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Introduction: Melanoma exhibited a poor prognosis due to its aggression and

heterogeneity. The effect of glutamate metabolism promoting tumor

progression on cutaneous melanoma remains unknown. Herein, glutamine

metabolism-related genes (GRGs) were identified followed by constructing a

prognostic model for melanoma via bioinformatics analysis.

Methods: Patient data were collected from ,Gene Expression Omnibus (GEO)

and The Cancer Genome Atlas—Skin Cutaneous Melanoma (TCGA-SKCM). In

addition, GRGs were extracted from the MSigDB database, and the R package

"Seurat" was used for scRNA-seq data processing.

Results: eight key genes (CHMP4A, IFFO1, ANKRD10, ZDHHC11, CLPB, ANKMY1,

TCAP and POLG2) were identified to construct a risk model. Based on univariate

and multivariate Cox regression analyses, clinical characteristics including Clark

stage and ulcer status were identified as independent prognostic factors, and a

nomogram was successfully constructed. Survival analysis demonstrated that the

overall survival rates of the high-risk group were lower than those of the low-risk

group. The gene set enrichment analysis (GSEA) results showed that only

ANKRD10, ANKMY1 and TCAP were enriched in the “glycolysis gluconeogenesis”

pathway. The high-risk and low-risk groups displayed significant differences in

immune cell infiltration and immune checkpoint expression. Analysis on drug

sensitivity revealed that the high-risk group was highly sensitive to rapamycin.
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Additionally, it was verified that IFFO1, ANKRD10 and POLG2 were markedly

upregulated and CHMP4A was also markedly downregulated in A375 cells by

RT-PCR, which was consistent with the partial results of biological analysis.

Discussion: Overall, it would provide valuable information about the GRGs of

prognosis and immune status in melanoma.
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1 Introduction

Melanoma has high malignancy and propensity for metastasis,

triggering widespread interest (1). There is an increasing incidence

of melanoma in teenagers and middle-aged people. Only 14% of

cutaneous melanoma (CM) patients with metastasis reach survival

beyond 5 years (2). Standard chemotherapy is largely ineffective

against advanced or metastatic melanoma (3). In recent years,

targeted immunotherapy has shown significant efficacy in

advanced melanoma patients, but the 5-year survival rate of the

patients still remains low (4), and tumor heterogeneity and drug

resistance are the primary causes (5). Therefore, it is necessary to

comprehensively study the mechanisms of tumorigenesis so as to

explore new potential molecular biomarkers, which could be crucial

for early diagnosis, targeted treatment, and prognosis assessment of

melanoma patients.

Glutamine (Gln), as the most abundant non-essential amino

acid, plays a pivotal role in energy metabolism. As a key source of

carbon and nitrogen, it promotes tumor cell biosynthesis, energy

production, and cellular homeostasis (6, 7). Gln metabolism, as an

alternative source, can promote the tricarboxylic acid cycle in

cancer cells and facilitate fatty acid synthesis through reductive

carboxylation (8). The proliferation of cancer cells is addicted to

Gln metabolism. Cancer cells cannot survive due to the absence of

exogenous Gln (9). Thus, Gln metabolism can be a target for

anticancer therapy (10, 11). The inhibition of Gln metabolism can

enhance the antitumor effect of anti-PD-1 and the cytotoxic

function of effector T cells (12, 13). One study has indicated a

correlation between Gln and glycolysis in melanoma, highlighting

the regulatory role of Gln metabolism in melanoma progression

(14). Therefore, the genes related to Gln metabolism should

be further investigated to predict treatment efficacy and

clinical prognosis.

Thus, melanoma-related data from public databases were used

to identify prognostic genes associated with Gln in melanoma

patients via bioinformatics methods. A prognostic model was

constructed to analyze the biological pathways associated with

these prognostic genes. The relationships among clinical

characteristics, the immune microenvironment, and drug
02
sensitivity were established. This study focused on developing

novel immunotherapy, targeted therapy strategies, and valuable

prognosis of melanoma.
2 Materials and methods

2.1 Data sources

The Cancer Genome Atlas (TCGA) skin cutaneous melanoma

(SKCM) dataset, which included 98 primary and 356 metastatic

melanoma samples with survival information, was retrieved from

UCSC Xena (https://xenabrowser.net/datapages/). The GSE46517

(GPL96) dataset, which contained 31 samples of primary

melanoma, 73 samples of metastatic melanoma, and seven

control samples, was mined from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). TCGA-

SKCM and GSE46517 datasets were used as training sets 1 and 2,

respectively. The validation set GSE65904 (GPL10558), which

contained survival information of 210 melanoma tumor samples,

and the single-cell dataset GSE72056 (GPL18573), which contained

gene expression data for 4,645 quality-controlled (QC) cells, were

obtained from the GEO database. Gln metabolism-related genes

(GRGs) were mined from the Molecular Signatures Database

(MSigDB) (https://www.gsea-msigdb).
2.2 Identification of differentially expressed
genes and gene enrichment analysis

The differentially expressed genes (DEGs) between the

melanoma and control groups in training set 2 were selected

using the R language limma package (v 3.52.4) (15), with adj.

p < 0.05 and |log2FC| ≥ 0.5. Moreover, the enrichment analysis of

Gene Ontology (GO) [including cellular component (CC),

molecular function (MF), and biological process (BP) analyses]

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses of the DEGs were completed using the

clusterProfiler package (v 4.4.4) (16). The single-sample gene set
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enrichment analysis (ssGSEA) algorithm of the GSVA package

(v 1.44.5) (17) was applied to compute the Gln metabolism score

(GMS) in all samples of training set 1, with GRGs serving as the

background gene set. Then, all genes of training set 1 were assigned

to modules utilizing weighted gene coexpression network analysis

(WGCNA) (v 1.71) (18). Modules relevant to GMS (p < 0.05) were

confirmed as key modules, and key module genes were utilized for

subsequent analyses.
2.3 Single-cell sequencing data analysis

Data from the single-cell dataset were integrated using the Seurat

package for R (v 4.3.0) (19), with QC for the number of genes

contained in the cells >1,700, housekeeping expression (corrected)

>3, and all genes expressed >2% in at least five cells. The vst method

was selected to screen the top 2,000 highly variable genes for

downstream analysis. Subsequently, Uniform Manifold

Approximation and Projection (UMAP) was utilized to reduce the

dimensions. Using GRGs as the background gene set, the

RcentageFeatureSet was utilized to calculate the percentage of GRG

expression levels in each cell, and all cells were categorized into high-

and low-expression groups to select intercellular differentially

expressed GRGs (DE-GRGs) according to the median percentages.
2.4 Screening and analysis of candidate
genes

Overlapping DEGs and key module genes were obtained from

intersecting genes. Based on the intersecting genes, a protein–

protein interaction (PPI) network was constructed. Then, the

correlations between the intersecting genes and the DE-GRGs

were computed according to Pearson’s correlation in training set

2, and the genes with |r| > 0.3, at least one differential GRG, and

p < 0.05 were retained as candidate genes.
2.5 Construction and validation of the risk
model

Based on the candidate genes via the glmnet package (v 4.1-4),

key genes were selected via univariate Cox regression and least

absolute shrinkage and selection operator (LASSO) regression

analyses. Then, according to the correlation between expression

of key genes and overall survival (OS), a risk model was constructed

via LASSO (19). Risk scores were assessed utilizing the following

formula:

risk   score = o
n

n=1
(coefi*Xi)

where coef and X indicate coefficients and gene expression,

respectively. Moreover, the samples of training set 1 and the
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validation set were sorted into the high- and low-risk groups

based on the median risk score. The Kaplan–Meier (K–M)

survival curves were drawn using the survival package (v 3.4-0)

for both risk groups in training set 1 and the validation set (20). To

further assure the validity of the risk model, receiver operating

characteristic (ROC) curves were generated at 3, 5, and 7 years, and

the area under the curve (AUC) values were computed using

survivalROC (v 0.4) (21).
2.6 Independent prognostic analysis and
correlation analysis of clinical
characteristics

Risk scores and seven clinical characteristics (age, sex, Clark

stage, metastasis status, Breslow status, and ulcer status) were

entered into the risk model for univariate and multivariate Cox

regression analyses. Then, independent prognostic factors were

selected to construct a nomogram via rms (v 6.3-0) (22). The 3-,

5-, and 7-year survival rates were predicted depending on the total

points (the higher the points, the lower the survival rate). The

predictive ability of the nomogram was assessed using calibration

curves. Correlations between the risk score and eight clinical

characteristics were analyzed via correlation analysis.
2.7 GSEA

To understand prognostic gene-related biological functions and

signaling pathways, the correlations between prognostic genes and

other genes were calculated and sequenced separately in training set

1. Based on the C2:KEGG gene set downloaded from the msigdbr

package in R (v 7.5.1), the sequenced genes were enriched using the

GSEA function in R (adj. p < 0.05).
2.8 Immune microenvironment analysis
and regulatory networks for prognostic
genes

The immune-related genes identified in the literature were used

as background gene sets (23), and the samples in the training set

were analyzed using ssGSEA to obtain enrichment scores for 28

immune cell types. Differences in enrichment scores for each

immune cell between the melanoma and control groups were

analyzed via the Wilcoxon test. The stromal score, immune score,

and ESTIMATE score (summed over the first two) of the samples in

training set 1 were estimated using the estimate package in R

(v 1.0.13). Moreover, the expression of common immune

checkpoints, including PD-L1, CTLA-4, LAG-3, GAL9, TIM-3,

PD-1, PD-1LG2, and TIGIT, was compared between the high-

and low-risk groups. Prognostic gene-related miRNAs were

predicted using the starBase database.
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2.9 Drug sensitivity analysis

The 50% inhibitory concentration (IC50) values of 198

chemotherapeutic drugs were computed and compared according

to the Genomics of Drug Sensitivity in Cancer database using the

OncoPredict package (v 0.2).
2.10 Cell line culture

The cell lines A375 (primary cutaneous melanoma) and A2058

(metastatic melanoma), purchased from ATCC (cat. nos. CRL-1619

and CRL-11147), were cultured in Dulbecco’s modified Eagle’s

medium (DMEM; #12634-010, USA) supplemented with 10%

fetal bovine serum (FBS; No. SH30070.02, HyClone, Utah, USA)

in incubators with 5% CO2 at 37°C. The human immortalized

keratinocyte HaCaT cell line (CVCL-0038) as the control cell line

was purchased from the Kunming Institute of Zoology and cultured

in Dulbecco’s modified Eagle’s medium.
2.11 RT-qPCR

Total RNA was extracted from melanoma cell lines by TRIzol

(15596018, Thermo, Beijing, China). A PrimeScript™ RT kit

(R232-01, Vazyme, Nanjing, China) was applied to synthesize

cDNA. Real-time polymerase chain reaction (RT-PCR) was

achieved using SYBR Green Master Mix (Q111-02, Vazyme), and

the expression levels were confirmed via the 2−DDCt method. The

expression of each mRNA was standardized to the expression of

GAPDH mRNA. All primers, as shown in Supplementary Table 1,

were purchased from Tsingke Biotech (Beijing, China).
3 Results

3.1 Identification and functional analysis of
DEGs

A total of 3,216 DEGs (1,784 upregulated and 1,432

downregulated) between the melanoma and control groups were

selected from training set 2 (Figures 1A, B). Functional enrichment

analysis indicated that DEGs were related to 1,238 GO terms

(Figure 1C), including 83 CCs (e.g., “collagen-containing”,

“extracellular matrix”, and “cornified envelope membrane raft”),

56 MFs (e.g., “cytokine binding”, “cytokine activity”, and “actin

binding”), and 1,099 BPs (e.g., “epidermis development”, “skin

development”, and “epithelial cell proliferation”). In addition, 76

functional pathways were enriched according to the KEGG analysis.

The KEGG enrichment analysis results displayed that chemical

carcinogenesis-receptor activation, focal adhesion, and apoptosis

were the pathways enriched in the DEGs (Figure 1D).
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3.2 WGCNA and the acquisition of
intersecting genes

First, samples from the training set were used to construct a

clustering tree (Figure 2A). A soft threshold of 7 (R2 = 0.98) was

applied to construct a scale-free network (Figure 2B). Then, an

adjacency matrix and topological overlap matrix were constructed

(Figure 2C). Finally, 13 modules were obtained based on average

hierarchical clustering and dynamic tree clipping (Figure 2D). The blue

module (|cor| = −0.34, p < 0.05, containing 2,165 module genes) was

associated with GMS, which was identified as a keymodule (Figure 2E).

Subsequently, 75 intersecting genes were obtained by overlapping

DEGs and module genes (Figure 2F). A PPI network of 75

intersecting genes showed multiple pairs of relationships for

intersecting genes. For example, CYP2E1 was associated with

multiple genes, such as GPT and NR1I2 (Figure 2G).
3.3 Single-cell analysis and screening of
candidate genes

After QC, 2,887 cells and 23,684 genes remained in the single-cell

dataset (Figure 3A). Then, 2,000 highly variable genes were selected for

subsequent analysis (Figure 3B). The cells were clustered into 13 clusters

based on distance and were annotated to six cell types [T cells, B cells,

Cancer-Associated Fibroblasts (CAFs), macrophages, natural killer

(NK) cells, and endothelial cells] via marker genes (Figures 3C, D).

Furthermore, 81 DEGs were screened between the high- and low-

expression groups (min.pct = 0.25, logfc.threshold = 0.25) and were

crossed with 80 GRGs to obtain 14 DE-GRGs (ALDH18A1, ASL,

ASNSD1, ATP2B4, ALDH18A1, ASL, ASNSD1, ATP2B4, CLN3, FPGS,

GLS, GLUD1, GMPS, GOT2, MTHFS, NIT2, OAT, and UCP2)

(Figures 3E, F). In addition, 65 candidate genes were obtained based

on Pearson’s correlation analysis of the intersecting genes and DE-

GRGs (Figure 3G).
3.4 Construction, evaluation, and validation
of a risk model

A total of nine genes were identified via univariate Cox regression

analysis (Figure 4A), and further eight key genes (CHMP4A, IFFO1,

ANKRD10, ZDHHC11, CLPB, ANKMY1, TCAP, and POLG2) were

identified via LASSO based on 65 candidate genes (Figure 4B).

Subsequently, a risk model was constructed according to the

expression of eight key genes, and risk scores were also computed.

Risk curves (Figure 4C) and gene expression data of the two risk groups

were plotted based on risk scores (Figure 4D). It was observed from the

K–Mcurves that the difference in the survival of melanoma patients was

highly significant (p < 0.005) (Figure 4E). The AUC values exceeded 0.6

at 3, 5, and 7 years formelanoma patients. It suggested that the eight key

genes could reliably predict survival status (Figure 4F).
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FIGURE 1

Identification and functional enrichment analysis of DEGs between melanoma patients and controls. (A) Volcano plot of DEGs between melanoma
and control in GEO. p < 0.05 and |log2FC| ≥ 0.5 were used to identify significant DEGs. The red dots represent upregulated genes, and the blue dots
represent downregulated genes. (B) Heatmap of DEGs. (C) Functional enrichment of differential genes for GO (displaying the top 10 functional items
in each section). (D) Functional enrichment of differential genes for KEGG (displaying the top 30 functional pathways). DEGs, differentially expressed
genes; GEO, Gene Expression Omnibus; log2FC, log2 fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 2

Melanoma-related genes were screened via WGCNA. (A) Sample clustering tree. (B) Analysis of the scale-free index for various soft-threshold
powers (b). (C) The minimum number of genes per module was 300, and 13 modules were obtained when MEDissThres was equal to 0.2. (D) Cluster
dendrogram of the coexpression network modules (1 − Topological Overlap Matrix (TOM)). (E) Analysis of correlations between the modules and
melanoma; p-values are shown. (F) Wayne diagram of intersecting genes. (G) PPI network of significantly differentially expressed glutamine
metabolism-related genes. WGCNA, weighted gene coexpression network analysis; PPI, protein–protein interaction.
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FIGURE 3

Annotation of cell subsets from single-cell sequencing data and identification of differentially expressed genes. (A) After quality control of scRNA-seq,
2,887 core cells and 23,684 genes were identified. (B) The variance diagram shows the variation of gene expression in all melanoma cells. The red dots
represent highly variable genes, and the black dots represent non-variable genes. (C) shows the clustering and subgroup annotation results of single-cell
analysis cells. (D) The bubble diagram shows the expression of marker genes for each cell cluster.
(E) Glutamine metabolism score in each cell cluster. (F) Wayne diagram of glutamine metabolism-related genes. (G) Heatmap of candidate genes and
differentially expressed genes. scRNA-seq, single-cell RNA-seq.
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3.5 Construction of an independent
prognostic model and correlation analysis
of risk scores and clinical characteristics

To screen independent prognostic factors, clinical

characteristics and risk scores were subjected to univariate and

multivariate Cox analyses. The risk score, Clark stage, and ulcer

status were identified as independent prognostic factors, which were
Frontiers in Oncology 08
used to construct a nomogram (Figures 5A–C). The slope of each

calibration curve was close to 1, indicating favorable prediction

accuracy of the nomogram (Figure 5D). In addition, correlation

analysis of seven clinical characteristics and CD274 expression

demonstrated that major differences existed in Clark stage and

CD274 expression in melanomas (p = 0.019 and p < 0.001,

respectively; Figure 6A). There was a marked difference in the

survival status of the samples in the Clark subgroups (Figure 6B).
FIGURE 4

Construction of risk signature in TCGA cohort. (A) Univariate Cox regression analysis of OS. (B) LASSO regression of OS-related genes. (C) Risk survival status
plot (C1 for training set 1; C2 for validation set). (D) The representative gene variants in the high- and low-risk groups (D1 for training set 1; D2 for validation
set). (E) Kaplan–Meier curve (E1 for training set 1; E2 for validation set). (F) The AUC of the prediction of 3-, 5-, and 7-year survival rates of melanoma
patients. TCGA, The Cancer Genome Atlas; OS, overall survival; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1485006
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2025.1485006
3.6 GSEA in training set 1 and the
landscape of the immune
microenvironment in the two risk groups

GSEA demonstrated that eight key genes were enriched in

KEGG pathways (Figure 7).

There were significantly different enrichment scores of the 16

immune cells between the high- and low-risk groups (p < 0.05). The

expression of immune cells in the high-risk group, except for

CD56dim NK cells, was higher than that of the low-risk group

(Figure 8A). A heatmap of the correlation between the eight key

genes and risk scores of the 16 immune cells was also drawn in

Figure 8B. The stromal, immune, and ESTIMATE scores were

substantially different between the two risk groups (p < 0.05), and

all were low in the high-risk group (Figure 8C). In addition, all

immune checkpoint genes exhibited low expression in the high-risk

group (p < 0.001) (Figure 8D).
Frontiers in Oncology 09
3.7 mRNA–miRNA network construction
and drug sensitivity analysis

Drug sensitivity analysis revealed that the high-risk group was

strongly sensitive to rapamycin (p < 0.0001, Figures 9A, B). A total

of 81 miRNAs (e.g., hsa-miR-421, hsa-miR-449a, and hsa-miR-375)

associated with the key genes were predicted using the starBase

database (Figure 9C).
3.8 The expression of eight key genes in
control individuals and patients with
melanoma

In GSE46517, IFFO1, ANKRD10, CLPB, TCAP, and POLG2

displayed high expression, but the expression levels of CHMP4A,

ZDHHC11, and ANKMY1 were low in the melanoma group
FIGURE 5

Nomogram to assess the risk of melanoma patients. (A) Univariate Cox analysis of risk scores and clinical characteristics. (B) Multifactorial Cox analysis.
(C) Construction of the nomogram model. (D) The calibration curve of the nomogram.
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(Figure 10A). The expression of these genes was further examined

via RT-PCR in HACAT and melanoma cells (A375 and A2058). It

was interesting that IFFO1, ANKRD10, and POLG2 were markedly

upregulated and that CHMP4A was also markedly downregulated

in A375 cells (Figure 10B), which was partially consistent with the

results of biological analysis.
4 Discussion

CM remains the most lethal form of skin cancer, with an annual

increase of more than 3% (24). Gln metabolism plays a crucial role

in tumor survival and progression (25). To elucidate key players in

this pathway in melanoma, we integrated bulk RNA-seq and single-

cell RNA-seq (scRNA-seq) data, identifying eight glutamine

metabolism-related genes. Based on these genes, we developed a
Frontiers in Oncology 10
prognostic risk model that demonstrates robust performance in

predicting glutamine metabolism activity and patient outcomes.

In this study, the eight-gene (CHMP4A, IFFO1, ANKRD10,

ZDHHC11, CLPB, ANKMY1, TCAP, and POLG2) prognostic model

had promising prognostic value, which was demonstrated by the ROC

curve results. In addition, a nomogram combining prognostic models

and clinicopathological factors accurately predicted the survival rate of

melanoma patients at 3, 5, and 7 years. Based on the analysis of the

relationship between the model and clinicopathological characteristics,

the risk score was significantly associated with the Clark stage of

melanoma patients and CD274 expression. It indicated that the

model had predictive value for OS. The risk model demonstrated

significantly reduced survival rates in high-risk patients, indicating a

need for intensified therapeutic approaches. From an immunotherapy

perspective, this model could contribute to identifying high-risk patients

with poor immunotherapy response, prioritizing this subgroup for
FIGURE 6

Correlation analysis of risk scores with clinical characteristics. (A) The analysis model of age, gender, Clark, stage, primary and metastatic tumors, Breslow,
ulcer status, and the expression of CD274. (B) Kaplan–Meier curve result of Clark groups.
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combined treatment in clinical practice. Crucially, prospective validation

of the utility of the model in guiding treatment selection and prognosis

management requires evaluation in clinical cohorts.

It was worth noting that the relationship between the eight key genes

and glutamine metabolism in melanomas has not been reported. The

abnormal expression of these genes in melanomas was further validated

via RT-PCR. Among these genes, four genes (IFFO1, ANKRD10,

POLG2, and TCAP) were significantly overexpressed, while two genes

(CHMP4A and ANKMY1) had low expression via in vitro validation.

ZDHHC11 and CLPB exhibited inconsistent expression trends between

TCGA data and melanoma cells. This discrepancy may be attributed to
Frontiers in Oncology 11
the use of melanoma cancer cell lines for PCR validation, while the

dataset covered melanoma tissue (26). IFFO1 is a non-homologous end-

joining protein that plays a role in promoting the repair of DNA double-

strand breaks (27). Previous studies have indicated that the expression

levels of IFFO1 were associated with tumor progression and immune

infiltration (28). Recently, IFFO1 inhibited tumor metastasis and

reversed drug resistance through histone deacetylase and RNA

methylation mechanisms in ovarian cancer (29). In our study, it was

observed that IFFO1 could have a promoting effect on melanoma cells.

ANKRD10, as a protein-coding gene, has not been extensively studied. It

was reported that ANKRD10 affected antitumor activity by regulating
FIGURE 7

Biological characteristics between high- and low-risk groups. GSEA of GO and KEGG between high- and low-risk groups. GSEA, gene set
enrichment analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. (A–H) represent the GSEA results of CHMP4A, IFFO1,
ANKRD10, ZDHHC11, CLPB, ANKMY1, POLG2, TCAP, respectively.
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morin treatment in tongue squamous carcinoma cells (30). ANKRD10

acted as a DNA methylation-driven gene in glioblastoma (31). In our

study, ANKRD10 exhibited high expression in melanoma patients.

POLG2 was essential for mammalian embryogenesis and mtDNA

maintenance (32). However, the underlying molecular basis and
Frontiers in Oncology 12
functional significance of POLG2 in tumors were unknown. It may

achieve unexpected results for the treatment and prognosis of tumors.

Microarray analysis demonstrated that CHMP4A was used as a

prognostic biomarker and druggable target for various diseases such as

hepatocellular carcinoma, colorectal cancer, and ovarian carcinoma (33–
RE 8FIGU

Analysis of immune microenvironment. (A) Differences in immune cell enrichment scores. (B) Correlation analysis of immune cells and prognostic
genes. (C) ESTIMATE score and risk score, immune score and risk score, and stromal score and risk score. (D) Differential expression of immune
checkpoints in high- and low-risk groups. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.
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35). CHMP4A revealed low expression in melanoma as a prognostic

gene in our study. ZDHHC11, a member of the DHHC palmitoyl

transferase family, regulated innate immune response to DNA virus by

mediating the IFN-b promoter (36). In our study, ZDHHC11 was an

unfavorable factor in melanoma and related to immune cells. There are

little data on CLPB, TCAP, and ANKMY1 in malignancies. Defects in

CLPB could cause neurological involvement and neutropenia (37).

TCAP plays a role in cell adhesion and energy regulation of
Frontiers in Oncology 13
synaptogenesis in the vertebrate nervous system (38). ANKMY1, as a

component regulating cytoskeleton organization, has not been reported

in tumors (39). Combined with the above findings, it was first reported

that the above GRGs could be closely related to the prognosis

of melanoma.

ssGSEA displayed obvious differences in immune cell

subpopulations between the high-risk and low-risk subgroups. It

suggested that immune cells and immune function were related to
FIGURE 9

Screening of therapeutic agents for melanoma and constructed mRNA–miRNA network based on risk models. (A) Differences in drugs between
high- and low-risk groups. (B) Scatter plot visualizing the correlation between drugs and risk scores. (C) Construction of the mRNA–miRNA
interaction network. ****p<0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1485006
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2025.1485006
GRGs in melanoma patients. The risk scores of eight prognostic

genes varied among different immune cells in this work. Glutamine

antagonism led to plasticity in the metabolism of cancer cells and

effector T cells, which could become a new target for tumor

immunotherapy (40). Some immune cells could promote

antitumor immunity or have immunosuppressive effects in

melanoma (41). Importantly, all immune checkpoint genes in our

study exhibited low expression in the high-risk group. The

reprogramming of glutamine metabolism regulated immune

escape by modulating the expression of tumor PD-L1 in tumors

(12). These results indicated that high-risk melanoma patients are

intolerant to immunotherapy, resulting in poorer prognoses.

Rapamycin primarily inhibited melanoma by targeting the mTOR

pathway (42). Through FKBP12-mediated suppression of mTORC1
Frontiers in Oncology 14
activity, it reduced S6K and 4E-BP1 phosphorylation, thereby blocking

tumor proliferation. Concurrently, rapamycin relieved mTORC1-

mediated autophagy suppression and shifted cellular metabolism

toward catabolic states (43). It further remodeled the tumor

microenvironment via immune modulation and anti-angiogenesis

while exhibiting synergy with pathways like MAPK (44, 45).

Crucially, our drug sensitivity analysis revealed the remarkable

effectiveness of rapamycin in high-risk melanoma subgroups. This

differential response implied unique molecular dependencies,

particularly mTOR network vulnerabilities in aggressive tumors. It

displayed therapeutically exploitable selectivity beyond the canonical

mechanisms of rapamycin. Collectively, these findings indicate that

rapamycin exerts multi-targeted inhibitory effects on melanoma cell

proliferation, survival, and the tumormicroenvironment. This provides
FIGURE 10

The expression of eight key genes in controls and melanoma patients. (A) The expression of eight key genes in GSE46517. (B–L) The expression of eight key
genes between normal and melanoma cells (in HACAT, A375, and A2058cells). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. ns, p > 0.05.
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a theoretical foundation and identifies potential therapeutic targets for

precision treatment In high-risk melanoma patients.

In summary, our study identified a significant correlation between

the eight key genes and risk scores of immune cells/checkpoints in

melanoma. Nevertheless, several important limitations are worth

considering, such as requiring further validation in independent clinical

cohorts and unresolved regulatory mechanisms of signature genes.
5 Conclusion

By integrating scRNA-seq and bulk RNA-seq data, multiple

machine learning methods were applied to develop a novel

prognostic model for predicting OS in melanoma patients. The

model could be used to estimate the survival probability of

melanoma patients. Additionally, the risk score of this model as

an independent prognostic factor was strongly associated with Gln

metabolism and clinicopathological characteristics. Overall, it could

provide a reliable predictor of melanoma efficacy and potential

avenues for the targeted treatment of melanoma in the future.
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