel: Increases in

prevalence are a consequence of increases in incidence; both of

these patterns indicate an adverse trend in the population. However,

advances in treatment decouple the trajectory of prevalence from

incidence. Moving forward, we anticipate many scenarios where

incidence rates are declining, yet survival rates are increasing so

rapidly that prevalence rates are increasing. Such scenarios

represent simultaneous progress on two fronts, yet identifying

these “double positives” will be difficult without suitable

modeling tools.

Finally, counterfactual analysis within the framework of

prevalence forecasting has several potential applications, including

the identification of disparities in cancer care. In this report, we

present a unified framework for modeling cancer incidence and

prevalence by combining APC models for cancer incidence with

flexible models for survival after cancer. Our frequentist approach is

computationally light, provides appealing and easy-to-interpret

outputs, and permits extensive scenario analyses. We will

illustrate our new approach by forecasting female breast cancer

prevalence by estrogen receptor (ER) status.
Data and methods

Invasive female breast cancer incidence by
ER status

ER-positive (ER+) breast cancers are characterized by the

presence of ERs in the tumor cells; tumors are typically

characterized as ER+ if at least 1% of cells are positive via

immunohistochemical (IHC) assay and comprised roughly 80%

of breast cancers diagnosed during 2015–2019 (18).

In addition to traditional chemotherapy regimens, ER+ tumors

may be treated with targeted endocrine therapies such as aromatase

inhibitors (e.g., letrozole), selective ER modulators (e.g., tamoxifen),

and selective ER degraders (e.g., fulvestrant).

Until relatively recently, there was no targeted therapy for ER−

tumors (chemotherapy and radiation were the standard of care).

Approximately 27% (19) of hormone-receptor-negative breast

cancers overexpress ERBB2; such tumors are denoted HER2+ and

may be targeted with several therapies. The first of these was the

monoclonal antibody trastuzumab, approved by the Food and Drug

Administration (FDA) for treatment of metastatic HER2+ breast

cancer in 1998 (20); trastuzumab plus chemotherapy was approved

for adjuvant therapy of nonmetastatic HER2+ tumors in 2006 (21).

Subsequent research has refined the standard of care and

introduced new targeted therapies including additional

monoclonal antibodies (e.g., pertuzumab), tyrosine kinase

inhibitors (e.g., lapatinib), and antibody–drug conjugates (e.g.,
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ado-trastuzumab) (22). Treatment for triple-negative breast cancer

continues to rely on cytotoxic chemotherapy, although early-stage

tumors now receive neoadjuvant chemotherapy (23).

Interestingly, ER+ tumors have been increasing in incidence

over time, whereas ER− tumors have been decreasing. Therefore,

beyond a certain point, increases in the prevalence of ER+ tumors

might reflect advances in therapy, i.e., good news. Conversely, at

some point, any slowing of the rate of decrease in the prevalence of

ER− tumors might also represent good news, as targeted therapies

extend lives.

Given the high incidence of breast cancer in the US population,

divergent incidence trends in ER+ versus ER− tumors, advances in

the standards of care for both tumor types, and concomitant risks of

long-term side effects of therapy, this disease remains of particular

interest for forecasting both incidence and prevalence.
Incidence and survival data

Our analysis was based on two sets of raw data for each tumor

type: a cancer incidence Lexis diagram formatted for APC analysis

(24) and a matching case listing of individual patients’ survival data

(follow-up time and status at the end of follow-up) including age at

diagnosis and year of diagnosis.

In our analysis, we obtained both types of data from the

Surveillance, Epidemiology, and End Results (SEER) Program’s

12-Registry Database. Data were obtained for female patients with

invasive breast cancer diagnosed between the ages of 30 and 84

(inclusive) and between 1992 and 2019; 2020 was excluded from

both data sets due to the effects of the COVID-19 pandemic. Cases

and rates were stratified by ER status due to the major differences in

patterns of incidence, etiology, prognosis, and clinical management

between these subtypes (25). Incidence rates were obtained by single

year of age and year at diagnosis; survival case records were

obtained by 5-year age group and exact year at diagnosis. From

the incidence data, 2,087 (0.3%) cases with unavailable ER status

and 60,031 (9.4%) cases with borderline/unknown ER status were

excluded, with 578,827 (90.3%) incident cases remaining. From the

survival data, 1,697 (0.3%) cases with unavailable ER status and

52,481 (9.4%) with borderline/unknown ER status were excluded,

with 501,770 (90.3%) remaining. Lexis diagrams and a summary of

overall survival are provided in Figures 1A, B, respectively.

Downstream forecasting of incident and prevalent case counts

is possible by multiplying the estimated and forecast rates by

estimates and projections for the corresponding underlying

population. For forecasting using SEER, the US Census

intercensal population estimates and forecasts are suitable for

these purposes (26).

We will use the following notation. For incidence, we have

matrices Y   =  ½Ypa,   p = p(1),  …,   p(P);   a = a(1),  …,   a(A)� and

O = ½Opa,   p = p(1),…, p(P);   a = a(1),…,   a(A)�, which contain,

respectively, the number of cancer diagnoses and corresponding

person-years in period p and for age group a, for each of P periods

and A age groups; the bin widths for age and period must be equal

(common value D ). Then, birth cohorts form the diagonals,
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indexed by c = p − a, in order from oldest to youngest. The

observed incidence rates are lpa = Ypa=Opa and expected log rates

are rpa = ln(E½Ypa�=Opa). The Lexis diagram is illustrated in

Figure 2, using ages and periods concordant with the breast

cancer example.

For survivorship, starting with the individual patient records, we

tabulate these raw data into two three-dimensional matricesM and D,
where Ma,p,t is the number of persons who were diagnosed with their

malignancy at age a in period p and who have survived to period p + t,

and Da,p,t is the corresponding number of persons who died from

any cause in period p + t; for a = a(1),…, a(A), p = p(1),…, p(P), and

t = t(0),…, t(T), where t(0) means an individual died in the same

period as they were diagnosed and t(T) is the maximum survival time

considered to be part of the prevalent cohort (Figure 3). We count all-

cause rather than cause-specific survival: patients who die are removed

from the prevalent cohort whether or not their deaths are

cancer-related.

With the data thus aggregated, we employ the New APC

Model to estimate expected incidence rates and a discrete-time

survival model to estimate the corresponding all-cause mortality

rates, as described below. Notably, while the survival data should

span the observed periods, it is not necessary for the size of the age

groups and periods to match each other, or indeed to match those

used for incidence rate forecasting. For example, survival data

with 5-year age groups may be used to estimate prevalence

alongside a rate matrix with single-year intervals for age and

period, or vice versa.
Incidence rate forecasting

Our forecasts rely on the New APC Model, built around a log-

linear relationship between the incidence rate and age, period, and

cohort: rpa = aa +   pp +   gc, with the constraint that c = p − a. This

may be reparametrized in several ways; for our projections, we will

use both the longitudinal age–cohort form:

rca = m + (aL + pL)(a − �a) + (pL +   gL)(c − �c) + ~aa +   ~pc+a + ~gc,
and the cross-sectional age–period form:

rpa = m + (aL − gL)(a − �a) + (pL +   gL)(p − �p) +   ~aa + ~pp + ~gp−a :

In these expressions, m is the grand mean; ~aa,   ~pp, and ~gc are the
“complete” age, period, and cohort deviations, respectively; (aL +

pL) and (aL −   gL) are the longitudinal and cross-sectional age

trends; and (pL + gL) is the net drift. The New APC Model

partitions the complete deviations into orthogonal quadratic and

higher-order terms:

~aa =   qaq
2
a(a) +   �aa;

  ~pp =   qpq
2
p(p) +   �pp;

  ~gc =   qcq
2
c (c) +   �gc :

To obtain parameter estimates from this model, we further

assume that the rates follow a Poisson or Quasi-Poisson
frontiersin.org
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distribution, and use weighted least squares or Poisson regression to

estimate the parameters.

The Fundamental Decomposition Principle of the New APC

Model allows us to rearrange the model parameters in several ways

to express the absolute rates R(a, p) as a product of three estimable

functions (EFs), one function each for age, period, and cohort,

respectively. These decompositions use the following EFs: defining

the incidence rate given period or cohort as R(a j�); the longitudinal

and cross-sectional age curves at a selected reference cohort/period: L

ongAge(ajc0) = exp(m + (aL + pL)(a − �a) +   ~aa) and CrossAge(ajp0)
= exp(m + (aL − gL)(a − �a) +   ~aa); and the cohort/period rate–

ratio curves CRR(cjc0) = exp((pL + gL)(c − �c) +   ~gc) and PRR(cjc0) =
exp ((pL + gL)(p − �p) +   ~pp). In what follows, we will use the following

decompositions:

R(ajc) = LongAge(ajc0)� CRR(cjc0)� exp (qpq
2
p(p) +   �pp),
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R(ajp) = CrossAge(ajp0)� PRR(pjp0)� exp (qcq
2
c (c) +   �gc)

that provide two overall projection forms with numerous

options. Under the age–cohort form, our forecasts are defined by

the longitudinal age curve, the cohort rate ratio, and potentially the

global curvature for period. The age–period form uses the cross-

sectional age curve, period rate ratio, and global curvature

for cohort.

Projections are built from these equations as follows. Under

each form, the estimated age curve is assumed to hold during

projected periods and is used without alteration. For age–cohort

forecasting, forecasted cells corresponding to partially observed

birth cohorts incorporate the estimated rate ratio for that cohort,

and cells for unobserved birth cohorts use a linear extrapolation of a

JoinPoint fit to the CRR values (Figure 4). Age–period forecasts use

a linear extrapolation of a JoinPoint fit to the PRR for all forecasted
FIGURE 1

Lexis diagrams (A) and overall survival (B) for invasive female breast cancer by ER status; Ages 35-84, 1992-2019.
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cells. We may also choose to include components reflecting

observed trends in the third variable, as the exponentiated slope

of qpq2p(p)or qcq2c (c) at the last period or cohort, respectively

(partially observed cohorts under the age–period form are

forecasted using their fitted deviations). This provides four basic

forecasting models for projected cohorts c* and periods

p* (Figure 5).

Variances are calculated using the estimated variances from the

APC and JoinPoint regression models. Additionally, this method

may be used to forecast periods in both the future and the past; the

latter will be required for prevalence estimation. The four models

(or any subset thereof) may be combined into a single average of

models using the mean of the estimates for each projected cell;

variances may be estimated as the mean of the variances for each

cell, or confidence intervals (CIs) estimated as the combined range

of the modeled CIs. In addition, the fitted values and their

covariances can be used to make plots that aggregate over any age

groups and/or calendar periods of interest.
Frontiers in Oncology 05
Figure 6 illustrates our two decompositions and extrapolations

for breast cancer by ER status. The top panels correspond to the

age–cohort form and the bottom panels correspond to the age–

period form. Estimated rates have been aggregated for ages 35–49

and 50–84 to correspond, respectively, to premenopausal women

who are not routinely screened for breast cancer and

postmenopausal women who undergo mammography screening.

Incidence forecasts are obtained by multiplying the age–

incidence curve by the fitted or forecast cohort and/or period

components as appropriate for the forecasted cell. Figure 7

illustrates four forecasts based on different extrapolations, as well

as the average of models, by ER status and age. Rates and variances

were summarized within age groups using a linear operator (1). The

two age–period model curves for 2020–2030 closely coincide as the

majority of birth cohorts during this period contributed to the

observed data.

Examining the 2020–2030 forecasts, the extrapolated quadratic

period effects reduce estimated incidence. Without this component,

forecasts are predominantly influenced by the observed changes in

CRR; ER+ rises more steeply and ER− falls less steeply for both age

groups. The period–JoinPoint models are driven by more moderate

changes in PRR; the extrapolated cohort effects are applied only to

the youngest cohorts in the projection, which consequently are of

young age and have low absolute estimated incidence. The averaged

forecast, with a CI covering the span of the models, provides a

reasonable single forecast and summary of possible future incidence

rates. The forecasts for 1982–1992 notably represent a projection of
FIGURE 2

Illustration of Lexis Diagram.
FIGURE 3

Illustration of Survivorship Matrix.
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invasive breast cancer rates by ER status to periods during which

this variable was not captured by the SEER registries, potentially

allowing imputation of this variable for earlier SEER data.
Prevalence rate forecasting

Estimation and forecasting of prevalence are of particular

interest as this can be a difficult quantity to measure directly;

cancer registries typically focus on incident cases, as these are

substantially easier to capture. Prevalence by its nature requires a

somewhat retrospective outlook—the cohort of cancer survivors

each year is composed of not only people diagnosed that year but

also those diagnosed in previous years who survived. Individuals

with malignancies that require ongoing management, such as

metastatic disease or those with a long period of adjuvant

therapy, may be identifiable as active patients at cancer treatment

centers. However, individuals who have been cured of their cancer
Frontiers in Oncology 06
may no longer routinely receive treatment at cancer centers but are

still relevant to prevalent-disease cohorts. Although these

individuals may not be in active treatment for their cancer, they

may nonetheless be experiencing long-term side effects from their

malignancy or its treatment and may also be in need of tailored

surveillance due to the risk of developing secondary malignancies.

Within registry data, the cohort of survivors also potentially

includes those diagnosed prior to the start of registration, risking

underestimation if not accounted for.

We directly use this retrospective outlook on prevalence to

calculate our estimates and forecasts, based on the fundamental

principle that prevalence is a convolution of incidence and survival.

If we are interested in the cohort of cancer survivors at age a(a) in

year p(p), this is composed of those diagnosed at age a in year p,

those diagnosed at age a(a − 1) in year p(p − 1) who survived (at

least) D years, those diagnosed at age a(a − 2) in year p(p − 2) who

survived 2D years, and so forth (Figure 8A). This immediately

prompts a “burn-in” problem: prevalence estimates are by default

missing the convolution components from years prior to the first

year of the incidence data (Figure 8B). This provides the

justification for the backwards forecasting of incidence rates

shown in the previous section: if we “forecast” incidence rates

and survival trends into the past, those forecasts may be used to

estimate the missing convolution components and provide

prevalence estimates during the observed period. As a rule of

thumb, if we define our prevalence cohort as containing

individuals who have survived up to t(T) years after their cancer

diagnosis, we must forecast t(T) years into the past to completely

estimate prevalence; the choice of t(T) is an experimental design

consideration depending on the survival distribution and number of

years of available incidence data.

Using the three-dimensional tabulated survival data

represented by M and D, we can use a discrete-time survival

model (the GAM approach) including terms for the baseline

hazard nT (t) of all-cause survival for the malignancy of interest as

well as effects for age ½nA(a)� and period [nP(p)� of diagnosis

(Figure 9):

ln
E½Da,p,t �
Ma,p,t

 !
= na,p,t = nT (t) + nA(a) + nP(p) :

These hazard terms are estimated using piecewise linear splines

for all three components, as these are readily extrapolated:
FIGURE 5

Incidence forecasting model forms.
FIGURE 4

Illustration of birth cohort projection; partially observed birth
cohorts are extended while unobserved birth cohorts must
be forecasted.
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FIGURE 6

Incidence model decomposition for invasive female breast cancer by ER status.
FIGURE 7

Incidence forecasts for breast cancer by age and model. Fitted values and covariances from models for ages 35-84 are used to aggregate estimates
for ages 35 49 and 50-84.
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na,p,t = n +o
kT

i=0
di(t − tT ,i)

+ +o
kA

j=0
yj(a − tA,j)

+ +o
kP

k=0

fk(p − tP,k)
+ :

In the above, ( ⋅ )+ indicates inclusion of only positive

summands, i.e., components where s,   a, or p is higher than the

corresponding t value. The three linear splines are defined on

partitions 0 = tT ,0 <   tT ,1 < … < tT ,kT = T , a(1) = tA,0 <   tA,1 < …

< tA,kA = a(A), and p(1) = tP,0 <   tP,1 < … < tP,kP = p(P), with

hazard contributions d0,…, dkT , y0,…,ykA , and f0,…, fkP .
Among other methods, these splines may be fit using JoinPoint,

which estimates the number and location of the partition knots as

well as the slopes, or B-Splines with fixed knots based on quantiles.

As with incidence rate forecasting, the spline for period is extended

linearly into past periods for “backfilling” prevalence and future

periods for forecasting.

We used SEER case listing survival data for the ages and periods

included in the incidence rate forecast, censored at t(T) = 10 years

post-diagnosis. In these data, age is available only in 5-year groups and

was imputed as the midpoint of each age group for analysis purposes;

extrapolating the fitted splines provides survival trend estimates for all

ages under consideration. Figure 10 illustrates the survival model

estimates and extrapolations by ER status, using both JoinPoint and B-

Splines; the estimates are largely concordant between the two
Frontiers in Oncology 08
estimation methods, except for the B-Spline and JoinPoint hazard

ratios for ER− due to differences in the placement and number of

knots relative to the JoinPoint. This figure shows the trends we would

expect for these malignancy subtypes: overall good survival, with

increasing hazard of death for older age at diagnosis and relatively

steady decreasing hazard of death with more recent year of diagnosis.

We may now formally combine these components; we define a

matrix S   =  ½Spa,   p = p(1),  …,   p(P);   a = a(1),  …,   a(A)� to be

the number of prevalent cases at age a and period p,

corresponding to the previously defined offset O. The prevalence

rates are defined as xpa = Spa=Opa and expected log rates are defined

as wpa = ln(E½Spa�=Opa). E½Spa� can be calculated as:

E½Spa� =   o
t(T)

i=t(0)

E½Ma−i,p−i,i� = o
t(T)

i=t(0)

E½Yp−i,a−i� exp − o
t(i)

j=t(0)

na−i,p−i,j

 !

In practice, as the incidence and prevalence rates share an offset,

this may be simplified to:

E½xpa� = o
t(T)

i=t(0)

E½lp−i,a−i� exp − o
t(i)

j=t(0)

na−i,p−i,j

 !

Due to the multi-step estimation procedure, it is not

straightforward to calculate closed-form variances; therefore, we
FIGURE 8

(A) Illustration of prevalence as convolution of incidence and survival; (B) illustration of incompleteness of early period prevalence estimates
('Burn-In').
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FIGURE 10

Survival model decomposition for invasive female breast cancer by ER status.
FIGURE 9

Illustration of survival model components: age at diagnosis, year of diagnosis, years from diagnosis.
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will use a parametric bootstrap procedure. First, we sample b

matrices of incidence rates from the matrix of Poisson

distributions with rates l. These sampled rate matrices may then

be convolved with the estimated hazard array to obtain b matrices

of sampled prevalence rates. The AP � AP -sized estimated

covariance matrix is then calculated as the sample covariance of

the AP � b matrix of sampled and estimated rates; the A� P

estimated variance matrix is obtained from the diagonal.

Applying this to breast cancer and averaging the results from

the JoinPoint and B-Spline survival models, we obtain the estimated

prevalence rates illustrated in Figure 11; concordant with Figure 10,

the two models produce nearly identical estimates. The

combination of increasing incidence rates and survival

improvements results in increasing prevalence for ER+, while ER

− prevalence is forecast to decline due to decreasing incidence.
Counterfactuals, sensitivity analyses, and
forecast decomposition

A primary strength of our model is its flexibility and allowance

for easy incorporation of sensitivity analyses and other forms of

counterfactuals. The incidence and survival forecasts are each

generated using linear extensions of an observed trend, and can

be directly replaced by another line, either predetermined by the

analyst or derived in light of the observed estimates. For example, it

is possible to evaluate scenarios with 0.5× or 1.5× the estimated rate

of change by applying this multiplicative factor to the estimated

linear extension. The linear extensions of the quadratic components

of the deviations may also be replaced by the full quadratic curve, if

concordant with the observed data.

This flexibility allows us to decompose the forecasts and evaluate

the specific contributions of birth cohort and period trends in
Frontiers in Oncology 10
incidence rates, and period trends in estimated survival, to the final

forecasts. Figure 12A illustrates the extrapolation models used for this

decomposition for breast cancer by ER status: Rate ratios and survival

can be forecast as either a linear extension of the last linear spline

component or a horizontal line extending from the last fitted linear

spline value. Deviations can be forecast as the continuation of the

quadratic fit (not pictured), a linear extension using the slope at the

last period, a horizontal line extending from the quadratic at the last

period, or with no contribution to the forecasts at all.

Based on these possibilities, we have 12 valid incidence

forecasting models that may be categorized into four groups,

those that extrapolate trends for both period and cohort, for

either one, or for neither (Figure 13).

The results from averaging the projections and their variances across

these four sets for ER+ breast cancer are shown in Figure 14A. In this

example, as in other examples where incidence rates are dramatically

lower for young ages than old ones, the forecasts for models with no

trend incorporated are nearly equivalent to those with period or cohort

trends only; although Figure 12A shows strong forecasted cohort effects,

these are only applied to completely unobserved birth cohorts, the oldest

of which is aged only 44 in 2029. Inclusion of period effects in addition to

cohort effect results in a lower overall forecast, driven by the strong

downward quadratic trends in the period deviations. Evaluating the

effect of the survival trend in Figure 14B, replacement of the period trend

for survival by a horizontal extension of the 2019 hazard ratio only

minimally affects forecasts as the estimated rate of change in the HR is

relatively small for both subtypes.
Case counts: burden and survivorship

Forecasted rates may be applied to population estimates to

obtain estimated annual incident case counts (burden) and the
FIGURE 11

Survival rate forecasts for invasive female breast cancer by age and ER status. Fitted values and covariances from models for ages 35-84 are used to
aggregate estimates for ages 35-49 and 50-84.
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number of people living with a diagnosis within the last T years

(survivorship). A natural set of population estimates to combine

with SEER data are those from the United States Census, which

provides decennial exact counts, intercensal estimates, and forecasts

under multiple scenarios of immigration level. The results for ER+

and ER− breast cancer are shown in Figure 15; for both age groups,

while the overall burden and survivorship are both projected to

increase for ER+ disease, ER− count projections are steady.
Discussion

Our new methods for projecting cancer incidence and

prevalence have several advantages, both practical and conceptual.

Perhaps the most important of these is its intermediate level of

complexity. APC forecasting allows for more flexibility and nuance

than simpler models, but does not require additional
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spatiotemporal data sources and is highly interpretable, serving as

a “glass box”model in comparison to complex “black box”machine

learning models. Each component of the forecasts may be viewed

individually as in Figures 6 and 10; Figure 12 illustrates the ability to

evaluate the contributions of each component to the final

forecast directly.

It is straightforward to evaluate counterfactual situations

reflecting the influence of potential interventions or changes in

standard of care on incidence and prevalence. APC forecasting is

not computationally burdensome. Although JoinPoint models for a

large number of birth cohorts can become computationally

intensive, this can be compensated for by placing conservative

bounds on the JoinPoint model parameters (e.g., the maximum

number of knots or periods/cohorts per segment) and by

memorizing fitted JoinPoints to avoid re-fitting them in multi-

faceted analyses of the same incidence rates. Furthermore,

averaging model estimates allows us to produce estimates free of
FIGURE 12

Extrapolation model options for invasive female breast cancer incidence (A) and survival (B).
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strong a priori assumptions or post-hoc decisions regarding which

model components might provide the strongest signals for

forecasting, or whether JoinPoint or B-Spline models might

provide the best fit to the survival data.

Forecasting shows us the future implications of current

patterns. It makes sense to consider forecasts whenever the model

goodness of fit (GOF) is adequate. Importantly, there is one model

in play for incidence but two models determine prevalence. GOF for

incidence can now be assessed using SAGE (1), and the APCmodels

for incidence provide good fit to SEER breast cancer data for both

ER subtypes. GOF for mortality can be assessed using classic tests of

interactions in multiplicative models for cohorts (27). Development

of formal model averaging methods is a potential area for future

research as well.

APC forecasting also has several disadvantages and limitations.

Our incidence models do not account for situations in which the

age–incidence curve (either cross-sectional or longitudinal) changes

shape rather than amplitude with varying periods and/or cohorts.

Lack of fit can now be evaluated using the SAGE method (1, 3).

When lack of fit appears to be substantial, one can fit models and

construct forecasts to reduced sets of periods or ages. However,

reducing the number of periods used for estimation also reduces the

number of periods that may be forecasted reliably, and combining

separate forecasts across age groups does not account for the

overlap in birth cohorts between groups.

Extending the quadratic deviation components provides

additional flexibility for incidence forecasting beyond that allowed

by the JoinPoint fits to the rate ratios alone but may not provide a

reasonable summary or plausible extension of the observed

deviations. This may be evaluated by examining the model

decomposition plots, but any compensation for poor fit would
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then be post hoc. Prevalence forecasting also requires forecasting

incidence rates and survival trends into past unobserved periods,

and a poor-fitting back-forecast may be carried forward to the rest

of the forecast. If this is of particular concern, back-forecasting may

be omitted and the first t(T) periods may be used instead as a

“burn-in” period for which prevalence estimates are incomplete and

not reported.

The biggest limitation of the model is shared by other

forecasting paradigms: it is difficult to quantify the total

uncertainty of the forecasts. Our methods produce variance

estimates and CIs that reflect the uncertainty inherent in the

model, under the assumption that the observed trends hold

during the forecasted periods. However, as the COVID-19

pandemic has illustrated, it is impossible to foresee and account

for all possible future events. Figure 7 illustrates one alternate

quantification method: uncertainty intervals for an average-of-

models forecast may be calculated as the span of the model-

uncertainty CIs of the averaged models. However, this limitation

is primarily addressed in the interpretation of the forecasts: they

reflect a “snapshot” of the future as determined by past and present

trends, which may be affected by future events both intentional (e.g.,

interventions or changes in standard of care) and not (e.g.,

pandemics, disruptions in surveillance, or other unforeseen

events). In practice, we would recommend that scientists using

these methods fit multiple plausible prediction models; from these,

the average may be reported as a point estimate and the range may

be reported as a measure of uncertainty in the prediction.

In addition to introducing statistical methodology, our work

illustrates several important trends in invasive female breast cancer.

Survival for both subtypes has improved over 1992–2019, although

ER− survival has been stable since roughly 2010, while ER+ shows
FIGURE 13

Summary of incidence forecasting models.
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FIGURE 14

Averages of models for invasive female breast cancer incidence (A) and prevalence (B) by age group, ER status, and trend components.
FIGURE 15

US Population burden and survivorship for invasive female breast cancer, by ER status and age group.
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continued slow but steady improvement since approximately 2000.

Cohort JoinPoints for incidence indicate that rates of ER− cancer

have been steadily declining in women born in approximately 1945 or

later, while ER+ has been steadily increasing for women born since

approximately 1955. Period JoinPoints show that ER− incidence has

been stable or slightly declining since approximately 2010 and a

decline in the rate of increase for ER+ beginning around 2010.

Evaluating the forecasts, the effects of recent and future cohort

birth cohort trends will be seen primarily in periods beyond those

forecast by this model, owing to low absolute incidence rates among

younger women. Prevalence rate forecasts for both subtypes are

primarily driven by changes in incidence, as survival has been

approximately stable in both groups during the last decade. To

ensure reproducibility of our analyses, SEER data have been used

without imputation of missing ER status values; ER missingness in

these data is time-dependent (approximately 50% of patients with

missing values were diagnosed prior to 2000) and trends for imputed

data may differ slightly from those shown here. Further detailed

evaluation of these trends and counterfactuals is an additional

potential area of future research.

Overall, APC forecasting is a computationally tractable method

of producing nuanced yet highly interpretable estimates of future

incidence and prevalence rates, as illustrated here for breast cancer.

APC incidence forecasting has been used in a variety of scientific

settings, both within and outside of oncology, and we believe that

the expansion of the APC toolbox to include prevalence forecasting

is a valuable step forward for cancer epidemiology. The R code for

these methods is built on that from the APC “toolbox” and is freely

available from the authors upon request.
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