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Purpose: Microsatellite instability (MSI) plays a crucial role in determining the

therapeutic outcomes of gastroesophageal junction (GEJ) adenocarcinoma. This

study aimed to develop a deep learning model based on H&E-stained pathological

specimens to accurately identify MSI-H in GEJ adenocarcinomas patients.

Methods: A total of 416 H&E-stained slides of 212 GEJ adenocarcinoma patients

were collected to establish an artificial intelligence (AI) model using digital

pathology (DP) for of MSI-H prediction. Simple Vit and ResNet18 Neural

networks were trained and tested on models developed from patch-level

images. A whole-slide image (WSI)-level AI model was constructed by

integrating deep learning- generated pathological features with six machine

learning algorithms.

Results: The MLP model showed demonstrated the highest performance in

predicting MSI-H in the test cohort, achieving an AUC of 93.3%, a sensitivity of

0.841, and a specificity of 0.952. Similarly, Decision Curve Analysis (DCA) revealed

that WSI-level H&E-stained slides offered significant clinical MSI-H prediction in

GEJ adenocarcinoma patients.

Conclusion: The AI model based on digital pathology exhibits great potential for

predictingMSI-H in GEJ adenocarcinoma, suggesting promising clinical applications.
KEYWORDS

artificial intelligence, deep machine learning, gastroesophageal junction
adenocarcinomas, digital pathology, microsatellite instability, microsatellite
instability high
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Introduction

Over the past 40 years, the incidence of gastroesophageal

junction (GEJ) adenocarcinoma has steadily increased worldwide,

while the incidence of gastric adenocarcinoma has been declining.

As a result, GEJ adenocarcinoma is now increasingly recognized as

a distinct disease entity (1–3). Due to challenges in early diagnosis,

GEJ adenocarcinomas often have a poor prognosis (4). Among

patients with metastatic disease, the median overall survival with

optimal palliative chemotherapy is approximately 11 months (5).

Microsatellite Instability (MSI) refers to variations in length or

structural abnormality of microsatellites within the genome. MSI is

a critical biomarker indicating resistance to fluoropyrimidine

chemotherapy and heightened sensitivity to immunotherapy.

Furthermore, Microsatellite instability–high (MSI-H) GEJ

adenocarcinomas are associated with better prognosis compared

to microsatellite-stable tumors (6–8). According to a recent clinical

trial study, Nivolumab and ipilimumab can have a high pathological

response rate in the neoadjuvant treatment of tumors GEJ

adenocarcinoma (9).

Pathology remains a cornerstone of tumor diagnosis. By

analyzing tumor samples assessing cell morphology, structural

organization, and biomarker expression clinicians can formulate

tailored treatment plans. However, the accuracy of mismatch repair

(MMR) immunohistochemistry, a primary method for detecting

MSI, is limited by procedural quality control and antibody

variability (10, 11). False negative results may prevent some

patients from benefiting from immune checkpoint inhibitors,

whereas false positive patients not only fail to provide treatment

benefits but also expose patients to unnecessary side effects (12).

Currently, traditional pathology diagnosis of MSI remains

inadequate, with methods such as Multiplex Fluorescent PCR

Capillary Electrophoresis or Next Generation Sequencing (NGS)

with methods such as expensive and requiring specialized

experimental conditions.

Deep machine learning for pathomics is an artificial intelligence

(AI) technique particularly suited for processing complex visual and

image data (13). Pathomics has been shown to predict tumor

treatment response, tumor grade and tumor recurrence (14, 15).

Rikiya’s deep learning model based on H&E histology whole-slide

imaging (WSI) outperformed experienced pathologists in

forecasting MSI in colorectal cancer (16). In addition to colorectal

cancer, deep learning algorithms have also proven useful for

detecting MSI in gastric and endometrial cancers (13, 17).

Recently, xu et al. performed end-to-end training of four different

tumor WSI and compared six basic models and six multi-instance

learning methods to confirm that their multi-instance learning

model has good application prospects in MSI prediction and

clinical application (18). The end-to-end training of the multi-

instance learning model was further validated for the prediction of

tumor MSI. To our knowledge, MSI detection in GEJ

adenocarcinoma using deep learning has not been studied to date.

This study aims to construct a deep learning model to predict MSI

in GEJ adenocarcinoma based on WSIs of H&E-stained

histopathologic slide.
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Materials and methods

Data collection

This study included 230 patients with GEJ adenocarcinoma

admitted to the First Affiliated Hospital of Zhengzhou University

from March 2021 to May 2024 were collected, 18 patients were

excluded due to unclear or faded H&E staining. MSI status in all

patients was determined using Multiplex Fluorescent PCR Capillary

Electrophoresis or NGS. To analyze therapeutic outcomes, patients

were categorized into two groups: MSI-H and MSI-L/MSS. The

remaining 212 cases, represented by 416 H&E-stained slides, were

randomly divided into training and testing sets at a ratio of 8:2 All

HE-stained slides were scanned with the KF-PRO-005-EX digital

full-slide imaging (WSI) system and exported to KFB via the K-

Viewer (1.7.1.1). The first affiliated hospital of Zhengzhou

university ethics committee approved the study (2023-KY-0019).
Data processing

WSIs were divided into smaller patches measuring 512 × 512

pixels at 20 × magnification. Patches containing more than 500

pixels were selected to eliminate excessive white background,

streamline subsequent processing. A notable challenge was the

variation in stain color distribution among WSIs, attributed to the

complexities of the staining process. To address variation in

staining color distribution, the Macenko method (19) was used

for slide-level color normalization. In addition, we applied Z-score

normalization to the RGB channels to achieve a standard normal

distribution of image intensities as input for our model. During

training, online data augmentation, such as random horizontal and

vertical flips, were employed. For testing, only standardization was

applied. After clipping and removing the bad images, 4129722 and

1042919 patches were retained in the test set and the training

set, respectively.
Deep machine learning training

The deep learning process comprised two layers of prediction:

patch-level and WSI-level. To account for diverse image sizes, WSIs

were initially divided into smaller patches. A multi-instance

learning algorithm was then used to aggregate patches likelihood,

generating WSI-level predictions.

Patch-level predictions were generated using the widely

recognized ResNet18 and Simple Vit network (20, 21), a

simplified model architecture based on the Vision Transformer

(ViT). This adaptation enables ViT to maintain high performance

in resource-constrained environments. The primary objective was

to evaluate the likelihood of each patch being accurately assigned to

its corresponding WSI label.

To enhance the model’s utility across diverse cohorts, transfer

learning was employed. This process involved initializing model

parameters with pretrained weights from the ImageNet dataset.
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Patch-level discriminator weights were retained, and the entire

model was subsequently fine-tuned using a limited dataset of

task-specific labeled data. Through the application of transfer

learning, we effectively utilized knowledge acquired from

ImageNet to address our tumor classification challenge, enabling

the model to perform effectively across a range of different cohorts.

For the training of deep models, we used a ROG-STRIX-RTX4090

D-24G-GAMING graphics card along with an Intel 13th-

generation i7-13700KF central processing, as described in

the article.

After training our deep learning model, we proceeded to predict

labels and their associated probabilities for all patches. These

probabilities for each patch were aggregated using a classifier to

generate predictions at the WSI level. In order to achieve enhanced

generalization, we carefully set the learning rate by utilizing the

cosine decay learning rate algorithm, and its definition is presented

in the following manner.

ht = hmin +
1
2
(hmax − hmin) 1 + cos

Tcurrent epoch

Ti

� �� �

With the ht represents the current learning rate, hmin represents

the minimum learning rate of 0, hmax represents the maximum

learning rate of 0.001, Ti represents the total number of iteration

epochs= 3. Using a relatively small number of epochs is justified as

our extensive dataset includes more than 5 million training patches.

We also utilized transfer learning algorithms to ensure optimal

model fit. The remaining parameters include optimizer -SGD, Loss

function -Cross-Entropy loss and a batch-size of 32.
Multi-instance learning for WSI fusion

Two machine learning methods, Patch Likelihood Histogram

(PLH) and Bag of Words (BoW) (22), were used to consolidate

patch-level predictions. The PLH method used histogram to

represent the distribution of patch likelihoods across the WSI. By

discretizing these likelihoods and rounding them to three decimals

places, we accurately captured their distribution, enabling robust

diagnostic model development. The BoW method drew inspiration

from both histogram-based and vocabulary-based approaches. It

utilized Term Frequency-Inverse Document Frequency (TF-IDF)

(22) mapping for individual patches, creating TF-IDF feature

vectors that summarized the entire WSI. These feature vectors

were subsequently used to train conventional machine learning

classifiers to predict the MSI status for each WSI.
Transformer based feature fusion

By integrating these two pipelines, we consolidated initially

fragmented patch-level predictions into comprehensive WSI level

features. These enriched features significantly enhance the

downstream analytical processes. At the same time, Based on the

cross-attention of transformer algorithm, histograms and TF-IDF
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features were fused by dynamic weight allocation and semantic

space alignment to construct the transformer model.
Signature building

Patient representations in this study were constructed by

integrating patch-level predictions, probability histograms, and

TF-IDF features. A t-test statistical analysis was initially employed

to identify significant pathological features, refining the feature

selection process for both diagnostic models. To build robust

prediction models, 5-fold cross-validation was applied to the

training set and a range of machine learning algorithms were

used, including support vector machine (SVM), tree-based

models such as random forest, gradient boosting methods such as

extreme gradient boosting (XGBoost) and optical gradient boosting

machine (LightGBM). In addition, we incorporated multilayer

perceptron (MLP) and logistic regression (LR) into our modeling

framework. We selected the best performing hyperparameter

combination based on grid-search by five-fold cross validation.

The hyperparameters of the six machine learning models are as

Supplementary Table 1.
Model evaluation

The ability of the model to accurately predict MSI-H was

evaluated using the ROC curve at the patch level. To further

assess performance, we visualized the aggregation of patch

predictions into WSI. Predicted labels and probability heatmaps

were generated to facilitate detailed analysis. For performance

metrics, we used AUC and calculated sensitivity and specificity to

comprehensively assess the prediction model’s efficacy. In this

study, a variety of software tools were utilized, including ITK

SNAP v.3.8.0, custom Python code written in Python v.3.7.12.

The Python packages used for analysis included Pandas v.1.2.4,

NumPy v.1.20.2, PyTorch v.1.8.0, Onekey v.2.2.3, OpenSlide v.1.2.0,

Seaborn v.0.11.1, Matplotlib v.3.4.2, SciPy v.1.7.3, Scikit-learn

v.1.0.2, and PyRadiomics v.3.0.
Results

Clinical characteristics of patients with GEJ
adenocarcinoma

A total of 212 patients diagnosed with EGJ adenocarcinoma

through PCR or NGS between March 2021 and May 2024 were

retrospectively included in this study from the First Affiliated

Hospital of Zhengzhou University. WSIs was performed on 416

H&E-stained slides from these patients. The slides were randomly

allocated into training (332 slides) and validation (84 slides) in a 8:2

ratio. Table 1 provides a summary of the patients’ clinical

characteristics, and the test flowchart is shown in Figure 1. No
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significant differences were observed between MSI-H and MSI-L/

MSS patients concerning smoking history, alcohol consumption, T

stage, metastasis in the liver, bone, or brain. In terms of gender, we

found that the MSI-H above the MSI-L/MSS patients (P<0.01).
t-SNE visualization

To facilitate-class classification in the diagnostic model, feature

dimensionality was reduced to single decimal places. The t-SNE

algorithm was employed to visualize how patch-level features

aggregated into WSI representations (Figure 2A). This approach

revealed a clear separation between the MSI-H and MSI-L/MSS

groups when visualized in a two-dimensional space. The Grid-Search
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algorithm was utilized to identify optimal model parameters, which

were subsequently fine-tuned through five-fold cross-validation.
Deep learning and machine learning
efficiency

The accuracy of the pathology model in identifying MSI-H was

assessed using patch-level ROC curves for detailed model

characterization (Figure 2B, Supplementary Figure 1). At the patch

level, the Simple Vit (0.789) algorithm had a higher AUC than the

ResNet (0.638) in test cohort. Furthermore, the higher model power

for predicting MSI-H at the WSI level indicates a significant

improvement in feature modeling when aggregating using BoW

and PLH methods. These findings underscore the effectiveness of

our feature aggregation approach. Among the tested machine

learning approaches, the MLP algorithm demonstrated the most

accurate classification results on the test cohort, as indicated by the

AUC (Figure 3A, Supplementary Figure 2A). However, the

transformer model showed higher AUC compared with the six

machine algorithms in test cohort, highlighting its advantage in

prediction performance (Figure 3B), and delong’s test was used to

compare the AUCs of the six machine learning algorithms and the

transformer model (Supplementary Figure 2B). Unfortunately, there

was no significant difference. AUC, specificity, and sensitivity values

for the training and test cohorts across all seven models are presented

in Supplementary Table 2. Additionally, confusion matrices of

transformer model for test cohorts were generated to visually

illustrate classification performance (Supplementary Figure 3).
Decision curve analysis and model
interpretability

Decision Curve Analysis (DCA) based on the seven model is

shown in Figure 3C. To further interpret the model’s decision-

making, Grad-CAM heatmaps were employed. These heatmaps

visually highlight areas of significant neural network during

classification, with darker regions indicating stronger contributions

to predictions. Importantly, Grad-CAM retains spatial information

for each class without requiring modifications or additional training.

Figure 4 demonstrates Grad-CAM ability to decode feature map

importance by analyzing gradients in the last convolutional layer.

This transparent visualization identifies input regions with the

highest impact on predictions, offering valuable insights into the

model’s interpretability. The red heat map highlights the highly

pleomorphic tumor cells and the large number of tumor-

infiltrating lymphocytes. Interestingly, the red heat map also

highlights the mucus in the interstitium as well as signet ring cells

with large amounts of mucus inside the cytosol. These features have

been suggested to be associated with MSI-H in previous studies.

Finally, the probability and prediction heatmaps generated by

pathology model (Figure 5) demonstrate its high accuracy in

assessing region tiles, further validating its robust performance.
TABLE 1 Baseline characteristics of patients in MSI-H and MSI-L\MSS.

Patient characteristics MSI-H MSI-L\MSS P

Age 64.88 ± 8.81 60.19 ± 10.03 0.01

Sex 0.491

Male 28 (70.00) 132 (76.74)

Female 12 (30.00) 40 (23.26)

Smoking history 0.619

Yes 9 (22.50) 48 (27.91)

No 31 (77.50) 124 (72.09)

Drinking history 0.729

Yes 7 (17.50) 37 (21.51)

No 33 (82.50) 135 (78.49)

T grade 0.731

1 2 (5.00) 15 (8.72)

2 8 (20.00) 28 (16.28)

3 26 (65.00) 105 (61.05)

4 4 (10.00) 24 (13.95)

Pulmonary metastasis 1

Yes 0 2 (1.16)

No 40 (100.00) 170 (98.84)

Osseous metastasis 1

Yes 0 2 (1.16)

No 40 (100.00) 170 (98.84)

Hepatic metastases 1

Yes 2 (5.00) 11 (6.40)

No 38 (95.00) 161 (93.60)

Brain metastases 1

Yes 0 1 (0.58)

No 40 (100.00) 171 (99.42)
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Discussion

Over the past five decades, the global incidence of tumor

increased gradually, imposing a significant economic burden on

healthcare systems worldwide (2, 23–26). The prognosis for GEJ

tumors remain poor, with 5-year survival rates for early-stage cases

rarely exceed 25% to 35% (27). GEJ cancer can be divided into four

subgroups according to their molecular characteristics: MSI tumors,

Epstein-Barr virus-infected tumors, genome stable tumors, and

chromosome instability tumors (28). MSI tumors are further
Frontiers in Oncology 05
categorized into MSI-H, MSI-L, and MSS on mutation frequency.

MSI-H tumors are characterized by increased lymphocyte

infiltration and high PD-L1 expression, making them promising

candidates for immunotherapy in patients with MSI-H-related GEJ

adenocarcinoma (29). Accurate detection of MSI status in GEJ

adenocarcinoma is therefore critical, particularly given its role in

predicting response of immune checkpoint inhibitors and the high

pathological complete response rates seen with neoadjuvant therapy

in resectable MSI-H cases (9, 30). Therefore, MSI accurate detection

for GEJ adenocarcinoma patients is very important.
FIGURE 1

Workflow Diagram for AI Model Development: Gather H&E slides from GEJ adenocarcinoma patients and use Simplevit to create a patch-level AI
model. Implement six machine learning techniques to develop WSI-level AI models, and assess the performance of each model on the test dataset.
FIGURE 2

(A) Plotting the t-SNE algorithm for MSI-H and MSS/MSI-L in a two-dimensional space. (B) The patch-level AUC for predicting MSI-H, MSS, and MSI-L in
the training and test cohorts by Simple ViT model.
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Computational pathology (CP) combines AI and machine

learning, leveraging digital pathomics to extract information beyond

what the human eye can perceive. CP has been applied in the routine

pathological diagnoses, predicting the treatment outcomes for patients,

and discovering molecular markers (13, 31, 32). Conventional

histopathology remains the gold standard for cancer diagnosis,

placing significant responsibilities on pathologists. They need to

diagnose and evaluate the disease while providing prognostic

information, including disease classification and grading. However,

these decisions rely on intricate visual characteristics and require

extensive expertise and training (33). For young pathologists, the

primary challenge is managing heavy clinical workloads while

contending with limited professional knowledge. The application of

CP can alleviate their workload and facilitate more accurate diagnosis.

In addition, CP can standardize processes such as image acquisition,

analysis, interpretation and reporting, addressing issues that arise

during the diagnosis process (31).

In a study, a DL prediction model was constructed from H&E

WSIs of 50 MSS and 50 MSI-H colorectal cancer cases. The area

under the receiver operating characteristic curve of the model’s test

set was significantly higher than that of the five pathologists (16).

Interestingly, Kather et al. have shown that a trained classifier on the

gastric carcinoma underperforming in colorectal cancer (13).

Additionally, Lee et al. demonstrated that classifiers trained on

colorectal cancer also performed poorly on gastric carcinoma (34).

These two studies show that the characteristics of gastric carcinoma

and colorectal carcinoma MSI are incompatible, consistent with the

morphological differences observed in MSI-H between gastric

carcinoma and colorectal carcinoma. By the same token, GEJ

adenocarcinomas differ from esophageal and gastric carcinoma in

terms of etiology, pathogenesis and natural history, and have been

regarded as a unique disease entity. Therefore, there is an urgent

need to develop AI technologies based on digital pathology for the

prediction of GEJ adenocarcinoma.

In recent years, CP has made remarkable progress in the field

of MSI prediction, particularly with Transformer architecture-based

DL models, such as MSIscope, achieving high accuracy and rapid

detection through multiscale feature fusion (35, 36). These techniques

are not only suitable for colorectal cancer, but also provide new ideas
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for MSI-H prediction of GEJ adenocarcinomas. In this study, we

developed a DL model based on multi-instance learning and

transformer algorithm to assist pathologists in determining MSI-H in

GEJ adenocarcinoms based on h&e slides. In the future, the

development of automated tools in combination with prospective

clinical trials, such as the immunotherapy cohort recommended by

the NCCN guidelines, is expected to drive the clinical translation of

computational pathology in GEJ adenocarcinomas.

At present, in addition to deep learning (DL) models based on

H&E staining at the section level to predict tumor MSI-H expression,

there are also DL methods based on radiomics features for predicting

MSI expression. Jiang et al. (37) extracted radiomics features from

pretreatment contrast-enhanced CT images of 223 gastric cancer

patients, and build the clinical model, radiology, and hybrid model to

predict the MSI expression. Although their study achieved high

accuracy, the MSI expression levels in their patients were based on

immunohistochemistry of pathological sections, which is subject to

some false negatives. In contrast, the patients in our research had

their MSI levels detected using PCR or NGS, ensuring the accuracy of

the model building. Hu et al. (38) developed a deep-learning model

based on weakly supervised learning to predict MSI status in prostate

cancer patients and evaluated its generalizability on externally stained

and scanned slides as well as in a time-independent validation cohort.

In addition,Wang et al. (39) predictedMSI expression levels based on

H&E-stained sections in endometrial cancer. These studies suggest

MSI expression can be predicted MSI expression with high accuracy

in a variety of solid tumors based onH&E staining. In addition, only a

fewMSI-H andMSI-L\MSS cases were not separated according to the

t-SNE dimension reduction results, which further shows the

reliability and stability of the prediction model. The results of the

DCA curve demonstrate that our model brings greater benefits in

predicting MSI-H in GEJ adenocarcinoma patients.

Our research has some limitations. First, this study only

investigated samples from a single center. In the future, we plan

combine multiple centers as an external validation set to verify the

performance of our model. Second, similar to several published

studies predicting MSI expression levels (37, 38, 40), the proportion

of MSI-H patients in our study was low, which is consistent with the

low proportion of MSI-H patients in total GEJ adenocarcinomas.
FIGURE 3

(A) In the test cohort, the WSI-level AUCs of the prognostic model across six different machine learning models. (B) AUC of the transformer model
training and test sets at the WSI level. (C) The DCA curve indicated that the MLP model could also obtain good benefits.
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FIGURE 4

The use of Grad-CAM to visualize the activation of the diagnostic model. (A) Highly pleomorphic tumor cells. (B) Numerous tumor-infiltrating
lymphocytes. (C) Mucinous adenocarcinoma. (D) Signet ring cell carcinoma.
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In conclusion, we developed a predictive model for MSI-H

based on digital pathology using the H&E-stained slides of 212 GEJ

adenocarcinoma patients. The model demonstrated good

performance in both the test and validation datasets.
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SUPPLEMENTARY FIGURE 1

The patch-level AUC for predicting MSI-H, MSS, and MSI-L in the training and
test cohorts by ResNet18 model.

SUPPLEMENTARY FIGURE 2

(A) In the training cohort, the WSI-level AUCs of the prognostic model across

seven models. (B) Delong test results for six different machine learning model
and transformer model.

SUPPLEMENTARY FIGURE 3

Confusion matrix for the WSI-level transformer model. The 0 on the ordinate
and abscissa refers to MSI-L/MSS.;1 represents MSI-H.
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