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Creation of an innovative
diagnostic framework for
hepatocellular carcinoma
employing bioinformatics
techniques focused on
senescence-related and
pyroptosis-related genes
Baixue Liu1, Youguang Ao 1* , Chunhui Liu1, Feiyun Bai2,
Zhi Zhou3, Juan Huang1 and Qi Wang1

1College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China,
2Hepatology Department, Ordos Second People’s Hospital, Ordos, China, 3Department of Traditional
Chinese Medicine, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine,
Hohhot, China
Background: Liver hepatocellular carcinoma (LIHC) continues to pose a major

global health concern and is characterized by elevated mortality rates and a lack

of effective therapies. This study aimed to explore differential gene expression

linked to cellular senescence and pyroptosis in LIHC and to develop a prognostic

risk model for use in clinical settings.

Methods: We acquired datasets from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO). DESeq2 was used to identify differentially

expressed genes associated with cell senescence and pyrodeath. The least

absolute shrinkage and selection operator (LASSO) regression model was

developed using cellular senescence- and pyroptosis-related differentially

expressed genes (CSR&PRDEGs), and its predictive performance was evaluated

with Kaplan–Meier survival analysis and time-dependent receiver operating

characteristic (ROC) curves. We also performed various functional analyses of

the genes. These findings were validated by real-time fluorescence quantitative

polymerase chain reaction (PCR).

Results: Using bioinformatics analysis, we developed a prognostic risk

framework incorporating six critical genes: ANXA2, APOA1, EZH2, IGF2BP3,

SQSTM1, and TNFRSF11B.The model demonstrated a statistically significant

difference in overall survival between the high-risk and low-risk groups (p <

0.05). Additionally, real-time fluorescence quantitative PCR confirmed that

genes ANXA2, APOA1, EZH2, IGF2BP3, SQSTM1, and TNFRSF11B were

significantly overexpressed in the peripheral blood of patients with LIHC in

comparison to normal volunteers, thereby validating the prognostic risk

model’s accuracy.
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Conclusions: This study systematically elucidated the functions of genes

associated with senescence and pyroptosis in LIHC cells. The constructed

prognostic risk model serves to guide the development of personalized

treatment plans, enhance patient management via risk stratification, facilitate

the identification of high-risk patients, intensify monitoring or implement

proactive interventions, thereby providing a novel perspective for the diagnosis

and treatment of LIHC.
KEYWORDS

hepatocellular carcinoma, bioinformatics techniques, senescence, pyroptosis,
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1 Introduction

Hepatocellular carcinoma (LIHC) is the fourth most common

cause of cancer-related deaths worldwide, with approximately

782,000 new cases and 746,000 fatalities annually (1). The onset of

LIHC is insidious, its etiology is multifaceted, early detection is

challenging, and treatment options are limited. The current

treatment approaches include surgery, liver transplantation,

immunotherapy, targeted therapy, radiotherapy, and chemotherapy

(2). Surgical intervention remains the preferred method, offering

superior prognostic outcomes compared with other treatments, with

a significant increase in the 5-year survival rate after surgical

resection, reaching nearly 80% over the past decade (3). However,

this approach requires early diagnosis and is ineffective against

subclinical metastasis (4). Liver transplantation is the most effective

treatment for end-stage LIHC. However, its broad application is

limited by the shortage of donor organs (5). Although

immunotherapy and targeted therapy are advantageous because of

their convenience and precise therapeutic effects, they are

accompanied by high toxicity and side effects (6, 7). Transcatheter

arterial chemoembolization can effectively target tumor cells;

however, it also leads to gastrointestinal side effects due to the

chemotherapy drugs, bone marrow suppression, and post-

embolization syndrome (8). Radiofrequency ablation is limited to

small, non-metastatic tumors and may result in tumor recurrence or

residual tumor after resection as well as potential liver function

impairment (9, 10). For individuals with advanced LIHC, the 5-

year survival rate is less than 15%. This highlights the pressing need

for novel diagnostic and prognostic biomarkers for early detection

and diagnosis (11).

According to the emerging “cancer evolution and development”

theory (12), cancer arises from the interplay between innate genetic

factors and acquired environmental influences such as viral

infections, which disrupt immune balance or function, leading to

persistent, uncontrollable inflammation. Within this inflammatory

immune microenvironment, a small subset of “driver variant” cells

that control cell proliferation, differentiation, and apoptosis, and

promote tumorigenesis, are selected and expand. These cells

gradually evolve into tumor-initiating cells with stem cell-like
02
properties. This theory underscores that in an inflammatory

microenvironment, cells undergo an evolutionary process of

“variation - selection - adaptation,” ultimately leading to cancer.

Cell senescence and pyroptosis are two crucial biological processes

involved in tumor inflammation. Cell senescence, characterized by

stable cell cycle arrest, can inhibit tumor growth by halting the

proliferation of damaged cells (13). However, senescent cells may

also create a pro-inflammatory microenvironment that fosters

tumorigenesis (14). Pyroptosis, a form of programmed cell

death characterized by an inflammatory reaction, can either

inhibit or promote tumor growth depending on the surrounding

environment (15). An intricate balance between these processes and

their influence on cancer development and progression has been

noted in various cancers (16); however, their role in LIHC

remains underexplored.

Currently, diagnosing LIHC using alpha-fetoprotein combined

with abdominal ultrasound screening does not allow for early

analysis and diagnosis, and does not fully meet clinical diagnostic

needs. To address this, our study employed a variety of

bioinformatics analysis techniques, integrating multiple datasets,

to comprehensively investigate the relationship between senescent

cells and pyroptosis in LIHC. The aim was to develop a predictive

risk model based on cellular senescence- and pyroptosis-related

differentially expressed genes (CS&PRDEGs) and to determine

novel tumor markers to enhance and supplement existing

screening strategies. This approach aimed to improve the

prognostic capability of patients with liver cancer and explore the

biological functions and potential mechanisms of these genes

in LIHC.
2 Materials and methods

2.1 Data

LIHC data were acquired from The Cancer Genome Atlas

(TCGA) using the R package TCGAbiolinks (Version 2.30.0)

(17). After removing samples without clinical information,

sequencing data in count format for 373 LIHC samples, along
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with their survival outcomes and times, and 50 normal samples

were collected. Data were standardized to fragments per kilobase

per million (FPKM). Data for clinical studies were collected from

the UCSC Xena database (18) (https://xena.ucsc.edu/). For more

detailed information, please refer to Table 1.

The LIHC datasets GSE84402 (19) and GSE46408 (20) were

retrieved from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) using the R package

GEOquery (Version 2.70.0) (21). Both datasets originated from

human liver tissue, these datasets encompass gene expression

profiles for both LIHC and normal samples. Upon downloading,

the data undergo an initial quality control check to ensure the

absence of missing values and proper formatting for subsequent

analysis. The microarray platforms used were GPL570 for

GSE84402 and GPL4133 for GSE46408. Detailed information is

presented in Table 2. The GSE84402 dataset included 14 LIHC and

14 normal samples, whereas the GSE46408 dataset included 6 LIHC

and 6 normal samples. This study included all the LIHC and normal

samples from these datasets.

We collected cellular senescence-related genes (CSRGs) and cell

aging-related genes from the GeneCards database (22) (https://

www.genecards.org/) and relevant published literature. Employing

“cellular senescence” as the search keyword, we filtered for genes

related to cellular senescence with “protein coding” status and a

“relevance score > 0.” This search yielded 3575 CSRGs. Similarly,

using the same keyword in the PubMed database (https://

pubmed.ncbi.nlm.nih.gov/), we identified 279 cell senescence

genes in the published literature (23). After merging datasets and

eliminating duplicates, we identified a total of 3609 CSRGs.

Supplementary Table S1 provides detailed information.

Pyroptosis-related genes (PRGs) were obtained from the

GeneCards database and published literature. By employing the

term “pyroptosis” and applying a filter for “protein coding” genes

that had a “relevance score > 0,” we identified 502 genes associated

with pyroptosis. Furthermore, a keyword search for “pyroptosis” in
Frontiers in Oncology 03
PubMed yielded 33 genes (24). After consolidating and removing

duplicates, we identified 510 PRGs. Detailed information is

provided in Supplementary Table S2. The intersection of CSRGs

and PRGs revealed 311 genes common to both categories; further

details are available in Supplementary Table S3.

To correct for batch effects, the GSE84402 and GSE46408

datasets were processed utilizing the ComBat function from the

sva package in R (Version 3.5.0) (25). The function corrects for both

known and unknown batch effects within the datasets, enhancing

data integration from diverse experimental conditions or time

points, resulting in a combined GEO dataset of 20 LIHC samples

and 20 normal samples. While the SVA approach significantly

reduces batch effects, some systematic biases may remain. To

further minimize these influences and ensure accuracy and

reliability, we will implement multiple validation strategies and

optimize data integration methods. The R package limma (Version

3.58.1) (26) standardizes the integrated GEO dataset, mapping gene

probes to their corresponding genes based on the latest annotation

for biological relevance. Normalization is performed to ensure

comparability of expression intensities across samples, reducing

technical variability. Principal component analysis (PCA) (27) is

conducted on expression matrices before and after batch effect

correction to evaluate the adjustments’ effectiveness, allowing

visualization of clustering and differences between samples in 2D

or 3D plots.
2.2 Differentially expressed genes
associated with cellular senescence and
pyroptosis in hepatocellular carcinoma

In the hepatocellular carcinoma dataset (TCGA-LIHC),

samples were categorized into two groups: LIHC and normal. The

R package DESeq2 (Version 1.42.0)was used to compare the two

groups. Genes exhibiting differential expression (DEGs) were

identified using |logFC| > 1 and adjusted to p < 0.05. Genes with

logFC > 1 and adjusted p < 0.05 were recognized to have increased

expression, whereas those with logFC < -1 and adjusted p < 0.05

were classified as downregulated. The p-value was adjusted using

the Benjamini-Hochberg method. The results of the variable
TABLE 1 Baseline table with TCGA-LIHC patients characteristics.

Characteristics Overall

n 373

Age (%)

<= 60 177 (47.5)

> 60 196 (52.5)

Gender (%)

FEMALE 121 (32.4)

MALE 252 (67.6)

Stage (%)

Stage I 173 (49.6)

Stage II 86 (24.6)

Stage III 85 (24.4)

Stage IV 5 (1.4)
TCGA, The Cancer Genome Atlas; LIHC, Liver Hepatocellular Carcinoma.
TABLE 2 GEO Microarray Chip Information.

GSE84402 GSE46408

Platform GPL570 GPL4133

Type Array Array

Species Homo sapiens Homo sapiens

Tissue Liver Liver

Samples in LIHC group 14 6

Samples in
Normal group

14 6

Reference PMID: 28810927 PMID: 23922981
GEO, Gene Expression Omnibus.
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expression analysis are depicted using a volcano plot constructed

using the R package ggplot2 (Version: 3.4.4).

To identify cellular senescence- and pyroptosis-related

differentially expressed genes (CSR&PRDEGs) in hepatocellular

carcinoma, variance analysis was performed on all DEGs that

complied with the standards of |logFC| > 1 and were adjusted to

p < 0.05. By intersecting these with CSRGs and PRGs, we mapped a

Venn diagram to identify genes with altered expression associated

with both cellular senescence and cell pyroptosis (CSR&PRDEGs).
2.3 Creation of a prognostic risk model for
hepatocellular carcinoma

To create a risk prediction model for the TCGA-LIHC dataset,

we employed the R package glmnet (Version 4.1-8) (28) to

performed least absolute shrinkage and selection operator

(LASSO) regression analysis. This examination was used for the

CSR&PRDEGs identified through univariate Cox regression,

utilizing the “Cox” family parameter and conducting 5-fold cross-

validation with 10 iterations. LASSO regression improves linear

regression by incorporating a penalty term (lambda × absolute

value of the coefficient), which helps decrease model overfitting and

increases the generalizability of the model. In this study, we

optimized the hyperparameter lambda of the LASSO regression

model using a 5-fold cross-validation technique to ensure

robustness. Each fold involved evaluating multiple candidate

lambda values and recording performance metrics, allowing us to

select the optimal lambda that maximizes model performance. We

further employed tenfold repeated cross-validation to enhance the

reliability of the validation outcomes. Additionally, we generated

LASSO model plots and variable trajectories to visualize the model

selection process, providing clearer insights into model and feature

dependencies. The outcomes of the LASSO regression were

depicted in a prognostic risk model diagram and variable

trajectory plot, facilitating the identification of genes relevant to

the risk prediction framework. Subsequently, the LASSO risk score

was calculated as follows:

riskScore =o
i
Coefficient (genei) * mRNAExpression (genei)

Next, samples of LIHC from TCGA-LIHC dataset were grouped

into high- and low-risk groups based on the median LASSO risk

score obtained from the risk prediction model.
2.4 Prognostic analysis and validation of
hepatocellular carcinoma prognostic
risk model

To assess variations in overall survival (OS) between the high-

and low-risk groups of LIHC samples from TCGA-LIHC dataset,

Kaplan–Meier (KM) curve analysis was performed using the R

package survival (Version 3.5-7) (29). The Kaplan–Meier curves

were constructed based on the LASSO risk score. We processed all
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included samples with censored data to ensure accurate recording

of the survival time and status for all patients. Patients who did not

reach the event endpoint during follow-up were categorized as

having censored data. We refrained from interpolating survival

times to preserve the integrity and authenticity of the data. To

ensure the accuracy and reliability of our analysis, we utilized

survival data associated with the LASSO risk score. During the

analysis, we screened all samples with complete clinical

information, including only those patients with documented

survival outcomes and survival times. This approach minimizes

potential bias and ensures the validity of our Kaplan-Meier analysis.

Furthermore, time-dependent ROC curve analysis (30) was

employed to assess the model performance, identify the optimal

model, and determine the best threshold. The timeROC R package

(Version 0.4) was used to generate time-dependent ROC curves and

compute the area under the ROC curve (AUC). This analysis

utilized the LASSO risk score and OS data to predict 1-year

survival rates for the LIHC samples, as well as survival outcomes

for 3- and 5-years. The AUC value varies between 0.5 and 1, where a

higher AUC suggests better diagnostic performance. An AUC above

0.5 signifies some predictive ability; values ranging from 0.5 to 0.7

suggest low precision, those between 0.7 and 0.9 signify moderate

accuracy, and values exceeding 0.9 denote high accuracy.

To investigate the relationship between the risk Score and

prognosis, and to assess its prognostic value, univariate and

multivariate Cox regression examinations were conducted using

variables such as risk score, sex, age, and clinical stage from the

LASSO model. The findings of these analyses were depicted using a

forest plot. Furthermore, we developed a nomogram (31), which is a

graphical tool that represents the influence of multiple independent

factors, using a set of disconnected line segments on a rectangular

coordinate system. Employing the R package rms (Version 6.7-1),

we constructed a nomogram based on multivariate Cox regression

results to illustrate the connection between the risk score and

clinical variables, offering predictions for survival outcomes at 1-,

3-, and 5-years.

To evaluate the model’s prediction precision, we employed a

calibration curve to compare the predicted probabilities with the

actual outcomes under various conditions. Calibration was

performed to assess the precision and reliability of the prognostic

risk model that integrated the LASSO risk score and clinical data.

Decision curve analysis (DCA) is a simple technique used to

evaluate clinical prediction models, diagnostic tests, and

molecular markers. We used the R package ggDCA (Version 1.1)

to generate a DCA plot based on the nomogram, evaluating the

precision and discriminative power of the prognostic risk model for

forecasting survival outcomes at 1-, 3-, and 5-years for LIHC.
2.5 Gene ontology and pathway
enrichment analysis

Gene Ontology (GO) analysis (https://www.geneontology.org/)

(32) is widely utilized for functional enrichment studies and

encompasses categories such as biological processes, cellular
frontiersin.org
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components, and molecular functions. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) (https://www.genome.jp/kegg/) (33)

provides a comprehensive database of genomic data, biological

pathways, diseases, and drugs. In this study, the R package

clusterProfiler (34) was used to conduct GO and KEGG pathway

enrichment analyses of the genes within the risk prediction model.

Statistical significance was determined using an adjusted p-value

threshold of less than 0.05 and a false discovery rate (FDR)

threshold of less than 0.25. The Benjamini-Hochberg procedure

was employed for p-value adjustment.
2.6 Gene set enrichment analysis for high-
and low-risk groups

In the TCGA-LIHC dataset, samples were classified into high- and

low-risk groups based on the median LASSO risk scores. Gene set

enrichment analysis (GSEA) was performed utilizing the R package

`clusterProfiler`(Version 4.10.0) on all genes within these LIHC

samples. For GSEA, the analysis parameters included setting a

random seed of 2023, with a range of ten five 500 genes within each

gene set. The Molecular Signatures Database (MSigDB) was accessed

for C2 gene sets, specifically the cp.all.V2022.1.Hs.symbols.gmt

dataset, encompassing all canonical pathways (3050 sets). GSEA

findings were deemed significant if the adjusted p-value was < 0.05,

and the false discovery rate was < 0.25, with p-value adjustment

performed using the Benjamini-Hochberg method.
2.7 Gene set variation analysis for high-
and low-risk groups

Gene set variation analysis (GSVA) (35) is a nonparametric,

unsupervised technique that evaluates gene set enrichment by

transforming individual gene expression matrices across samples

into matrices representing gene sets. This method determines

whether specific pathways are significantly enriched in various

samples. In this study, gene sets were obtained from the MSigDB

database, specifically the h.all.v2023.2.hs.symbols.gmt file. GSVA

was performed on the TCGA-LIHC dataset to investigate gene

mutations and variations in functional enrichment analysis,

contrasting groups with high and low risks. Significant findings

were identified with an adjusted p-value of < 0.05, and p-values

were adjusted using the Benjamini-Hochberg method.
2.8 Protein interaction network and gene
expression differences

The protein-protein interaction (PPI) network comprises

proteins that engage with each other, affecting different biological

activities, such as gene regulation, metabolism, signaling, and cell

cycle control. Studying these interactions is essential for

comprehending how proteins operate within biological systems,

contribute to signaling pathways, and influence cellular functions
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and metabolism, particularly under disease conditions. The STRING

database (36) (https://string-db.org/) provides information on

recognized and predicted interactions between proteins. In this

study, we used the STRING database to analyze interactions

involving genes from a prognostic risk model. To build the PPI

network related to these genes, We selected a minimum interaction

coefficient threshold of greater than 0.150, which corresponds to a

low confidence level. This network aids in the identification of

molecular complexes with specific biological functions based on

tightly connected regions. Genes exhibiting significant interactions

in the PPI network were selected for further analysis.

To evaluate the variations in gene expression of prognostic risk

model genes between the LIHC and normal groups, we used the

Mann–Whitney U test. We generated comparison charts to depict

the expression levels of these genes within the TCGA-LIHC dataset

and across the combined datasets.
2.9 Quantitative real-time reverse
transcription polymerase chain
reaction analysis

Peripheral blood samples were obtained from six patients with

LIHC and six healthy controls from the Inner Mongolia Hospital of

Traditional Chinese Medicine. The inclusion criteria required that

patients meet the latest guidelines of the US National

Comprehensive Cancer Network for Hepatobiliary Tumors,

Version 2.2021 (specifically for liver cancer), excluding patients

with metastatic liver cancer. Healthy volunteers without cognitive

impairments were included in the control group. Informed consent

was obtained from all participants, and the study was approved by

the Medical Ethics Committee of Inner Mongolia Medical

University (Approval No.: YKD202402165). RNA was extracted

from peripheral blood samples using the TRIzol reagent (G3013,

SERVICEBIO, CHINA). RNA quality and integrity were thoroughly

assessed before qPCR experiments. Purity was evaluated by

measuring the absorbance at 260 nm and 280 nm using a

spectrophotometer, resulting in an A260/A280 ratio of 1.8 to 2.0,

indicating high purity, and an A260/A230 ratio exceeding 2.0,

confirming minimal contamination. Integrity was confirmed

through agarose gel electrophoresis, showing distinct 28S and 18S

rRNA bands with a brightness ratio of approximately 2:1, indicative

of intact RNA. The 5S rRNA band was visible but less prominent,

with all bands appearing sharp and free from smearing. Total RNA

content and purity were measured, and cDNAwas generated using a

commercial reverse transcription kit (G3337, SERVICEBIO,

CHINA). Real-time quantitative polymerase chain reaction (PCR)

amplification was conducted in a 50 μL reaction system using the

SYBR Premixed Ex Taq kit (G3326, SERVICEBIO, CHINA). b-actin
served as the endogenous control gene. Relative mRNA levels were

assessed utilizing the 2^(-DCT) method. The efficiency of all primer

pairs was evaluated using the standard curve method, and each

primer pair exhibited an efficiency within the optimal range of 90%

to 110%. Additionally, melt curve analysis of all amplified products

revealed a single peak, indicating high primer specificity and the
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absence of primer-dimer formation and non-specific amplification.

The primer sequences are listed in Supplementary Table S4.
2.10 Statistical analysis

Data processing and analysis were performed using R software

(version 4.3.0; R Project for Statistical Computing, Vienna, Austria).

The independent Student’s t-test was used to compare continuous

variables in the two groups when the variables followed a normal

distribution, unless otherwise specified. For variables that did not

follow a Gaussian distribution, the Mann–Whitney U test was

conducted. The Kruskal–Wallis test was used to compare three or

more groups. Spearman’s correlation analysis was conducted to

determine the correlation coefficients between the various molecules.

Unless otherwise indicated, statistical significance was evaluated using

two-sided p-values, with p-value < 0.05 deemed significant.

3 Results

3.1 Technology roadmap

The technology roadmap is shown in Figure 1.
3.2 Merging of hepatocellular
carcinoma datasets

Initially, batch effects were removed from the GSE84402 and

GSE46408 datasets using the R package sva, resulting in the

combined GEO dataset. The distribution boxplot (Figures 2A, B)

was first used to compare the expression values of the datasets

before and after the removal of batch effects. Subsequently, a PCA

plot (Figures 2C, D) was used to assess the distribution of the low-

dimensional features before and after batch impact removal. The

distribution boxplot and PCA plot results indicated that the batch

impact in the hepatocellular carcinoma data collection was

substantially minimized after its elimination.
3.3 Differentially expressed genes related
to cell senescence and pyroptosis in
hepatocellular carcinoma

The TCGA-LLIHC was divided into LIHC and normal groups.

To assess variations in gene expression between these groups within

the TCGA-LIHC dataset, differential analysis was conducted using

the R package DESeq2.DESeq2 employs a model grounded in the

negative binomial distribution, which is well-suited to the count-

based structure of sequencing data. It also incorporates size factor

normalization to adjust for sequencing depth, thereby ensuring

robust and reliable analysis results. This analysis revealed the DEGs

between the two groups. The findings showed that in the TCGA-

LIHC dataset, 3659 genes complied with |logFC| > 1 and adjusted

(adj.) p < 0.05. Within this set of genes, 2,656 were upregulated
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(logFC > 1 and adj. p < 0.05), whereas 1,003 were downregulated

(logFC < -1 and adj. p < 0.05), as shown in the volcano

plot (Figure 3A).

To identify CSR&PRDEGs, an intersection was performed

between DEGs (|logFC| > 1 and adj. p < 0.05), CSRGs, and PRGs.

This intersection resulted in 68 DEGs found in both cell senescence

and pyroptosis, as detailed in Supplementary Table S5 and

illustrated in Figure 3B. The differences in the expression of these

CSR&PRDEGs between various sample groups in the TCGA-LIHC

dataset were further analyzed, and a heatmap was developed using

the R package pheatmap to display the findings (Figure 3C).
3.4 Creation of a prognostic risk model for
hepatocellular carcinoma

To create the LIHC prognostic risk model, 68 CSR&PRDEGs

were utilized in a LASSO regression analysis. The analysis was

visualized by creating a LASSO regression model map (Figure 4A)

and a LASSO variable trajectory map (Figure 4B). The results

indicated that the LASSO regression model included six

prognostic risk model genes: ANXA2, APOA1, EZH2, IGF2BP3,

SQSTM1, and TNFRSF11B. The LASSO risk score was determined

by employing the specified formula.

RiskScore = ANXA2 * (0:0548) + AP0A1 * ( − 0:0014)

+ EZH2 * (0:3410) + IGF2BP3 * (0:0023)

+ SQSTM1 * (0:0879) + TNFRSF11B * (0:0299)

Subsequently, LIHC samples from the TCGA-LIHC dataset

were classified into high-risk and low-risk groups according to the

median LASSO risk score.
3.5 Prognostic analysis and validation of a
hepatocellular carcinoma prognostic
risk model

We created time-dependent ROC curves (Figure 5A) for LIHC

samples from the TCGA-LIHC dataset at 1-, 3-, and 5-year

intervals. The findings demonstrated that the LASSO risk score

exhibited significant accuracy in predicting prognosis, with the

highest predictive performance observed in the first year (AUC =

0.762). Additionally, to assess the diagnostic value of the LASSO

risk score for OS, Kaplan–Meier survival analysis was performed

using the R package survival, and Kaplan–Meier curves were

generated according to the LASSO risk score (Figure 5B). The

analysis demonstrated a statistically significant variation in OS

between the high- and low-risk groups of LIHC samples from the

TCGA-LIHC dataset (p < 0.05).

Univariate and multivariate Cox regression analyses were

performed to assess the correlation between the LASSO risk

score, clinical prognosis, and prognostic ability in LIHC samples

of the TCGA-LIHC dataset. Initially, a univariate Cox regression
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analysis was performed using the LASSO risk score, age, sex, and

grade variables. Variables yielding a p-value below 0.10 in the

univariate analysis were incorporated into the multivariate Cox

regression analysis, and the findings of these analyses were depicted

using a forest plot. The findings (Figures 5C, D) demonstrated that

both the risk score and clinical stage were significant in the

univariate analysis (p < 0.10) and remained as independent

prognostic factors in the subsequent multivariate Cox regression

analysis. The comprehensive results from the univariate and

multivariate Cox regression analyses are shown in Table 3.
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To assess the prognostic value of the risk model for

hepatocellular carcinoma more thoroughly, a nomogram was

developed that included both the LASSO risk score and clinical

stage variables (stage) to demonstrate their relationship (Figure 5E).

The analysis revealed that the LASSO risk score offered substantially

greater utility than clinical stage variables in the hepatocellular

carcinoma prognostic risk model.

Furthermore, the calibration of the LIHC prognostic risk

framework was evaluated at 1 year (Figure 5F), 3 years

(Figure 5G), and 5 years (Figure 5H), with calibration curves
FIGURE 1

Flow chart for the comprehensive analysis of cellular senescence-related and pyroptosis-related differentially expressed genes. TCGA, The Cancer
Genome Atlas; LIHC, liver hepatocellular carcinoma; DEGs, differentially expressed genes; CSR&PRG, cellular senescence-related and pyroptosis-
related genes; CSR&PRDEG, cellular senescence-related and pyroptosis-related differentially expressed genes; LASSO, least absolute shrinkage and
selection operator; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; qPCR, quantitative polymerase chain reaction.
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created for each time point (Figures 5F–H). The results indicated

that the time-dependent ROC curve AUC for 1 to 5 years ranged

from 0.6 to 0.9, demonstrating the model’s accuracy in prognostic

prediction, particularly at the 1-year mark. Decision Curve Analysis

(DCA) assessed the clinical utility of the LIHC prognostic risk

model at 1 year (Figure 5I), 3 years (Figure 5J), and 5 years

(Figure 5K). The 3-year model’s decision curve consistently

surpassed the “all positive” and “all negative” lines across a

specific risk threshold range, indicating the largest area under the

curve and higher net benefit compared to the 1-year and 5-year

models. This suggests that the 3-year model offers superior clinical

utility for LIHC prediction, with the ranking of predictive

effectiveness being: 3 years, 1 year, and 5 years.
3.6 Gene ontology and pathway
enrichment analysis

Through GO and KEGG enrichment analyses, we further explored

the connection between biological processes, cellular component,

molecular function, and biological pathways of the six prognostic risk

model genes in LIHC. These sixmodel genes were analyzed for GO and

KEGG pathway enrichment, and the detailed findings are presented in

Table 4. The analysis revealed that these genes were predominantly

linked to biological processes, such as positive regulation of sterol
Frontiers in Oncology 08
transport, positive regulation of cholesterol transport, plasma

lipoprotein particle clearance, and other processes related to sterol

and cholesterol transport. They were also enriched in cellular

components including P-bodies, cytoplasmic ribonucleoprotein

granules, ribonucleoprotein granules, late endosomes, and Schmidt-

Lanterman incisures. In relation to molecular function, these genes

were involved in primary miRNA binding, binding of N6-

methyladenosine-containing RNA, virion binding, phospholipase

inhibitor activity, and high-density lipoprotein particle binding.

Additionally, these genes were significantly present in the biological

pathway of osteoclast differentiation. The findings from the GO and

KEGG enrichment analyses are depicted using both a bubble plot and

bar chart (Figures 6A, B).

Additionally, network diagrams for biological processes,

cellular components, molecular functions, and biological

pathways were created based on the GO and KEGG enrichment

analyses (Figures 6C–F).
3.7 Gene set enrichment analysis for high
and low risk groups

GSEA was performed to evaluate the impact of gene expression

levels on the stratification of LIHC into high-risk and low-risk

groups. This analysis examined the relationship between the
FIGURE 2

Removal of batch effects for GSE84402 and GSE46408. (A) Box plot of combined GEO datasets distribution before batch removal. (B) Post-batch
integrated GEO datasets (combined dataset) distribution boxplots. (C) 2D PCA plot of the datasets before debatching. (D) 2D PCA plots of combined
GEO dataset after debatching. PCA, principal component analysis. The hepatocellular carcinoma dataset GSE84402 is green, and the hepatocellular
carcinoma dataset GSE46408 is blue.
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expression levels of all genes in LIHC samples and their related

biological processes, cellular components, and molecular functions.

The findings are depicted in a mountain plot (Figure 7A) and

detailed in Table 5. The analysis identified significant enrichment of

genes in LIHC samples in processes such as Prc2 methylation of

histones and DNA (Figure 7B), TP53 regulates the transcription of

genes involved in G1 cell cycle arrest (Figure 7C), canonical and

noncanonical notch signaling (Figure 7D), and oxidative stress-

induced senescence (Figure 7E), among other biological functions

and signaling pathways.
3.8 Gene set variation analysis for high-
and low-risk groups

GSVA was conducted on all genes in the LIHC samples of the

TCGA-LIHC dataset; detailed results are presented in Table 6. Positive

enrichment pathways with adj. p < 0.05, the top 10 logFC rankings, and

the top 10 negative enrichment pathways were identified. A heat map
Frontiers in Oncology 09
(Figure 8A) was used to visualize the altered gene expression of these 20

pathways in the high- and low-risk groups.

The differences were further confirmed using theMann–Whitney

U test, and the results are illustrated in a comparative diagram for the

groups (Figure 8B). GSVA revealed that several pathways, including

Myc targets v2, Myc targets v1, DNA repair, E2F targets, PI3K-AKT-

mTOR signaling, mitotic spindle, protein secretion, bile acid

metabolism, oxidative phosphorylation, myogenesis, adipogenesis,

and coagulation, demonstrated statistically significant disparities

between the high- and low-risk groups (p < 0.05).
3.9 Protein interaction network
construction and differential gene
expression verification of the prognostic
risk model

Initially, a PPI analysis was conducted, and the PPI network for

the six prognostic risk model genes was constructed using the
FIGURE 3

Differential gene expression analysis. (A) Volcano plot of gene expression analysis between the LIHC and normal groups in the TCGA-LIHC dataset.
(B) DEGs and Venn diagrams of CSRGs and PRGs in the TCGA-LIHC dataset. (C) Heat map of CSR&PRDEGs in the dataset TCGA-LIHC dataset.
TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; DEGs, differentially expressed genes; CSRGs, cellular senescence-related
genes; PRGs, pyroptosis-related genes; CSR&PRDEGs, cellular senescence-related and pyroptosis-related differentially expressed genes. Yellow,
LIHC group; grey, normal group. In the heat map, red represents high expression and blue represents low expression, and the depth of the color
represents the degree of expression.
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STRING database (Figure 9A). These findings demonstrate that the

six model genes related to prognostic risk were ANXA2, APOA1,

EZH2, IGF2BP3, SQSTM1, and TNFRSF11B.

To explore the differences in the expression of prognostic risk

model genes between the LIHC and normal groups within the

TCGA-LIHC dataset and the combined dataset, group comparison

plots were employed. The differential results (Figures 9B, C)

revealed that the expression levels of the six genes in the

prognostic risk framework between the LIHC and normal groups

were statistically significant (p < 0.001). These genes included

ANXA2, APOA1, EZH2, IGF2BP3, SQSTM1, and TNFRSF11B.

Additionally, the expression levels of four prognostic risk model

genes (ANXA2, APOA1, EZH2, and IGF2BP3) in the combined

dataset of the LIHC and normal groups were significantly different

(p < 0.001). The expression levels of TNFRSF11B in the combined

dataset demonstrated a significant difference between the LIHC and

normal groups (p < 0.01), whereas the expression of SQSTM1 in

combined dataset was statistically significant (p < 0.05).
3.10 mRNA expression of ANXA2, APOA1,
EZH2, IGF2BP3, SQSTM1, and TNFRSF11B

The ANXA2 expression levels (Figure 10A) were significantly

lower in the LIHC group than in the control group (p < 0.01). In

contrast, APOA1 (Figure 10B) showed markedly higher expression

in the LIHC group than in the control group (p < 0.01). Similarly,

EZH2 (Figure 10C) showed substantially elevated expression in the

LIHC group relative to that in the control group (p < 0.05).

Although IGF2BP3 (Figure 10D) exhibited higher expression

levels in the LIHC group compared to the control group, the
Frontiers in Oncology 10
difference was not statistically significant. The expression of

SQSTM1 (Figure 10E) was substantially higher in the LIHC group

than the control group (p < 0.05). Finally, the expression of

TNFRSF11B (Figure 10F) was significantly elevated in the LIHC

group compared to the control group (p < 0.01).
4 Discussion

LIHC is a common cancer that has a significant impact on

morbidity and mortality (37). The high mortality rate associated

with LIHC primarily stems from its late diagnosis and the scarcity

of effective treatment options, highlighting the urgent need for

novel diagnostic and therapeutic strategies (38). The progression of

LIHC is influenced by numerous genetic and environmental factors

(39, 40). Chronic inflammation underpins cancer initiation and

progression (41–43). Chronic inflammation is closely linked to cell

senescence and pyroptosis (44, 45) and can precipitate tumor

formation. Thus, elucidating the molecular mechanisms of LIHC

through cell senescence and pyroptosis is crucial for its early

detection, effective treatment, and enhanced patient outcomes.

However, the research in this field is limited.

Given the pressing need to enhance diagnostic and therapeutic

strategies for LIHC, our research focused on genes linked to

inflammatory cell senescence and pyroptosis, identifying potential

markers for early diagnosis and treatment and developing

prognostic models. Biomarkers hold significant potential in

clinical applications. First, the six model genes identified through

LASSO regression (ANXA2, APOA1, EZH2, IGF2BP3, SQSTM1,

TNFRSF11B) demonstrate robust prognostic capabilities.

Evaluating the correlation between the LASSO Risk Score and
FIGURE 4

LASSO regression analysis. (A, B) Plots of prognostic risk model (A) and variable trajectories (B) of the LASSO regression model. LASSO, least absolute
shrinkage and selection operator. (A) illustrates the variation of individual gene coefficients in the LASSO (Least Absolute Shrinkage and Selection
Operator) regression analysis. The x-axis represents the Fraction of Deviance Explained, while the y-axis displays the Coefficients for each gene.
Distinctly colored lines denote different gene coefficients. As the LASSO process progresses, most gene coefficients gradually diminish to zero,
facilitating the selection of significant genes. In this figure, it is evident that as the penalty parameter l increases (from left to right), the coefficients
of certain genes approach zero, indicating their decreasing importance to the model. Ultimately, the retained genes will be utilized to construct
prognostic risk models, which are crucial for subsequent analyses. (B) presents another critical outcome of the LASSO regression analysis,
specifically the relationship between Partial Likelihood Deviance and the penalty parameter l. The x-axis denotes the Log l value, while the y-axis
indicates the Partial Likelihood Deviance. Red dots represent the deviance for each l value, and gray vertical lines illustrate the corresponding
standard error ranges. It can be observed that as the l value increases, the partial likelihood deviance decreases, suggesting an improvement in
model fit. Additionally, there is a notable inflection point, indicating that at this l value, the model complexity and predictive power achieve an
optimal balance. Selecting an appropriate l value is essential for establishing the optimal model. Based on information criteria, we can determine the
best l value to finalize gene retention.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1485421
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1485421
FIGURE 5

Prognostic model of TCGA-LIHC. (A) Time-dependent ROC curves at 1-, 3-, and 5-years for LASSO risk score. (B) Prognostic Kaplan–Meier curves
between high and low LASSO risk score groups and OS of LIHC. There was a statistically significant difference in survival probability between the high-
risk group (red line) and the low-risk group (blue line), indicating that the risk score plays a crucial role in predicting patient prognosis. At 1 year, the
survival probability of the high-risk group was markedly lower than that of the low-risk group, demonstrating a substantial survival disparity. At 3 years,
although survival remained lower in the high-risk group compared to the low-risk group, the survival gap appeared to have narrowed. By 5 years, this
trend persisted: the survival probability in the high-risk group continued to be lower than in the low-risk group, suggesting differences in long-term
prognosis. The hazard ratio (HR) was 0.42, indicating that the risk of mortality was 2.38 times higher in the high-risk group compared to the low-risk
group. The p-value of less than 0.001 further confirmed that risk scores effectively differentiate survival outcomes between the two groups. (C) Forest
plot of the univariate Cox regression model based on risk score, age, sex, and clinical stage. (D) Forest plot of the prognostic risk model of LIHC based
on risk score and clinical stage by multivariate Cox regression analysis. (E) Nomogram of the prognostic risk model. (F-H) Calibration curves for 1-year
(F), 3-years (G), and 5-years (H) of the prognostic risk model. In these curves, the horizontal axis indicates the survival probability anticipated by the
framework and the vertical axis indicates the actual survival probability. A closer alignment of the predicted line with the ideal gray line reflects better
prediction accuracy at that time point. I-K. DCA plot for 1-year (I), 3-years (J), and 5-years (K) of the prognostic risk model for LIHC. When the model’s
line remains above the “All positive” and “All negative” lines within a particular span, a broader range signifies a higher net benefit and superior model
performance. TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; OS, overall survival; KM, Kaplan–Meier; ROC, receiver operating
characteristic; DCA, decision curve analysis. The area under the curve (AUC) has accuracy when between 0.7 and 0.9. Light blue represents the low-risk
group and pink represents the high-risk group.
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TABLE 3 Results of Univariable and Multivariable Cox Analysis for TCGA-LIHC Datasets.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 349

<= 60 171 Reference

> 60 178 1.247 (0.862 - 1.803) 0.241

Gender 349

FEMALE 111 Reference

MALE 238 0.760 (0.523 - 1.106) 0.152

Stage 349

Stage I 173 Reference Reference

Stage II 86 1.417 (0.868 - 2.312) 0.164 1.181 (0.717 - 1.945) 0.514

Stage III 85 2.734 (1.792 - 4.172) < 0.001 2.186 (1.416 - 3.374) < 0.001

Stage IV 5 5.597 (1.726 - 18.148) 0.004 7.259 (2.223 - 23.702) 0.001

RiskScore 349 5.541 (3.175 - 9.670) < 0.001 5.019 (2.790 - 9.029) < 0.001

TCGA, The Cancer Genome Atlas; LIHC, Liver Hepatocellular Carcinoma.
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patient survival can help clinicians identify high-risk patients and

personalize treatment plans. Second, these genes are closely

associated with the onset and progression of hepatocellular

carcinoma, making them promising candidates for early diagnosis
TABLE 4 Result of GO and KEGG Enrichment Analysis for CSR&PRDEGs

ONTOLOGY ID Description G

BP GO:0032373 positive regulation of sterol transport

BP GO:0032376 positive regulation of cholesterol transport

BP GO:0034381 plasma lipoprotein particle clearance

BP GO:0032371 regulation of sterol transport

BP GO:0032374 regulation of cholesterol transport

CC GO:0000932 P-body

CC GO:0036464 cytoplasmic ribonucleoprotein granule

CC GO:0035770 ribonucleoprotein granule

CC GO:0005770 late endosome

CC GO:0043220 Schmidt-Lanterman incisure

MF GO:0070878 primary miRNA binding

MF GO:1990247 N6-methyladenosine-containing
RNA binding

MF GO:0046790 virion binding

MF GO:0004859 phospholipase inhibitor activity

MF GO:0008035 high-density lipoprotein particle binding

KEGG hsa04380 Osteoclast differentiation

GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KE
and Pyroptosis-Related Differentially Expressed Genes.
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and disease monitoring. Assessing their expression levels can aid in

determining disease severity and guiding therapeutic decisions.

Third, investigating the molecular mechanisms of these genes can

identify novel therapeutic targets. For example, understanding
eneRatio BgRatio pvalue p.adjust qvalue

2/6 38/18614 6.06E-05 1.60E-02 6.25E-03

2/6 38/18614 6.06E-05 1.60E-02 6.25E-03

2/6 55/18614 1.28E-04 2.24E-02 8.78E-03

2/6 79/18614 2.64E-04 2.41E-02 9.43E-03

2/6 79/18614 2.64E-04 2.41E-02 9.43E-03

2/6 98/19518 3.69E-04 2.38E-02 7.65E-03

2/6 253/19518 2.43E-03 2.38E-02 7.65E-03

2/6 271/19518 2.78E-03 2.38E-02 7.65E-03

2/6 296/19518 3.30E-03 2.38E-02 7.65E-03

1/6 11/19518 3.38E-03 2.38E-02 7.65E-03

1/6 10/18369 3.26E-03 4.37E-02 1.48E-02

1/6 10/18369 3.26E-03 4.37E-02 1.48E-02

1/6 11/18369 3.59E-03 4.37E-02 1.48E-02

1/6 12/18369 3.91E-03 4.37E-02 1.48E-02

1/6 12/18369 3.91E-03 4.37E-02 1.48E-02

2/5 135/8659 2.34E-03 4.68E-02 2.96E-02

GG, Kyoto Encyclopedia of Genes and Genomes; CSR&PRDEGs, Cellular Senescence-Related
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EZH2’s role in cell proliferation and tumor progression may lead to

specific inhibitors targeting this gene. Finally, leveraging risk scores

from these model genes facilitates personalized clinical

management. Patients in different risk categories may require

distinct follow-up frequencies and treatment approaches,

optimizing care and enhancing outcomes.
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We found six key genes: ANXA2, APOA1, EZH2, IGF2BP3,

SQSTM1, and TNFRSF11B. Kaplan–Meier survival analysis and

ROC curves were used to evaluate the model’s predictive

performance. The findings revealed a substantial variation in OS

between the high- and low-risk groups (p < 0.05). The model

demonstrated high accuracy in predicting survival at 1-year, 3-year,
FIGURE 6

GO and KEGG enrichment analysis for model genes. (A, B). The results of GO and KEGG pathway enrichment analysis of model genes are shown in
the bar graph (A) and bubble plot (B). GO terms and KEGG terms are shown on the ordinate. (C-F) The network diagram of GO and KEGG pathway
enrichment analysis results of model genes; BP (C), CC (D), MF (E) and KEGG (F). The brown nodes represent items, the gray nodes represent
molecules, and the lines represent the relationship between items and molecules. These diagrams depict the relationships between molecules and
their respective annotations, with larger nodes indicating entries that include a greater number of molecules. The bubble size in the bubble plot
represents the number of genes, and the color of the bubble represents the size of the adj. p-value, the more red the color, the smaller the adj. p-
value, and the more blue the color, the larger the adj. p-value. The screening criteria for GO and KEGG pathway enrichment analysis were adj. p <
0.05 and FDR value (q value) < 0.25 were considered statistically significant, with p value correction by the Benjamini-Hochberg method.
CSR&PRDEGs, cellular senescence-related and pyroptosis-related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function; FDR, false discovery rate.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1485421
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1485421
and 5-year intervals in patients with LIHC. The expression levels of

these genes were significantly elevated in the peripheral blood of

patients with LIHC compared to normal controls (p < 0.05).

Functional enrichment analysis identified important biological

pathways and processes associated with these genes, providing

insights into the molecular mechanisms that drive LIHC

progression. This study utilized multiple datasets to explore the

gene-disease relationship from various perspectives, constructing a

prognostic risk model based on CSR&PRDEGs to enhance

prognostic accuracy for LIHC, and examining the biological

functions and potential mechanisms of these genes in LIHC.

ANXA2 is a calcium-dependent membrane-binding protein

involved in apoptosis, proliferation, and migration (46–48). In

hepatocellular carcinoma (HCC), ANXA2 overexpression correlates

with tumor aggressiveness and metastasis, influencing cancer

progression by regulating the extracellular matrix and promoting

tumor cell migration and invasion (49, 50). Additionally, ANXA2

interacts with inflammatory response and survival signaling pathways,

contributing to the development of liver cancer (51, 52). Regarding

pyroptosis, ANXA2 modulates the tumor microenvironment through

the b-catenin signaling pathway, linked to pro-inflammatory factors.

In cellular senescence, ANXA2 mediates responses to DNA damage

and may affect the transformation of tumor cells into a drug-resistant

state by regulating the regenerative potential of senescent cells. High
Frontiers in Oncology 14
ANXA2 expression is associated with poor prognosis in several

cancers, underscoring its role in tumor escape mechanisms.

EZH2, an important epigenetic regulator, silences gene

expression and is associated with HCC proliferation, migration,

and drug resistance (53). By downregulating tumor suppressor

genes, EZH2 enhances HCC malignancy and may serve as a

potential therapeutic target. Additionally, EZH2 inhibits

hepatocyte aging and promotes tumor cell survival, potentially

facilitating tumor progression by modulating inflammatory

responses. The interaction between ANXA2 and EZH2 in cellular

senescence and pyroptosis merits further investigation, as ANXA2’s

pro-inflammatory effects may influence tumor therapy responses.

SQSTM1, involved in autophagy and antioxidant response, is

often overexpressed in HCC, contributing to tumor cell survival and

proliferation (54). It plays a role in hepatocellular inflammation,

oxidative stress, and metabolism by inhibiting apoptosis.

TNFRSF11B is crucial in immune responses and tumorigenesis,

influencing the tumor microenvironment through the RANK-

RANKL signaling pathway, which promotes tumor cell

proliferation and metastasis. Its expression correlates positively

with HCC aggressiveness, likely due to interactions with local

immune cells that suppress anti-tumor immunity. Although

recognition of TNFRSF11B’s clinical significance is growing,

research on it as a therapeutic target remains limited. Preliminary
FIGURE 7

Gene set enrichment analysis for TCGA-LIHC risk groups. (A) GSEA four biological function mountain plot display of LIHC samples from the TCGA-
LIHC dataset. (B-E) GSEA shows that all genes were significantly enriched for Prc2 methylation of histones and DNA (B), TP53 regulates transcription
of genes involved in G1 cell cycle arrest (C), canonical and noncanonical notch signaling (D), and oxidative stress-induced senescence (E). The
screening criteria for GSEA were adj. p < 0.05 and FDR value (q value) < 0.25, with p value correction by the Benjamini-Hochberg method. TCGA,
The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; GSEA, gene set enrichment analysis; FDR, false discovery rate.
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TABLE 5 Results of GSEA for TCGA-LIHC Risk Group.

ID setSize EnrichmentScore NES pvalue p.adjust qvalue

PID_PLK1_PATHWAY 40 0.78289 2.09020 2.42E-
08

2.94E-06 2.42E-
06

REACTOME_ACTIVATED_PKN1_STIMULATES_TRANSCRIPTION_OF_AR_ANDROGEN_RECEPTOR_REGULATED_GENES_KLK2_AND_KLK3 39 0.73692 1.96762 2.42E-
06

1.18E-04 9.67E-
05

WP_GASTRIC_CANCER_NETWORK_1 25 0.78401 1.96416 6.36E-
06

2.60E-04 2.14E-
04

REACTOME_RESOLUTION_OF_SISTER_CHROMATID_COHESION 110 0.66768 1.96171 2.45E-
10

6.68E-08 5.49E-
08

REACTOME_DNA_METHYLATION 39 0.73250 1.95581 3.75E-
06

1.77E-04 1.45E-
04

REACTOME_MITOTIC_SPINDLE_CHECKPOINT 101 0.67068 1.95341 1.41E-
09

2.47E-07 2.03E-
07

PID_AURORA_B_PATHWAY 39 0.73126 1.95252 4.01E-
06

1.82E-04 1.50E-
04

REACTOME_CONDENSATION_OF_PROPHASE_CHROMOSOMES 47 0.71596 1.95189 6.84E-
07

4.38E-05 3.60E-
05

REACTOME_POLO_LIKE_KINASE_MEDIATED_EVENTS 16 0.84066 1.94058 1.42E-
05

4.92E-04 4.04E-
04

REACTOME_ASSEMBLY_OF_THE_ORC_COMPLEX_AT_THE_ORIGIN_OF_REPLICATION 37 0.72418 1.92328 2.95E-
05

8.61E-04 7.07E-
04

REACTOME_PRC2_METHYLATES_HISTONES_AND_DNA 47 0.70481 1.92149 2.09E-
06

1.09E-04 8.95E-
05

REACTOME_MEIOTIC_RECOMBINATION 60 0.67748 1.89256 2.45E-
06

1.18E-04 9.67E-
05

REACTOME_SIRT1_NEGATIVELY_REGULATES_RRNA_EXPRESSION 41 0.70152 1.88391 2.68E-
05

7.94E-04 6.52E-
04

REACTOME_DNA_STRAND_ELONGATION 31 0.72195 1.86609 5.77E-
05

1.43E-03 1.17E-
03

REACTOME_UNWINDING_OF_DNA 11 0.87994 1.86465 3.78E-
05

1.01E-03 8.32E-
04

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 26 0.73488 1.85837 3.16E-
04

5.20E-03 4.27E-
03

REACTOME_DEPOSITION_OF_NEW_CENPA_CONTAINING_NUCLEOSOMES_AT_THE_CENTROMERE 46 0.68165 1.85505 2.45E-
05

7.50E-04 6.16E-
04
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studies suggest that blocking TNFRSF11B signaling can enhance

chemotherapy sensitivity and reduce recurrence rates in HCC.

Therefore, exploring TNFRSF11B in HCC therapy, especially in

combination with immunotherapies and targeted treatments, is

critical. Studies on its role in other cancers, such as breast and

lung cancer, provide insights supporting its evaluation in HCC, with

inhibition in breast cancer models significantly delaying tumor

growth and metastasis. Future research should focus on

elucidating TNFRSF11B’s functional mechanisms in HCC and its

therapeutic potential as a target.

Potential Value of Biomarkers in Clinical Applications:

Prognostic Ability: Six model genes (ANXA2, APOA1, EZH2,

IGF2BP3, SQSTM1, TNFRSF11B) identified through LASSO

regression analysis exhibit robust prognostic capabilities.

Evaluating the correlation between the LASSO Risk Score and

patient survival outcomes can assist clinicians in identifying high-

risk patients and subsequently personalizing treatment plans.

Biomarker Development: The expression levels of these model

genes are significantly associated with the onset and progression

of hepatocellular carcinoma, making them potential biomarkers for

early diagnosis and disease monitoring. Assessing these genes can

aid in determining disease severity and guiding therapeutic

decisions. Basis for Targeted Therapy: In-depth investigation into

the molecular mechanisms of these prognostic model genes can

facilitate the identification of novel targets and advance the

development of targeted therapies for hepatocellular carcinoma.

For instance, elucidating the role of EZH2 in cell proliferation and

tumor progression may lead to the creation of inhibitors targeting

this protein. Personalized Medicine: Leveraging the risk scores

derived from these model genes enables personalized clinical

management. Patients in varying risk categories may require

different follow-up frequencies and treatment strategies, thereby

optimizing patient care and enhancing treatment outcomes.

The enrichment analysis results of this study offer significant

insights into the biological processes and pathways associated with

prognostic risk model genes for LIHC. Through GO and KEGG

enrichment analyses, we recognized that six prognostic risk model

genes (ANXA2, APOA1, EZH2, IGF2BP3, SQSTM1 , and

TNFRSF11B) were strongly linked to various biological processes,

cellular components, and molecular functions. Specifically, these

genes are involved in critical processes such as positive regulation

of sterol transport and P-body formation, both of which are vital for

maintaining cellular homeostasis and responding to stress (55).

Additionally, GSEA detected significant enrichment in various

pathways such as PRC2-mediated histone and DNA methylation

and TP53 regulation of G1 cell cycle arrest genes (56). The PRC2

complex plays a role in epigenetic regulation via histone methylation,

which, in turn, influences gene expression and cell differentiation. The

TP53 pathway is a well-established tumor suppressor that governs cell

cycle arrest, apoptosis, and DNA repair, thereby preventing cancer

progression (57). Furthermore, GSVA highlighted notable variations

in pathways including MYC v2 and DNA repair between high- and

low-risk groups. The MYC pathway is a key regulator of cellular

growth and proliferation, and is frequently dysregulated in cancer,

contributing to uncontrolled cell division and tumor development.

DNA repair mechanisms are essential for preserving genomic
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integrity, and their disruption can lead to increased mutation rates

and cancer (58). PPI network analysis demonstrated that these

prognostic genes are interconnected and involved in immune

regulation. For example, EZH2 suppresses T cell infiltration and

function, thereby fostering an immunosuppressive tumor

microenvironment (59). Similarly, TNFRSF11B modulates immune

responses by interacting with the RANK/RANKL pathway, which is

vital for dendritic and T cell function (60). The enrichment of these

genes in immunomodulatory pathways, including the TP53 pathway

and MYC targets, underscores their role in influencing immune

responses in LIHC (61, 62). These interactions suggest a

collaborative contribution of these genes to the prognostic model,

highlighting their potential as therapeutic targets (63).

Cellular senescence is an irreversible state marked by loss of

proliferative capacity and significant phenotypic changes, including

the secretion of senescence-associated secretory phenotype (SASP)

molecules, which impact the immune microenvironment in

hepatocellular carcinoma (HCC) (44, 64). SASP components can

recruit immune cells such as macrophages, T cells, and natural killer

(NK) cells, promoting local inflammation and activating the

immune response (65). However, the persistence of senescent
Frontiers in Oncology 17
cells may foster immune tolerance, allowing tumor cells to evade

detection. Key aging-related genes like p16INK4a, p21CIP1/WAF1,

and IL-6 are upregulated in HCC, stimulating cytokine release and

influencing immune cell infiltration.

Pyroptosis, a form of inflammatory programmed cell death, also

plays a critical role in HCC. It induces immune responses by

releasing inflammatory factors like IL-1b and IL-18. While

activation of pyroptosis-related genes (e.g., CASP1, GSDMD)

enhances inflammation and attracts immune cells, it may

paradoxically promote tumor progression by allowing HCC cells

to escape immune surveillance through modulation of apoptosis-

inducing factors (66, 67).

There exists a complex interplay between cellular senescence

and pyroptosis, whereby senescent cells can stimulate pyroptosis,

further exacerbating immunosuppression and diminishing the

functionality of tumor-infiltrating immune cells, facilitating

immune evasion. The MAPK/ERK pathway is crucial in this

context, as it drives both senescence and pyroptosis, influencing

HCC progression.

In hepatitis C virus (HCV) infections, cell senescence exacerbates

liver damage and contributes to HCC development through
TABLE 6 Results of GSVA for TCGA-LIHC Risk Groups.

ID logFC AveExpr t P.Value adj.P.Val B

HALLMARK_COAGULATION 0.396871 0.002881 14.07214 1.23E-36 1.53E-35 72.15239

HALLMARK_BILE_ACID_METABOLISM 0.382569 0.027628 11.27163 1.09E-25 7.79E-25 47.07474

HALLMARK_XENOBIOTIC_METABOLISM 0.364831 0.018406 11.58021 7.64E-27 6.37E-26 49.71626

HALLMARK_FATTY_ACID_METABOLISM 0.310226 0.014717 10.10934 1.74E-21 9.69E-21 37.46812

HALLMARK_ADIPOGENESIS 0.268789 0.004818 9.798618 2.10E-20 8.75E-20 35.00108

HALLMARK_KRAS_SIGNALING_DN 0.257042 0.051305 14.45349 3.39E-38 5.66E-37 75.725

HALLMARK_PANCREAS_BETA_CELLS 0.254193 0.069833 10.2891 4.05E-22 2.53E-21 38.91581

HALLMARK_PEROXISOME 0.224815 0.016032 7.733553 9.07E-14 3.02E-13 19.89749

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.188229 -0.02831 5.237335 2.68E-07 6.08E-07 5.31765

HALLMARK_MYOGENESIS 0.178348 0.008016 7.341872 1.25E-12 3.89E-12 17.31888

HALLMARK_PROTEIN_SECRETION -0.15885 -0.02176 -5.50414 6.75E-08 1.61E-07 6.653213

HALLMARK_DNA_REPAIR -0.18869 -0.0277 -6.60549 1.31E-10 3.44E-10 12.7505

HALLMARK_UNFOLDED_PROTEIN_RESPONSE -0.20189 -0.04308 -7.77574 6.80E-14 2.43E-13 20.18114

HALLMARK_MTORC1_SIGNALING -0.20734 -0.02473 -8.06065 9.46E-15 3.64E-14 22.12588

HALLMARK_PI3K_AKT_MTOR_SIGNALING -0.21079 -0.03681 -9.84404 1.46E-20 6.65E-20 35.35885

HALLMARK_MYC_TARGETS_V2 -0.22072 -0.03908 -5.98397 4.95E-09 1.24E-08 9.196559

HALLMARK_MYC_TARGETS_V1 -0.32392 -0.02969 -9.92122 7.91E-21 3.95E-20 35.96902

HALLMARK_MITOTIC_SPINDLE -0.34664 -0.02638 -13.3943 6.67E-34 6.67E-33 65.88139

HALLMARK_G2M_CHECKPOINT -0.5273 -0.02842 -19.3794 4.99E-59 2.50E-57 123.547

HALLMARK_E2F_TARGETS -0.54227 -0.02069 -17.4787 6.85E-51 1.71E-49 104.8589
GSVA, Gene Set Variation Analysis; TCGA, The Cancer Genome Atlas; LIHC, Liver Hepatocellular Carcinoma.
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inflammation, pyroptosis, and senescence mechanisms. Viral genotype

and host genetic factors, particularly single nucleotide polymorphisms

(SNPs), modulate the expression of genes like ANXA2 and SQSTM1,

impacting immune escape and inflammation intensity.

In high-prevalence regions, targeted antiviral therapy for high-

risk populations is essential. Monitoring key gene expressions can

identify individuals at increased risk for HCC, laying the

groundwork for precision medicine. Reducing viral load through

antiviral treatment not only inhibits viral replication but also
Frontiers in Oncology 18
mitigates pyroptosis and senescence associated with chronic

inflammation, lowering HCC incidence.

In summary, exploring the connections between HCV-induced

inflammation, pyroptosis, cellular senescence, and the influence of

viral genotypes and host genetic factors is vital for understanding

HCC pathogenesis. This research will inform targeted antiviral

therapies and risk monitoring strategies for high-risk populations.

Although this study presented promising results, several

limitations must be considered. First, these findings are primarily
FIGURE 8

Gene set variation analysis for TCGA-LIHC risk groups. Heat map (A) and group comparison map (B) of GSVA results of the high-risk and low-risk
groups of LIHC samples in the TCGA-LIHC dataset. TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; GSVA, gene set variation
analysis. *** p value < 0.001. High-risk group, pink; low-risk group, light blue. Blue shows low enrichment and red shows high enrichment in the
heat map. The screening criteria for GSVA was adj. p < 0.05, with p value correction by the Benjamini-Hochberg method.
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derived from bioinformatic analyses and lack validation through

comprehensive wet laboratory experiments. Additionally, the study

does not integrate pathway-level correlations with clinical variables

such as tumor stage or grade, which would provide deeper insights

into the underlying biological mechanisms. Second, although the

sample size was considerable, it may not fully represent the diversity

within LIHC. Third, the lack of clinical validation restricts the

immediate practical application of the prognostic risk model in

clinical settings. Finally, combining the datasets from various

sources introduces batch effects. In the future, we plan to

undertake a series of comprehensive studies: 1. Mechanism

Research: We will conduct an in-depth investigation into the

biological functions and mechanisms of these model genes in

hepatocellular carcinoma (HCC), focusing on the regulation of

cell signaling pathways and the construction of interaction

networks. This will help us determine their specific roles in cancer

initiation and progression. 2. Large-Scale Clinical Validation: We

aim to expand our sample size to include patients from diverse

populations and disease stages, ensuring the applicability and

generalizability of our model. Additionally, we will evaluate its

performance across various clinical settings. 3. Integration with

Other Clinical Factors: We will explore the combination of model

genes with traditional clinical predictors (e.g., age, gender, clinical

stage) to develop a more comprehensive prognostic model, thereby
Frontiers in Oncology 19
enhancing predictive accuracy. 4. Functional Studies: Using cell lines

and animal models, we will investigate the functional roles of these

genes in HCC, validate their significance in hepatocarcinogenesis,

and assess their potential as therapeutic targets. 5. Drug Sensitivity

Analysis: We will evaluate the sensitivity of different drugs related to

the model genes, providing a foundation for targeted therapy in

HCC. Furthermore, we will explore whether specific drugs can yield

better treatment outcomes for high-risk patient groups.
5 Conclusion

The development and progression of hepatocellular carcinoma

(HCC) are influenced by a multitude of mechanisms, including

alterations in the tumor microenvironment, immune evasion, and

modulation of cell signaling pathways. Research has demonstrated

that the tumor microenvironment not only impacts tumor cell

proliferation but also facilitates liver cancer progression by

regulating local immune responses. The chronic inflammatory state

within the liver can lead to immune cell dysfunction, thereby creating

a conducive environment for cancer cell growth. Moreover, HCC

cells can evade host immune surveillance through various

mechanisms, leading to the suppression of T cell activity. These

mechanisms interact in a complex and mutually reinforcing manner,
FIGURE 9

Protein-protein interaction network and differential expression validation. (A) PPI network of prognostic risk model genes calculated from the
STRING database. (B, C) Group comparison of expression difference of model genes in LIHC and normal groups in the TCGA-LIHC and combined
datasets. TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; PPI, protein-protein interaction. ***p value < 0.001; **p value <
0.01; *p value < 0.05. In the group comparison plot, yellow represents the LIHC group and grey represents the normal group.
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collectively driving the development and progression of HCC.

Comparative Analysis In our study, an analysis of 68 differentially

expressed genes associated with cell senescence and pyroptosis

(CSR&PRDEGs) revealed trends consistent with previous research.

Notably, the expression levels of certain genes, such as ANXA2 and

EZH2, were significantly elevated in HCC tumor tissues, further

underscoring their importance in hepatocellular carcinoma

development. Unlike other studies, we observed that the expression

patterns of these immune-related genes may influence the

characteristics of the tumor microenvironment, offering new

insights into the pathogenesis of HCC. Relationship of Treatment

Strategies Our findings suggest a potential new therapeutic target for

hepatocellular carcinoma (HCC). Specifically, ANXA2 and EZH2

have been identified as key regulators in the proliferation and

metastasis of liver cancer. Targeting these genes can enhance

existing targeted therapies and immunotherapies. For instance,

inhibiting EZH2 activity may restore immune cell function and

improve the efficacy of immunotherapy for liver cancer. Moreover,

the identification of novel biomarkers such as TNFRSF11B provides a

foundation for assessing patient prognosis and developing
Frontiers in Oncology 20
personalized treatment strategies. Future Research Directions Based

on our findings, future studies should delve into the specific roles of

cell senescence and pyroptosis in HCC mechanisms. It is crucial to

evaluate the clinical validation potential of proposed biomarkers in

both immunotherapy and targeted therapy contexts. Additionally,

clinical trials should be conducted in combination with other

treatments to explore optimal treatment strategies.
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