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Objective: This study aimed to evaluate the diagnostic value of two-step

ultrasound radiomics models in distinguishing parotid malignancies from

pleomorphic adenomas (PAs) and Warthin’s tumors (WTs).

Methods: A retrospective analysis was conducted on patients who underwent

parotidectomy at our institution between January 2015 and December 2022.

Radiomics features were extracted from two-dimensional (2D) ultrasound

images using 3D Slicer. Feature selection was performed using the Mann–

Whitney U test and seven additional selection methods. Two-step LASSO-BNB

and voting ensemble learning modeling algorithm with recursive feature

elimination feature selection method (RFE-Voting) models were then applied

for classification. Model performance was assessed using the area under the

receiver operating characteristic curve (AUC), and internal validation was

conducted through fivefold cross-validation.

Results: A total of 336 patients were included in the study, comprising 73 with

malignant tumors and 263 with benign lesions (118 WT and 145 PA). The LASSO-

NB model demonstrated excellent performance in distinguishing between

benign and malignant parotid lesions, achieving an AUC of 0.910 (95% CI,

0.907–0.914), with an accuracy of 86.8%, sensitivity of 92.5%, and specificity of

66.7%, significantly outperforming experienced sonographers (accuracy of

61.90%). The RFE-Voting model also showed outstanding performance in

differentiating PA from WT, with an AUC of 0.962 (95% CI, 0.959–0.963),

accuracy of 83.0%, sensitivity of 84.0%, and specificity of 92.1%, exceeding the

diagnostic capability of experienced sonographers (accuracy of 65.39%).
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Conclusion: The two-step LASSO-BNB and RFE-Voting models based on

ultrasound imaging performed well in distinguishing glandular malignant

tumors from PA and WT and have good predictive capabilities, which can

provide more useful information for non-invasive differentiation of parotid

gland tumors before surgery.
KEYWORDS

parotid gland tumors, pleomorphic adenoma, Warthin’s tumor, ultrasound radiomics,
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Introduction

Parotid gland tumors are mostly benign, of which pleomorphic

adenoma (PA) and Warthin’s tumor (WT) account for the vast

majority, accounting for 85.7% (1), and the risk of malignant

tumors (MTs) is 7%–15%. Therefore, the identification of PA and

WT in benign parotid tumors, as well as their identification in MTs,

has become the main content of daily ultrasound diagnosis of

parotid tumors. Accurately distinguishing between benign and

malignant tumors, as well as differentiating between PA and WT,

can help radiologists solve over 90% of parotid gland tumor

diagnosis problems such as the physiological function of the

parotid gland and the anatomical structure of the parotid gland

area are complex, the capsule of the parotid gland tumor is

incomplete, the tissue cutting biopsy of the thick needle is prone

to tumor implantation and metastasis, and the scar formed after the

biopsy easily increases the risk of intraoperative facial nerve injury.

Therefore, the parotid gland tumor is generally not cut before

surgery. Biopsy for preoperative diagnosis depends on patient signs

and imaging findings. The parotid glands may be quickly and

inexpensively examined using sonography; in ultrasound, the

pleomorphic adenoma displays smooth margins, often with

lobules and either homogeneous or heterogenic parenchyma.

Doppler sonography typically shows little vascularization.

Calcifications as well as necrosis tend to appear as the tumor

becomes larger (2). However, given the overlap and atypicality of

imaging characteristics, the accuracy of using ultrasound alone to

diagnose PA is approximately 64% and 82% for Warthin’s tumor.

This presents a significant challenge in distinguishing between

benign and malignant parotid tumors, as well as their common

subtypes, based solely on clinical and imaging evaluations (3).

Radiomics is an emerging technology that is defined as

transforming medical images into high-throughput features to

quantitatively evaluate tumor phenotypes (4, 5). High-throughput

features that cannot be directly observed by the naked eye can be

quantitatively extracted from single or multiple medical images and

then applied to machine learning methods to construct

classification or prediction models. This method can more
02
objectively evaluate tumor status and distinguish malignant from

benign tumors or nodules (6, 7). Therefore, we attempted to use a

ternary classification method (8) based on ultrasound radiomics

analysis to improve the diagnostic confidence of radiologists in the

diagnosis of parotid nodules, which is helpful for physicians to

formulate more accurate treatment plans before surgery, shorten

the operation time of patients, predict the outcome of the disease,

and provide a more accurate and non-invasive preoperative

diagnosis for the clinic.
Method

Study design and population

The study was approved by the Institutional Ethics Review

Committee, which waived the requirement for informed consent. It

involved only anonymous imaging datasets, and no individual

patient data or human tissue samples were collected.

A total of 336 patients who underwent parotid gland mastectomy

in Nanchong Central Hospital from January 2015 to December 2022

were retrospectively analyzed. The clinicopathological and

ultrasound data of the patients were retrospectively analyzed. The

inclusion criteria were as follows: 1) patients underwent surgery and

pathological results, 2) underwent routine ultrasound examination

within 1 week before surgery, and 3) had complete imaging data. The

exclusion criteria were as follows: 1) patients receiving neoadjuvant

therapy (chemotherapy, immunotherapy, or radiotherapy) and 2)

were uncooperative during an ultrasound examination or had an

image quality that was poor and not suitable for analysis.

The ultrasound (US) instruments employed to acquire the

images used in this study included Mindray Resona 7 (Shenzhen

Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China),

Esaote MyLab (Esaote, Genoa, Italy), and linear array probe

frequency (8–12 MHz). Considering that the corresponding

diagnostic results of transverse and longitudinal assessments may

overlap and that the longitudinal section is less disturbed, our study

selected the longitudinal section of the tumor.
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Imaging segmentation and feature
extraction

All images were anonymized and measured using the 3D Slicer

software (version 4.10.2, https://www.slicer.org). The measurement

was completed by two physicians with more than 5 years of

experience in ultrasound diagnosis who were blinded to the

pathological results.

The feature extraction was implemented using the open-source

python package “Pyradiomics V3.0.1” (http://www.radiomics.io/

pyradiomics.html). Then, a total of 474 radiomics features

were extracted.

We standardized the gray value of all ultrasound images to

ensure that the gray value range was consistent and did not need

resampling because ultrasound is a two-dimensional (2D) image

and does not contain three-dimensional (3D) spatial information.

After we ensured that the mask matched the image, we used the

same radiomics feature extractor for feature extraction to ensure

that the extracted radiomics feature extraction was consistent

and reliable.
Feature filtering and model building

Similar methods were used in other studies by our team (9). All

clinical features (15) and radiomics features (474)were selected

using the Mann–Whitney U test after z-score normalization, and

then seven feature selection methods (least absolute shrinkage and

selection operator, analysis of variance, mutual information,

recursive feature elimination, forward selection, random forest,

and logistic regression) were used for further selection. The

adjustment parameter (l) in the LASSO model was selected using

fivefold cross-validation, and the grid search method was used to

adjust the parameters to obtain the LASSO coefficient spectrum of

radiomics and clinical features. Subsequently, 11 modeling

algorithms were used to model the features selected by each

feature screening method. A total of 77 models were established,

and heatmaps showing the area under the curve of each model

were obtained.

Filter methods
Mutual information (MI) is a measure of the degree of

interdependence between two random variables. It is based on the

concept of entropy in information theory, indicating how much

uncertainty of one variable can be reduced by another variable. MI

is not limited to linear relationships; it can capture any type of

statistical dependence, including non-linear relationships. This

method is simple and efficient and can quickly screen out features

related to disease diagnosis and reduce the complexity of the model.

ANOVA is mainly used to compare the mean values between

three or more groups to determine that there is a significant

difference between the mean values of at least one group and

other groups. Because our clinical data and omics data are mostly

continuous variables, this method is selected. Through ANOVA,

the features that have a significant impact on disease diagnosis can
Frontiers in Oncology 03
be screened out, and the accuracy and generalization ability of the

model can be improved.

Wrapper methods
Recursive feature elimination (RFE): By recursively training the

model, the least important features are removed until a

predetermined number of features are reached. RFE can

dynamically select features based on the performance of the

model, ensuring that the final selected features significantly

improve the predictive ability of the model.

Forward search (FS) is suitable for the case where the number of

features is large and the computing resources are limited. This

method starts with a basic model without any features and then

adds a feature in turn until there is no more improvement. It

provides an effective method to reduce the feature dimension while

maintaining the predictive performance of the model as much

as possible.

Embedded methods
LASSO belongs to the method of L1 regularization (LASSO

Regression): by adding L1 norm terms to the loss function, the

weights of certain features become zero, thereby achieving feature

selection. L1 regularization can not only reduce the number of

features but also improve the sparsity and interpretability of

the model.

Feature importance from tree-based models: Feature

importance scores from random forest tree models are used to

select important features. The tree model can automatically evaluate

the importance of features and select the features that contribute the

most to disease diagnosis.
Model evaluation

The fivefold cross-validation method was used to test the best

model performance for differentiating benign from MT and

differentiating PA from WT; the area under the curve (AUC),

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and accuracy of the two models

were obtained.

The receiver operating characteristic (ROC) curve and decision

curve analysis (DCA) were used to evaluate the optimal model for

differentiating benign tumors from MT, as well as PA from WT.
Comparison of models by experienced
doctors

Two expert radiologists (with 13 and 20 years of experience in

ultrasound diagnosis of parotid gland diseases) studied the images.

Neither of the radiologists knew the patients’ clinical features and

pathological results. First, 263 cases of benign and 73 cases of

malignant lesions were differentiated among all cases, and the

benign and malignant cases were determined by ultrasound

images. Furthermore, 118 cases of WT and 145 cases of PA in
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benign lesions were differentiated and diagnosed. If there was any

disagreement, both parties reached a consensus through discussion.

The results were compared with those of the best model. In case of

differences, a consensus was reached through mutual discussion.

The results were compared with those of the best model.
Statistical analysis

Statistical analysis was performed using SPSS 25.0 (IBM,

Armonk, NY, USA). First, the Kolmogorov–Smirnov test was

used to evaluate whether the count data were normally

distributed. The independent samples t-test was used when the

normal distribution was met, and the Mann–Whitney U test was

used when the normal distribution was not met. Continuous

variables were described as mean ± SD, and enumeration data

were compared among groups using c2 test or Fisher’s exact

probability. ROC curve was used to evaluate the accuracy,

sensitivity, specificity, and AUC value of the two best models. p <

0.05 was considered to be statistically significant.
Results

Clinical and ultrasound image
characteristics of patients

In this study, there were 336 patients with parotid tumors: 263

benign and 73 malignant. In the benign cases, there were 118 cases

of WT and 145 cases of PA. The clinical features and

ultrasonographic features of benign and malignant parotid

tumors are shown in Table 1. The clinical characteristics and

ultrasound manifestations of benign parotid gland tumors—

pleomorphic adenoma and Warthin’s tumor—are shown

in Table 2.
Model based on radiomics combined with
clinical features

A total of 474 radiomics features were extracted as follows: a) Shape

2D-based features (n = 9), b) first-order statistical features (n = 18), c)

gray-level co-occurrence matrix (GLCM)-based features (n = 24), d)

gray-level dependence matrix (GLDM)-based features (n = 14), e)

gray-level run-length matrix (GLRLM)-based features (n = 16), f) gray-

level size zonematrix (GLSZM)-based features (n = 16), g) neighboring

gray-tone difference matrix (NGTDM)-based features (n = 5), and (h)

transform-filtered features (including wavelet) (n = 372).

The optimal l value of the log (l) function of MSE was 0.019 by

LASSO regression cross-validation, and the LASSO coefficient

spectrum was obtained, as shown in Figure 1.

Based on 77 models integrating radiomics and clinical features,

the heatmaps of the area under the curve (as shown in Figure 2)
Frontiers in Oncology 04
showed that the LASSO-BNB model was superior to other models

in differentiating benign from malignant parotid lesions (AUC

0.910). Voting ensemble learning modeling algorithm with

recursive feature elimination feature selection method (RFE-

Voting) showed the best performance in the differential diagnosis

of benign parotid PA and WT (AUC 0.962). The LASSO-BNB and

RFE-Voting models were modeled using 12 and 13 features,

respectively. The detailed features are shown in Supplementary

Tables 1, 2.
Performance of the best model evaluation
of model

The AUC of LASSO-BNB was 0.910 (CI 0.907–0.914) as shown

in Figure 3A, sensitivity was 92.5%, specificity was 66.7%, PPV was

90.4%, NPV was 71.4%, and accuracy was 86.8%. The AUC of RFE-

Voting was 0.962 (CI 0.959–0.963) as shown in Figure 4A,

sensitivity was 84.0%, specificity was 82.1%, PPV was 80.8%, NPV

was 85.2%, and accuracy was 83.0%, as shown in Table 3.

The ROC curve based on the best model for distinguishing

benign and malignant parotid glands (LASSO-BNB model) is

shown in Figure 3A. The ROC curve based on the best model for

distinguishing benign parotid glands (RFE-Voting model) is shown

in Figure 4A. The decision curve for evaluating the model is shown

in Figure 3B and Figure 4B.

The accuracy (ACC) of experienced radiologists for

distinguishing benign and malignant parotid glands was 61.9%,

and for the diagnosis of PA and WT, it was 65.4%.
Discussion

The tissue composition of parotid gland tumors is complex and

lacks clinical symptoms and indicators. Imaging findings can

provide some value (10–13), but in the actual operation process,

it is susceptible to the subjective judgment and experience of

doctors, thus affecting the diagnostic results. As the preferred

examination method for parotid tumors, ultrasonography is

widely used in the diagnosis of parotid diseases. With the

development of some new technologies such as elastography and

contrast-enhanced ultrasound, some useful information has been

provided for the diagnosis of parotid tumors from the aspects of

morphology and blood perfusion (14–17). However, the overlap of

ultrasonographic features of benign and malignant parotid tumors

and different pathological types of benign lesions leads to some

controversy in its clinical application value (18). Ultrasound

radiomics features reflect the heterogeneity of the tumor by

reflecting the texture information of the tumor, which makes it

possible to transform traditional images into image analysis that can

mine high-dimensional data information. It can better quantify the

lesion features that cannot be distinguished by the naked eye (19–

21) and also reduces the subjectivity brought by the diagnostic
frontiersin.org
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TABLE 1 Baseline clinical characteristics of all patients.

Characteristics Benign (N = 263) Malignant (N = 73) All patients (N = 336) t/c2 p

Sex 12.566 0.000

Male 172 (65.4%) 31 (42.5%) 203 (60.4%)

Female 91 (34.6%) 42 (57.5%) 133 (39.6%)

Age (years) 52.43 ± 14.11 53.30 ± 17.64 52.62 ± 14.92 0.440 0.660

Site 1.938 0.164

Left 138 (52.5%) 45 (61.6%) 183 (54.5%)

Right 125 (47.5%) 28 (38.4%) 153 (45.5%)

Long diameter (mm) 26.59 ± 10.42 29.38 ± 11.73 27.20 ± 10.76 1.968 0.050

Short diameter (mm) 17.05 ± 7.60 20.10 ± 7.94 17.71 ± 7.76 3.004 0.003

Multiple 2.21 0.137

Negative 243 (92.4%) 71 (97.3%) 314 (93.5%)

Positive 20 (7.6%) 2 (2.7%) 22 (6.5%)

Shape 36.490 0.000

Irregular 39 (14.8%) 35 (47.9%) 74 (22.0%)

Regular 224 (85.2%) 38 (52.1%) 262 (78.0%)

Boundary 6.796 0.009

Unclear 12 (4.6%) 51 (69.9%) 63 (18.8%)

Clear 251 (95.4%) 22 (30.1%) 273 (81.3%)

Echo 1.120 0.290

Low-echo 259 (98.5%) 73 (100.0%) 332 (98.8%)

Iso-echo 4 (1.5%) 0 (0.0%) 4 (1.2%)

Anecho 0 (0.0%) 0 (0.0%) 0 (0.0%)

Homogeneity 24.424 0.000

Heterogeneous 131 (49.8%) 60 (82.2%) 191 (56.8%)

Homogeneous 132 (50.2%) 13 (17.8%) 145 (43.2%)

Liquidation 8.371 0.004

Negative 144 (54.8%) 26 (35.6%) 170 (50.6%)

Positive 119 (45.2%) 47 (64.4%) 166 (49.4%)

Grid 21.944 0.000

Negative 199 (75.7%) 73 (100.0%) 272 (81.0%)

Positive 64 (24.3%) 0 (0.0%) 64 (19.0%)

Calcification 34.576 0.000

Negative 251 (95.4%) 53 (72.6%) 304 (90.5%)

Positive 12 (4.6%) 20 (27.4%) 32 (9.5%)

Enhancement of behind echo 36.449 0.000

Negative 104 (39.5%) 58 (79.5%) 162 (48.2%)

Positive 159 (60.5%) 15 (20.5%) 174 (51.8%)

(Continued)
F
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TABLE 1 Continued

Characteristics Benign (N = 263) Malignant (N = 73) All patients (N = 336) t/c2 p

Alder 7.862 0.049

Level 0 21 (8.0%) 9 (12.3%) 30 (8.9%)

Level 1 110 (41.8%) 24 (32.9%) 134 (39.9%)

Level 2 84 (31.9%) 33 (45.2%) 117 (34.8%)

Level 3 48 (18.3%) 7 (9.6%) 55 (16.4%)
F
rontiers in Oncology
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TABLE 2 Baseline clinical characteristics of all patients with benign parotid gland.

Characteristics Warthin (N = 118) Pleomorphic adenoma (N = 145) All patients (N = 263) t/c2 p

Sex 97.206 0.000

Male 115 (97.5%) 57 (39.3%) 172 (65.4%)

Female 3 (2.5%) 88 (60.7%) 91 (34.6%)

Age (years) 58.66 ± 9.17 47.36 ± 15.36 52.43 ± 14.11 7.035 0.000

Site 0.268 0.621

Left 64 (54.2%) 74 (51.0%) 138 (52.5%)

Right 54 (45.8%) 71 (49.0%) 125 (47.5%)

Long diameter (mm) 28.47 ± 11.47 25.06 ± 9.24 26.59 ± 10.42 2.670 0.008

Short diameter (mm) 17.75 ± 9.18 16.48 ± 5.98 17.05 ± 7.60 1.351 0.178

Multiple 2.004 0.157

Negative 106 (89.8%) 137 (94.5%) 243 (92.4%)

Positive 12 (10.2%) 8 (5.5%) 20 (7.6%)

Shape 3.679 0.055

Irregular 12 (10.2%) 27 (18.6%) 39 (14.8%)

Regular 106 (89.8%) 118 (81.4%) 224 (85.2%)

Boundary 0.134 0.714

Unclear 6 (5.1%) 6 (4.1%) 12 (4.6%)

Clear 112 (94.9%) 139 (95.9%) 251 (95.4%)

Echo 3.293 0.070

Low-echo 118 (100%) 141 (97.2%) 259 (98.5%)

Iso-echo 0 (0.0%) 4 (2.8%) 4 (1.5%)

Anecho 0 (0.0%) 0 (0.0%) 0 (0.0%)

Homogeneity 4.159 0.041

Heterogeneous 67 (56.8%) 64 (44.1%) 131 (49.8%)

Homogeneous 51 (43.2%) 81 (55.9%) 132 (50.2%)

Liquidation 1.318 0.251

Negative 60 (50.8%) 84 (57.9%) 144 (54.8%)

Positive 58 (49.2%) 61 (42.1%) 119 (45.2%)

(Continued)
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doctor, which also provides ideas for the differential diagnosis of

parotid tumors by ultrasonic image texture analysis.

The proportion of parotid malignant tumors is relatively small,

and half of the lesions have no obvious clinical manifestations.

Preoperative fine-needle aspiration cytology is considered to be a

reliable method, but it is an invasive operation, and the number of

cells taken out is limited, so it is not suitable for deep tumors.

However, the malignant transformation rate of PA as a benign

tumor is 2%–25%, and the recurrence rate after simple lesion
Frontiers in Oncology 07
resection is 15% (22). WT rarely has malignant transformation

and recurrence. Clinically, conservative treatment or simple lesion

enucleation can be used. Different tumors have different surgical

methods and treatment methods. Therefore, preoperative non-

invasive qualitative diagnosis is very important.

According to the literature, there is no report on the

simultaneous identification of benign and malignant parotid

tumors and PA and WT by ultrasound radiomics. In our study,

we combined 474 radiomics features and 15 clinical features
TABLE 2 Continued

Characteristics Warthin (N = 118) Pleomorphic adenoma (N = 145) All patients (N = 263) t/c2 p

Grid 53.372 0.000

Negative 64 (54.2%) 135 (93.1%) 199 (75.7%)

Positive 54 (45.8%) 10 (6.9%) 64 (24.3%)

Calcification 0.676 0.411

Negative 114 (96.6%) 137 (94.5%) 251 (95.4%)

Positive 4 (3.4%) 8 (5.5%) 12 (4.6%)

Enhancement of behind echo 1.210 0.271

Negative 51 (43.2%) 53 (36.6%) 104 (39.5%)

Positive 67 (56.8%) 92 (63.4%) 159 (60.5%)

Alder 70.015 0.000

Level 0 1 (0.8%) 20 (13.8%) 21 (8.0%)

Level 1 25 (21.2%) 85 (58.6%) 110 (41.8%)

Level 2 55 (46.6%) 29 (20.0%) 84 (31.9%)

Level 3 37 (31.4%) 11 (7.6%) 48 (18.3%)
FIGURE 1

Flowchart of radiomics and clinical feature selection. (A) Selection of the tuning parameter (l) in the LASSO model via the fivefold cross-validation.
MSE on each fold from the LASSO regression cross-validation procedure was plotted as a function of log (l). The optimal l value of 0.019 was
selected. (B) LASSO coefficient profiles of the 474 radiomics features and 15 clinical features. A vertical line was drawn at the value identified via the
fivefold cross-validation, at which the optimal l resulted in 12 non-zero coefficients. LASSO, least absolute shrinkage and selection operator.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1485393
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1485393
extracted from gray-scale ultrasound images and established 77

models after further screening. We observed and compared the

diagnostic efficacy of each model. We obtained the best model

LASSO-BNB for differentiating benign from malignant tumors. The

AUC of the model reached 0.910, and the accuracy was 92.5%,
Frontiers in Oncology 08
which was much higher than that of clinical ultrasound physician

diagnosis and previous conventional ultrasonographic feature

analysis. The best model for differentiating benign PA from WT

is RFE-Voting. The AUC of this model reached 0.962, and its

accuracy was 83.0%. It shows that the radiomics analysis of gray-
FIGURE 2

Performance of 77 models incorporating radiomics and clinical features via the fivefold cross-validation. (A) Performance of benign and malignant
models. (B) Performance of Warthin and pleomorphic adenoma models. The heatmaps show the area under the curve of each modeling algorithm
(columns) with each feature selection method (rows). SVM, support vector machine; RF, random forest; LR, logistic regression; KNN, k-nearest
neighbors; ET, extremely randomized trees; GNB, Gaussian naive Bayes; BNB, Bernoulli naive Bayes; HGBoost, histogram-based gradient boosting;
GBDT, gradient boosted decision trees; AdaBoost, adaptive boosting; Voting, voting classifier; LASSO, least absolute shrinkage and selection
operator; ANOVA, analysis of variance; MI, mutual information; RFE, recursive feature elimination; FS, forward selection.
FIGURE 3

The best model for distinguishing benign and malignant parotid glands is LASSO-BNB. (A) The ROC analysis of radiomics and clinical model via the
fivefold cross-validation. (B) The decision curve analysis of the best performance model. LASSO-BNB, Bernoulli naive Bayes modeling algorithm with
least absolute shrinkage and selection operator feature selection method; ROC, receiver operating characteristic curve.
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scale ultrasound images shows sufficient prediction efficiency in

differential diagnosis, which provides more confidence for non-

invasive diagnosis of parotid tumors before clinical surgery.

Compared with the logistic regression conducted by other

research (23), our LASSO-BNB model performance is basically

the same (AUC: 0.910 vs. 0.914).

The present study has several limitations that require further

consideration. First, this was a single-center study with a small

sample size, so more center data should be collected in subsequent

studies. Second, we only studied the two-dimensional ultrasound of

the parotid gland. The multimodal analysis that should be included

in subsequent studies may further improve the accuracy.

The dependence on the operator is inevitable, so all our model

results were obtained using the method of fivefold cross-validation

to find the average value, and the influence of random number seeds
Frontiers in Oncology 09
on the performance results of the model was reduced as much as

possible. This method may be superior to the simple division of the

training set and test set.
Conclusion

This two-step integrated model of ultrasound radiomics and

clinical features has achieved outstanding performance in the three-

category diagnosis of MT, PA, and WT. It is superior to skilled

ultrasound diagnosticians and provides an effective diagnostic

reference for clinical routine parotid tumor identification. This

method may become a new non-invasive preoperative evaluation

method for clinical application.
FIGURE 4

The best model for distinguishing benign parotid glands is RFE-Voting. (A) The ROC analysis of radiomics and clinical model via the fivefold cross-
validation. (B) The decision curve analysis of the best performance model. RFE-Voting, voting ensemble learning modeling algorithm with recursive
feature elimination feature selection method. The voting ensemble learning model consists of RFE-RF, RFE-ET, and RFE-HGBoost. RFE-RF, random
forest modeling algorithm with recursive feature elimination feature selection method; RFE-ET, extremely randomized trees modeling algorithm with
recursive feature elimination feature selection method; RFE-HGBoost, histogram-based gradient boosting modeling algorithm with recursive feature
elimination feature selection method; ROC, receiver operating characteristic curve.
TABLE 3 Performance of two best models.

Model AUC (95% CI) SEN SPE PPV NPV ACC F1 score

LASSO-BNB 0.910
(0.907–0.914)

92.5% 66.7% 90.4% 71.4% 86.8% 71.0%

RFE-Voting 0.962
(0.959–0.963)

84.0% 82.1% 80.8% 85.2% 83.0% 88.5%
LASSO-BNB, Bernoulli naive Bayes modeling algorithm with least absolute shrinkage and selection operator feature selection method to identify benign or malignant parotid gland; RFE-Voting,
voting ensemble learning modeling algorithm with recursive feature elimination feature selection method to identify benign parotid gland; CI, confidence interval; SEN, sensitivity; SPE,
specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.
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Glossary

MSE mean square error
Frontiers in Oncology
MT malignant tumor
PA pleomorphic adenoma
WT Warthin’s tumor
ROC receiver operating characteristic
DCA decision curve analysis
AUC area under the curve
SVM support vector machine
RF random forest
LR logistic regression
KNN k-nearest neighbors
ET extremely randomized trees
GNB Gaussian naive Bayes
BNB Bernoulli naive Bayes
HGBoost histogram-based gradient boosting
GBDT gradient boosted decision trees
AdaBoost adaptive boosting
Voting voting classifier
12
LASSO least absolute shrinkage and selection operator
ANOVA analysis of variance
MI mutual information
RFE recursive feature elimination
FS forward selection
LASSO-BNB Bernoulli naive Bayes modeling algorithm with least absolute

shrinkage and selection operator feature selection method
RFE-Voting voting ensemble learning modeling algorithm with recursive

feature elimination feature selection method
RFE-RF random forest modeling algorithm with recursive feature

elimination feature selection method
RFE-ET extremely randomized trees modeling algorithm with

recursive feature elimination feature selection method
RFE-HGBoost histogram-based gradient boosting modeling algorithm with

recursive feature elimination feature selection method
CI confidence interval
PPV positive predictive value
NPV negative predictive value
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