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Prognostic significance of
FDG-PET/CT based radiomics
analysis in newly-diagnosed
multiple myeloma:
a comparative study
with clinical assessment
Fei Li1†, Baiyang Jiang2†, Ye Fu2†, Qingyang Yu2,
Guangwen Duan2, Jiayang Yan2, Qinling Jiang2,
Hongbiao Sun2, Yi Xiao2, Qi Chen3, Shaochun Xu2*,
Xiang Wang2* and Shiyuan Liu2*

1Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd.,
Shanghai, China, 2Department of Radiology, Changzheng Hospital, Naval Medical University,
Shanghai, China, 3Department of Radiology, Kunshan Third People’s Hospital, Kunshan,
Jiangsu, China
Objective: This study aimed to construct and validate a fusion diagnostic model

based on Fluorodeoxyglucose-Positron Emission Tomography/Computed

Tomography(FDG-PET/CT) radiomics for predicting overall survival of multiple

myeloma (MM) patients.

Methods: A total of 199 patients newly diagnosed with MM were included from

two centers. All patients underwent whole-body PET/CT scans within onemonth

before the initiation of treatment and were followed up for over five years.

Radiomic features of MM were extracted from CT images and dimensionality

reduction was performed by LASSO regression analysis. Cox Proportional

Hazards Model was then constructed to predict patient survival. A clinical-

radiomic fusion model was constructed by integrating independent clinical risk

factors, including comprehensive laboratory parameters, R-ISS, and PET

functional metabolic parameters, with the radiomic model. The discrimination

ability of the model was evaluated using the C-index, and it’s calibration was

assessed using calibration curves.

Results: The C-indexes for the radiomics model in the training and testing

cohorts were 0.736 and 0.708, respectively; for the clinical model, they were

0.676 and 0.696, respectively; and for the integrated model, they were 0.791 and

0.776, respectively. The integrated diagnostic model outperformed both the

radiomics and clinical models, showcasing higher discriminative ability and

improved calibration. In the training set, the C-index was 0.791 (95%

confidence interval [CI]: 0.713-0.853), with an ICI of 0.015, E50 of 0.014, and

AIC of 10.987. In the testing set, the C-index was 0.776 (95% CI: 0.654–0.894),

with an ICI of 0.069, E50 of 0.04, and AIC of 11.492.
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Conclusions: This integrated prediction model exhibited satisfactory

performance in predicting survival outcomes for patients diagnosed with MM

and improved precision in discriminating between patients with a good prognosis

and poor prognosis.
KEYWORDS

multiple myeloma, radiomics, 18-FDG PET/CT, computer-aided diagnosis,
prognostic value
Introduction

Multiple myeloma (MM) is a hematological malignancy, which is

characterized by the abnormal production of monoclonal

immunoglobulin M components within plasma cells situated in the

bone marrow (1). Worldwide, MM is responsible for about 1% of

cancer deaths, mainly affecting people aged 65–70 and more common

in males, accounting for 10-15% of hematological malignancies (2).

Significant progress has been made in treatment strategies, particularly

with the development of new drugs that can elicit long-lasting

responses. However, the prognosis for specific patients has shown

limited improvement (3). A critical aspect of clinical practice involves

accurately assessing patient risks and implementing precise treatment

protocols. Osteopathy in MM patients significantly affect their quality

of life and increase both incidence rates and mortality (4–6). Imaging

examination plays a critical role in managing MM patients. According

to the latest staging system, accurate treatment selection, follow-up

procedures, and prognosis evaluation for newly diagnosed patients are

significantly dependent on imaging assessments such as CT, Magnetic

Resonance Imaging (MRI), or PET/CT.

CT, MRI, and PET/CT imaging modalities are increasingly utilized

in clinical practice for their ability to offer a thorough evaluation of

tumor burden. Additionally, these imaging methods offer

supplementary predictive information for patients receiving systemic

treatment. Whole-body low-dose computed tomography (WBLDCT)

is a highly accurate method for detecting osteolytic lesions while

offering a low radiation dose (7, 8). The introduction of whole-body

MRI has redirected attention in imaging towards bone marrow and

extramedullary involvement (9). However, variations in signal intensity

within bone marrow involvement present notable differences linked to

age disparities (10). The International Myeloma Working Group

(IMWG) recommends FDG-PET as a valuable technique for

visualizing and offering functional and metabolic information of

lesions, thereby highlighting disease activity. This method is

particularly useful in monitoring treatment response, especially in

cases of oligo-secretory and non-secretory myeloma, and aid in

disease monitoring for patients with these particular subtypes.

PET/CT modality plays a vital role in the initial staging,

treatment assessment, and minimal residual disease determination

in MM (11, 12). However, its primarily utilization is dependent on

subjective visual assessment by clinicians and basic quantitative
02
metrics like maximum standardized uptake value (SUVmax) for

evaluating MM tumor burden and predicting prognosis (13). Bartel

et al. demonstrated that baseline MRI and PET/CT scans have

prognostic significance for event-free survival and overall survival

(OS) in patients (14). In clinical practice, quantitative values such as

SUVmax, metabolic tumor volume (MTV), and total lesion

glycolysis(TLG) primarily reflect the metabolic functional

information of MM lesions, while neglecting a more in-depth

analysis of CT anatomical information. Therefore, it is important

to study the quantitative features of CT images to enhance

predictive accuracy in MM by analyzing the spatial distribution

and metabolic heterogeneity of focal lesions in MM.

Radiomics entails the extraction of lesion imaging features

through high-throughput analysis, yielding quantitative parameters

that are frequently undetectable by visual inspection (15–17). The

increasing interest among researchers in radiomic research highlights

its significance as a valuable tool for evaluating the prognosis of

tumor patients. Nevertheless, numerous radiomic models fail to

incorporate clinical and laboratory data. We hypothesize that by

integrating baseline PET/CT radiomics information with genetic and

laboratory examination indicators, personalized prognostic

evaluation models can be constructed. In this retrospective multi-

center study, we developed a prediction model for multiple myeloma

(MM) using a combination of multi-modal PET/CT radiomics data

and various clinical variables from two medical centers.
Materials and methods

Study population

A total of 199 patients diagnosed with MMwere included in this

study between December 2015 and December 2022. Each patient

was diagnosed as MM through comprehensive histological and

hematological examinations, adhering to the IMWG guidelines for

both diagnosis and treatment (18). Additionally, all patients

provided written informed consent to participate. Full-body PET/

CT examinations were conducted within one month before the

initiation of treatment for each patient.

The exclusion criteria were: (a) patients with combined malignant

tumors or hematological diseases in other systems; (b) patients with
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concomitant cardiac amyloidosis; (c) patients received chemotherapy

and radiation therapy before the examination; (d) patients with poor

image quality. Following the inclusion criteria, a total of 199 patients

(110 males and 89 females) were enrolled, with a median age of 61

years and an age range between 34 and 86 years. All patients underwent

comprehensive blood-based laboratory tests. Laboratory indicators

encompassed M protein, sFLC (free light chain), hemoglobin,

creatinine, albumin, Ca2+, lactate dehydrogenase, b2-microglobulin

levels, platelets, hypersensitive C-reactive protein, and PET/CT

quantitative parameters. Serum protein, serum albumin, glucose

filtration rate, beta-2 microglobulin, hemoglobin, hematocrit, calcium

levels, and serum lactate dehydrogenase were additionally quantified.

The treatment plans are divided into three categories: chemotherapy

regimens based on proteasome inhibitor–based therapy(PI-based),

chemotherapy regimens based on immunomodulatory drug-based

therapy(IMiD-based), and chemotherapy regimens based on the

combination of proteasome inhibitor-containing therapy and

immunomodulatory drug-based therapy(IMiD+PI).

Imaging data for this study were obtained from two centers, with

clinical treatment administered at Changzheng Hospital for a cohort of

199 patients. The primary endpoint of the study was overall survival

(OS), defined as the duration from disease diagnosis to death or last

follow-up. OS was calculated from the time of initial diagnosis until

death or the study’s endpoint in December 2022 for surviving patients.

The baseline characteristics and treatment information of patients are

described in Table 1. A flowchart illustrating patients selection and the

study process is presented in Figure 1.
Equipment and parameters

All images were obtained from the hospital’s Picture Archiving

and Communication System (PACS) and scanned using the

SIEMENS Biograph 64-layer PET/CT equipment. Patients

underwent a fasting period of over 6 hours before being injected

with 18F-FDG at a concentration of 0.15-0.18 mCi/kg. Typically,

the PET/CT scan commenced 60 minutes post-injection. Patients

were positioned supine with both upper arms placed above their

heads to minimize chest artifacts.

The procedure began with a body CT scan, using scanning

parameters of tube voltage of 120 kV, tube current of 150 mA, layer

thickness of 3mm, and scanning range from the top of the skull to

the middle of the femur. The body PET/CT scan was collected for

5–6 beds, with a conventional collection time of two minutes per

bed. Subsequently, CT data was utilized for attenuation correction

and PET image enhancement, followed by image reconstruction

and fusion. Lesions were further analyzed via multi-planar

reconstruction at the post-processing workstation.
PET image delineation and registration
between PET and CT images

Two experienced radiologists, with 6 and 7 years of expertise

respectively, conducted blind segmentation of lesions exhibiting the
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highest uptake on PET scans. In cases of discrepancies concerning

PET/CT findings, a consensus was reached through a collaborative

review involving a senior nuclear medicine physician with over 10

years of experience. The interpretation of PET images adhered to

IMWG standards, defining focal lesions as those exhibiting higher

uptake than the hematopoietic bone marrow background (BM) or

liver, with a minimum diameter of 5 mm. Diffuse uptake was

defined as uptake above that of the liver (19).

Evaluation of images was carried out by a team of experienced

nuclear medicine physicians (W.X. and X.S.) following established

criteria for assessing myeloma lesions. Briefly, positive areas were

indicated by the presence of focal areas with increased tracer uptake

within bones (SUV ≥2.5), with or without any underlying lesions

identified on CT or osteolytic CT areas >0.5 cm (20). The total

Metabolic Tumor Volume (TMTV) was defined as the volume of all

MM lesions throughout the body on PET/CT with an SUV≥2.5. To

enhance segmentation consistency, two radiologists randomly

selected 20 patients for intra- and inter-observer consistency tests.

Intra-group and inter-group consistency coefficients (ICC) between

features were computed to identify and retain features

demonstrating robust repeatability (ICC>0.70).

We employed the PET/CT registration method available on the

platform (https://www.uii-ai.com/en/uai/scientific-research) for the

automated alignment of PET and CT images. Subsequently, a senior

medical radiologist reviewed the registered images to confirm the

precise alignment of major organ boundaries, such as the skin,

skeletal structures, and liver. A registration matrix was generated to

quantify this alignment. Ultimately, the regions of interest (ROI)

identified from the PET images were overlaid onto corresponding

locations within CT images (Figure 2).
Radiomics extraction and selection

The flowchart of the radiomics analysis is shown in Figure 3.

Initially, all parametric maps underwent normalization using

maximum and minimum truncation processing. Subsequently, 14

image filters were used to generate derived images, from which first-

order statistics and texture features were extracted, resulting in a total

of 2,160 derived features. From the largest focal area of myeloma in

each patient, 2,264 radiomics features were automatically extracted.

These features encompass three groups: 14 shape features, 450 first-

order features quantifying the distribution of voxel intensities in

images, and 1,800 texture features. The texture features consist of 525

gray level co-occurrence matrix (GLCM) features, 350 gray level run

length matrix (GLRLM) features, 400 gray level size zone matrix

(GLSZM) features, 400 neighboring gray tone difference matrix

(NGTDM) features, 125 gray level dependent matrix (GLDM)

features, collectively capturing regional heterogeneity differences.

All radiomics features were standardized using Z-score

normalization to mitigate dimensional disparities.

For PET data, the functional metabolic parameters SUVmax,

MTV, and TLG are indicators for indicating the tumor metabolic

information. CT images are more suitable for radiomics extraction

tasks related to texture, shape, and intensity features of multiple
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myeloma. We employed the Least Absolute Shrinkage and Selection

Operator (LASSO) selection method to identify the most reliable

predictive radiomic features. Initially, we focused on radiomics

features extracted from CT images, leveraging these extracted features

to construct a Cox proportional hazards regression model. Then we

merged these CT features with clinical and PET features (SUVmax,

MTV and TLG) to obtain a comprehensive combined model.
Prognosis model

Predictive task
Our predictive task aimed to accurately forecast the prognosis

of MM patients. To mitigate risks of bias and overfitting, we
TABLE 1 Basic patient information of training set and testing set.

Variables
Training

set (n=160)
Testing

set (n=39)
P-

values

Age (mean±sd) 59.681 ± 9.531 60.077 ± 8.585 0.801

Gender (0/1)

Male 19 91
0.358

Female 20 69

Initial treatment plan

PI-based 115 27

0.773IMiD-based 11 4

1IMiD+PI 34 8

Bone marrow plasma cell (≥60%)

Yes 29 7
0.980

No 131 32

FL (≥3)

Yes 131 34
0.430

No 29 5

EMD

Yes 75 16
0.511

No 85 23

HB (≤100g/L)

Yes 77 19
0.947

No 83 20

Cr (≥177umol/L)

Yes 22 7
0.772

No 138 32

ALB (≥35g/L)

Yes 74 22
0.255

No 86 17

LDH (≥250U/L)

Yes 22 7
0.505

No 138 32

b2-MG (≥5.5mg/L)

Yes 44 10
0.814

No 116 29

PLT (<100*10^9/L)

Yes 16 4
0.056

No 144 35

HCRP (>10mg/L)

Yes 39 7 0.280

(Continued)
TABLE 1 Continued

Variables
Training

set (n=160)
Testing

set (n=39)
P-

values

HCRP (>10mg/L)

No 121 32

Ca2. (≥2.55mmol/L)

Yes 22 5
0.112

No 138 34

DS.staging (1/2/3)

I 11 4

0.207II 36 4

III 113 31

ISS.staging

I 22 10

0.677II 60 12

III 67 17

RISS.staging (1/2/3)

I 27 9

0.290II 100 19

III 33 11

liver
(Median[Q1~Q3])

2.07[1.8~2.423] 2.17[1.805~2.395] 0.921

SUVmax
(Median[Q1~Q3])

5.525[4.085~7.633] 5.65[4.365~8.08] 0.485

TLG
(Median[Q1~Q3])

41[17.5~79.5] 39[17.5~83] 0.920

MTV
(Median[Q1~Q3])

12[5~24] 12[5.5~30] 0.856
fron
FL, focal lesion; EMD, extramedullary; MTV, metabolic tumor volume; TLG, total lesion
glycolysis; Cr, creatinine; ALB, albumin; LDH, lactate dehydrogenase; b 2M, b 2-
microglobulin levels; PLT, platelet; HCRP, hypersensitive C-reactive protein; R-ISS, the
revised International Staging System; DS staging, Durie Salmon staging; SUVmax, max
standardized uptake value; PI-based, Proteasome inhibitor-based; IMiD-based,
immunomodulatory drug-based.
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employed two methods. Firstly, we filtered features by employing

the intraclass correlation coefficient (ICC) within and between

observers, establishing a threshold of ICC > 0.70. Secondly, we

applied the least absolute shrinkage and selection operator (LASSO)
Frontiers in Oncology 05
to the training dataset, using a five-fold cross-validation approach

to identify the most predictive features. These strategies were

employed to identify the most informative features while ensuring

optimal predictive performance.
FIGURE 1

Flowchart summarizing patient enrolment process and study cohorts.
FIGURE 2

PET-CT registration process flowchart.
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Development and validation of the predictive
model

We developed three models: the Clinical Model, the CT Radiomics

Model, and the CombinedModel. In the Clinical Model, we conducted

a univariate analysis (p < 0.1) using COX regression on clinical data,

encompassing parameters such as SUVmax, MTV, and TLG PET

quantitative parameters. Moreover, based on the clinical relevance and

results of the univariate Cox analysis (p < 0.05), candidate factors

potentially associated with OS were identified. These candidate factors

were further incorporated into a multivariable Cox regression model,

facilitating the selection of clinical variables that could impact OS and

contributing to the construction of the clinical model.

Regarding the CT radiomics model, we employed LASSO to

select radiomics features extracted from the images. These selected

features were subsequently employed in a COX regression analysis

to construct the radiomics model. In the Combined Model, we

integrated clinical risk factors and radiomics features to establish a

combined model. This combined model was used to further predict

postoperative survival in MM patients. To assess the efficacy of our

model, we evaluated the performance of the CT Radiomics Model,

Clinical Model, and Combined Model based on both discrimination

and calibration.

To assess discrimination, we compared these models using four

metrics: C-index values, Integrated Calibration Index (ICI), E50

statistic, and Akaike Information Criterion (AIC). The Akaike

Information Criterion (AIC) is a widely used measure for
Frontiers in Oncology 06
evaluating the goodness-of-fit and complexity of a model. It is

calculated as AIC = 2k - 2ln(L), where k represents the number

parameters of in the model, and L is the maximum likelihood

estimate of the model. In this study, we employed the Cox

proportional hazards model to calculate the likelihood values for

each model and subsequently used AIC to compare the performance

of different models. The C-index is another important metric used to

evaluate the predictive ability of a survival model, measuring the

consistency between the survival probabilities predicted by the model

and the actual survival outcomes. The calculation of the C-index is

based on all possible patient pairs, assessing agreement by comparing

the predicted survival times with the actual survival times.

Specifically, the C-index is calculated as the ratio of the number of

consistent pairs to the number of useful pairs. In our analysis, we

utilized the survival and survcomp packages in R to compute the C-

index and evaluate the predictive ability of the model separately in the

training set and the test set.

These metrics provided a comprehensive evaluation of each

model’s efficacy in distinguishing between patients. Additionally,

calibration curves were used to evaluate the calibration of each

model, enabling us to pinpoint models with superior calibration

performance. In summary, through comprehensive evaluation from

both discrimination and calibration perspectives, we identified the

optimal predictive model among the CT Radiomics Model, Clinical

Model, and Combined Model for predicting postoperative survival

in patients with MM.
FIGURE 3

The radiomics workchart by uAI research portal. On the medical images, segmentation is performed to define the fibroids region. From this region
the features are extracted, e.g. fibroids shape, intensity, and texture features. And then these features are used for analysis, which Those important
features will be selected and used to construct predictive model. Finally, the model is evaluated.
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Statistical analysis

To assess the normality of continuous features, we employed the

Kolmogorov-Smirnov test. The T-test was used to compare variables

with a normal distribution, which are represented as mean ± SD

(standard deviation). For non-normally distributed data, the Mann-

Whitney U test was used, and the data was represented using the

median (inter-quartile range). Categorical variables were analyzed

using either the chi-square test or Fisher’s exact test. The data was

represented as counts (%). Survival analysis was conducted via Kaplan-

Meier survival curves and validated using the log-rank test. A p-value

lower than 0.05 was considered statistically significant. The R software

package (version 4.0.3) was used to process the demographic data for

evaluating significant differences in the variables between the training

and the validation set. Python (version 3.6) was employed for

programming model training, validating the prediction model, as

well as conducting statistical analysis.
Results

Basic characteristics

This study included a total of 199 patients (110 males: with a

median age of 61 years). Patients were continuously monitored

until either the date of demise or August 1, 2022, with a median

follow-up period of 35 months for the entire cohort. Among them,

64 patients survived. The treatment plan involved 160 patients

within the training set and 39 patients within the testing set.
Assessment of radiomic features

A total of 2,264 radiomics features were initially extracted from

CT images, with a specific emphasis on the largest lesions of MM.

Subsequent refinement through consistency testing yielded 2,151
Frontiers in Oncology 07
robust features. To select the most relevant features, we employed

the LASSO algorithm in conjunction with five-fold cross-validation.

Features that received three or more votes in a voting process were

retained. Following this rigorous selection process, a subset of 11

optimal radiomic features was identified for implementation in

machine learning models. This subset comprised three first-order

features, and eight texture features (Figure 4). The coefficient of

each selected feature is shown in Table 2.
Assessment of clinic features

Nine clinical features were extracted following univariate

analysis, with significant correlations observed with OS for

HCRP, SUVmax, ISS-staging, RISS-staging, PLT, Age, FL, Bone

Marrow Plasma Cell, and Gender (p<0.10). Subsequent adjustment

for relevant factors using the Cox multivariate model revealed that

Age, SUVmax, FL, and Gender were identified da independent

predictors of OS in the clinical setting (Table 3).
Comparison between different models

A radiomics model and a clinical model were constructed by

utilizing radiomic features selected through LASSO screening and

clinical features chosen through Cox multivariate analysis,

respectively. Furthermore, the integration of variables from the

clinical and radiomics models resulted in the establishment of a

integrated model. The results of the radiomics model, clinical

model, and combined model are presented in Table 4.

The results showed that the integrated model exhibited superior

predictive capabilities in comparison to individual models. In the

training set, the C-index was 0.791 [95% confidence interval (CI):

0.713-0.853], ICI was 0.015, E50 was 0.014, and AIC was 10.987. In

the testing set, C-index was 0.776 (95% CI: 0.654–0.894), ICI was

0.069, E50 was 0.04, and AIC was 11.492 (Table 2).
FIGURE 4

Radiomics feature selection. The 11 most significant feature subsets selected by LASSO.
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Model interpretability

We generated a nomogram to predict the probability of long-

term outcomes using the multi-clinical feature set (Figure 5). A total

score was calculated by summing the scores of five factors: Age,

SUVmax, FL, Gender, and CT radiomics score. The corresponding

1-year, 3-year, and 5-year survival rates were associated with the

total score. Besides, calibration curves of the integrated model in

both the training and validation set are illustrated in Figure 6. In this

depiction, the diagonal line symbolized the predictive accuracy of

an ‘ideal model’, whereas the curve represented the predictive

performance of the integrated model. The proximity of the curve

to the diagonal line in the graph suggests a higher level of

calibration in the model. The findings presented in Figure 6

illustrate a strong alignment between predicted values and

observed outcomes in both the training and validation datasets,

thus confirming the model’s dependability and precision in

forecasting long-term results.
Survival analysis

At the end of follow-up, it was determined that out of 199

patients, 64 (32%) had died, while 135 (68%) had survived. The

median survival duration was 35 months. The median value of risk

prediction from the combined model served as a threshold to

categorize patients into high-risk and low-risk groups. In the

training set, the high-risk group had a median survival time of

29.0 months (95% CI: 28.5-29.5), whereas the low-risk group had a

median survival time of 41.0 months (95% CI: 40.5-41.5).The

survival outcomes of the low-risk group significantly exceeded

those of the high-risk group (P < 0.001) (Figure 7A). In the

testing set, the high-risk group showed a median survival time of

30.0 months (95% CI: 28.2-31.8), whereas the low-risk group

exhibited a median survival time of 40.5 months (95% CI: 38.1-

42.9). The survival outcomes in the low-risk group were

significantly better than those in the high-risk group (P = 0.035).

Kaplan-Meier (KM) curves for both high-risk and low-risk groups

of patients are shown in Figure 7B. The ROC curves for survival

prediction are shown in the Supplementary Figure S1.
Discussion

In this retrospective multicenter study, we developed a Cox

regression model based on CT radiomics features and multi-clinical

factors to predict long-term prognosis in patients diagnosed with

MM. Through the implementation of an independent data

validation model, the integrated model exhibited notable

discrimination and calibration capabilities. Subsequently, the

model facilitated the stratification of MM patients into high-risk
TABLE 2 Results of radiomic feature selection for OS.

Feature name Coefficient

specklenoise_ngtdm_Strength 0.454943

wavelet_firstorder_wavelet-LHL-Maximum 0.413943

wavelet_gldm_wavelet-HLH-LowGrayLevelEmphasis 0.281109

log_glcm_log-sigma-4-0-mm-3D-Imc1 0.278916

normalize_firstorder_Minimum 0.233923

wavelet_glszm_wavelet-LLH-HighGrayLevelZoneEmphasis 0.230632

normalize_glcm_ClusterProminence 0.085334

normalize_glrlm_HighGrayLevelRunEmphasis 0.042087

wavelet_firstorder_wavelet-LHL-Skewness 0.031114

normalize_glcm_Correlation 0.009674

normalize_glrlm_LowGrayLevelRunEmphasis 0.001089
TABLE 3 Univariate and multivariate Cox regression analysis.

Parameters
Univariate

analysis (p value)
Multivariate

analysis (p value)

Age 0.03 0.04

Gender 0.00 0.00

TLG 0.89

ALB 0.75

EMD 0.71

MTV 0.54

HB 0.43

liver 0.42

LDH 0.31

Ca2+ 0.30

b2M 0.22

Cr 0.16

DS-staging 0.13

HCRP 0.09

SUVmax 0.06 0.04

ISS-staging 0.05

RISS-staging 0.04

PLT 0.03

FL 0.01 0.02

BoneMarrowPlasmaCell 0.00
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and low-risk subgroup, showcasing significant disparities in OS.

Moreover, the integrated model nomogram was developed to offer

clinicians with a more intuitive and concise prognostic tool for

guiding personalized treatment strategies for patients with MM.

Currently, clinical evaluations predominantly utilize blood-

based laboratory parameters to assess effectiveness and prognosis

in patients. Nevertheless, this method is associated with limitations

such as invasiveness and susceptibility to sampling errors due to the

restricted sample size. Bone marrow punctures, a frequently

employed technique, may fail to capture regions with the greatest

disease burden, thereby restricting its capacity to comprehensively

represent the diversity of MM (21). Prior studies have explored the

correlation between imaging data and MM survival (22, 23).

Relevant findings suggested that Apparent Diffusion Coefficient

(ADC) could assess of tumor burden in patients. However, bone

marrow ADC measurements are influenced by various factors

including the bone marrow cell count, cell morphology,

intracellular nuclear-cytoplasmic ratio, size of extracellular spaces,

and cell membrane adhesion (24). PET/CT serves as an essential

tool for MM assessment, demonstrating that factors such as the

count of focal lesions, metabolic activity, volume of highly metabolic

lesions, and extramedullary lesions significantly influenced survival.
Frontiers in Oncology 09
Our recent research suggested that radiomics models could be used

to differentiate newly diagnosed myeloma lesions (25, 26). In this

study, we developed an integrated model based on radiomics

features derived from PET/CT and proceeded to evaluate the

prognostic performance of this model.

The application of 18F-FDG PET/CT in the diagnostic and

therapeutic evaluation protocols of MM has attained a high level of

evidence, making it a valuable method for clinical decision-making,

prognostic assessment, and treatment efficacy evaluation. However,

only a few studies have determined the prognostic value of radiomic

features in MM. Yang et al. confirmed a significant correlation

between bone marrow MRI radiomic features and OS in MM

patients using Cox regression models. Furthermore, the predictive

performance of radiomic features based on radiomics is far superior

to traditional clinical models (27). Currently, there is a limited

number of studies that incorporate CT-based radiomic features, in

conjunction with clinical parameters, to predict the five-year survival

rate of patients with MM. This study has identified, for the first time,

features extracted from PET/CT that have demonstrated utility in

reflecting the biological behavior of MM. In this study, a total of 11

radiomics features extracted from CT scans were employed to

construct both clinical and radiomics models, ultimately
TABLE 4 The performance of the prediction models.

Models C_index* ICI E50 AIC

Train Test Train Test Train Test Train Test

Clinic model
0.676

(0.633-0.721)
0.696

(0.566-0.829)
0.015 0.071 0.014 0.056 10.987 9.498

Radiomics model
0.736

(0.695-0.778)
0.708

(0.586-0.794)
0.059 0.051 0.055 0.059 26.941 33.328

Combined
model

0.791
(0.713-0.851)

0.776
(0.654-0.894)

0.014 0.069 0.012 0.04 12.864 11.492
*C_index, concordance index; ICI, integrated calibration index; E50, expected prediction error for a given time; AIC, akaike information criterion.
FIGURE 5

Combined model nomogram.
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amalgamating into a combined model for predicting survival

outcomes. Univariate and multivariate analyses revealed that

SUVmax, Age, FL, and Gender were independent risk factors for

predicting the survival of patients with MM. Our study found that the

specklenoise_ngtdm_Strength feature has the highest weight ranking

and is of significant importance for prognostic assessment. This

feature is primarily used to quantify the difference between the

voxel gray-level value and the average gray-level value of its

neighborhood, reflecting the heterogeneity of the tumor image. A

high value may indicate more texture changes, which are associated

with higher malignancy or poor prognosis. Previous studies have
Frontiers in Oncology 10
also shown that in pancreatic ductal adenocarcinoma, high-

T1WI_NGTDM_Strength is significantly correlated with poor

prognosis (28). In addition, our research results indicate that

wavelet-transform-based features demonstrate significant predictive

value in the prognostic analysis of MM. This may be because wavelet

features can capture the internal heterogeneity of tumors through

multi-scale and multi-directional transformations of the images (29).

Our research findings indicate that both the SUVmax value and

FL≧ 3 are independent adverse prognostic indicators for individuals

with MM, which is consistent with previous research findings (30, 31).

Furthermore, our investigation underscored age and gender as
FIGURE 6

Calibration curves were generated for the prediction model in both the training and test cohorts, represented as (A, B) respectively. The ideal
prediction is depicted by the black solid line, while the red, blue and green lines showcase the model’s predictive ability. The closer these lines fit to
the dashed line, the higher the model’s accuracy in making predictions.
FIGURE 7

KM curves were generated for the prediction model in both the training and test cohorts, represented as (A, B) respectively. The red region
represents the high-risk group, while the cyan region represents the low-risk group.
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additional independent risk factors associated with an unfavorable

prognosis in patients with MM. This observation could potentially be

explained by a higher incidence of MM in men compared to women,

suggesting gender-related disparities in disease susceptibility. Other

factors known to affect MM prognosis include RISS, elevated LDH

levels, hypercalcemia, renal insufficiency, and treatment group baseline

TLG, and so on. However, in this study, due to limited data and

selection bias, these factors may not have reached significance.

Compared to other factors identified in this report, these factors may

also have lesser prognostic significance.

Based on these clinical factors, a clinical model was constructed

to predict efficacy. However, the clinical model only showed

moderate predictive potential. Integrating clinical predictive

factors with radiomics features, a clinical-radiomics combined

model was constructed to exhibit a more robust model,

outperforming both the individual clinical model and radiomics

mode. This integrated model effectively categorized patients into

high-risk and low-risk groups with significantly different OS.

Radiomics features obtained from CT images of this study play

an important role in improving model performance. After feature

selection and dimensionality reduction, the retained features

include first-order histogram features and texture features. The

first-order histogram features include mean, median, minimum,

maximum, and standard deviation. These parameters reflect

the tumor density on plain scan. Texture features refer to the

grayscale variations in images, including gray level co-occurrence

matrix, autoregressive texture model, and wavelet transform, which

can effectively reflect the heterogeneity of the internal structure of

tumors. For high-risk group patients, the model guided clinicians in

implementing appropriate treatments promptly. It is recommended

to implement standardized treatment plans as early as possible

within patient tolerance, and, if necessary, combine advanced

therapy to improve prognosis. Moreover, to aid clinical-radiomics

decision-making, we visualized this integrated model through a

nomogram. This graphical representation streamlined the process

for clinicians, swiftly providing predictive insights and enhancing

the practical utility of the integrated model in real-time

patient management.

There are certain limitations in this study. First, this retrospective

study collected images from two centers resulting in a relatively small

sample size and potential selection bias. In this study, PET/CT scans

were sourced from two different centers, which may have introduced

some variability. Although we normalized the images during the data

pre-processing phase, including intensity normalization, this process

may not have completely eliminated the differences between centers.

To further mitigate this variability, we plan to introduce stricter image

protocol standardization measures in future studies, such as employing

techniques like ComBat tuning to reduce scanner-to-scanner

variability. Additionally, this study relied solely on internal validation

cohorts and lacked external independent validation cohorts. This

limitation restricts the external validity of the model in different

patient populations, clinical workflows, and imaging systems. Future

studies should incorporate external validation cohorts to further assess

the stability and applicability of the model. We plan to collaborate with

more medical centers to obtain a broader dataset for comprehensive
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external validation. Secondly, variations in treatment plans, each with

distinct working mechanisms, were administered to patients,

potentially influencing therapeutic outcomes and prognosis. In this

study, we primarily utilized LASSO regression for feature selection,

which is highly effective for dimensionality reduction and feature

selection. However, LASSO regression may not fully capture

nonlinear relationships between features. To more comprehensively

assess feature importance in future studies, we may consider alternative

methods such as recursive feature elimination (RFE) or random forest-

based approaches. These methods are better suited to capturing

complex, especially nonlinear, relationships between features.

Additionally, we plan to explore ensemble learning techniques, such

as XGBoost or LightGBM, which not only handle nonlinear

relationships effectively but also offer enhanced feature selection

capabilities. Nevertheless, LASSO regression remains a reasonable

choice in this study due to its interpretability, computational

efficiency, and robustness in high-dimensional data.

Despite the use of LASSO regression for feature selection, the

risk of overfitting persisted due to the relatively small sample size (n

= 199) and the large number of radiomics features extracted (over

2000). In particular, the model’s generalization ability may be

compromised when the number of features approaches or exceeds

the number of events (in this study, the number of deaths was 64).

To enhance model robustness and reduce the risk of overfitting,

future studies may employ Bootstrap resampling or more stringent

cross-validation strategies, such as repeated randomization cross-

validation. Additionally, exploring other regularization methods,

such as Elastic Net, may help better balance feature selection and

model complexity. Another limitation was the analysis solely

focused on the lesion with the highest uptake, neglecting other

potentially relevant lesions. The radiomics analysis in this study was

based solely on a single maximal lesion per patient, which may

overlook the multifocal heterogeneity characteristic of multiple

myeloma (MM). This approach may limit the model’s ability to

capture the full extent of disease burden. Given that heterogeneity is

a key feature of MM, multifocal analysis could provide a more

comprehensive understanding of the disease. Therefore, future

studies should consider developing segmentation algorithms

capable of analyzing all lesions throughout the body, rather than

focusing exclusively on the largest single lesion. By examining the

radiomic characteristics of multiple lesions, the heterogeneity of the

disease can be more fully reflected, potentially enhancing the

model’s capacity to capture the overall disease burden.

Additionally, the manual delineation of ROI was labor-intensive

and time-consuming. In terms of lesion segmentation, although we

assessed the consistency of segmentation results between two

radiologists in this study and retained only features with good

reproducibility (ICC > 0.70), the inherent subjectivity of manual

segmentation remains a potential limitation. Variability in manual

segmentation can influence the stability and reproducibility of

radiomics signatures, which in turn may impact model

performance. To address this issue, future research could consider

incorporating automated or semi-automated segmentation

algorithms to minimize the subjectivity associated with manual

segmentation. Additionally, the development of detailed
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segmentation protocols and operational guidelines would be

beneficial in standardizing the segmentation process. Conducting

multi-reader studies to evaluate the consistency and reliability of

segmentation results is also an important direction for future

research. These approaches could collectively enhance the

robustness and reproducibility of radiomics analyses. To address

these limitations in future research, advancements in artificial

intelligence technology are anticipated to facilitate automatic ROI

segmentation, streamlining the process. This development would

enable comprehensive fusion analysis encompassing all lesions,

enhancing the thoroughness and accuracy of subsequent

evaluations. Cytogenetic information holds significant prognostic

value for multiple myeloma. This is a limitation we intend to

address in future research, as high-risk cytogenetic features are

crucial for improving prognostic accuracy.
Conclusions

Our study illustrated the potential of an integrated model that

combined laboratory examination indicators with PET/CT radiomics

features in predicting OS for patients with MM. This integrated model

exhibited superior predictive capability compared to individual clinical

and radiomics models, showcasing its effectiveness in both training and

testing groups. The implementation of this integratedmodel could help

tailor individualized treatment strategies and accurately predict

prognosis for patients diagnosed with MM.
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