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machine learning with
[18F]FDG PET/CT to develop
a composite model for
predicting overall survival
in cervical cancer patients
undergoing concurrent
chemoradiotherapy
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Jiangqin Han1*, Jihui Li1* and Shengming Deng1,4*

1Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,
2Department of Oncology, Xuyi People’s Hospital, Huaian, China, 3Department of Nuclear Medicine,
Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University,
Yancheng, China, 4Department of Nuclear Medicine, National Health Commission (NHC) Key
Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang,
Sichuan, China
Background and purpose: This study sought to develop an advanced composite

model to enhance the prognostic accuracy for cervical cancer patients

undergoing concurrent chemoradiotherapy (CCRT). The model integrated

imaging features from [18F]FDG PET/CT scans with inflammatory markers using

a novel unsupervised two-way clustering approach.

Methods: In this retrospective study, 154 patients diagnosed with primary

cervical cancer and treated with CCRT were evaluated using [18F]FDG PET/CT

scans. A total of 1,702 radiomic features were extracted from the imaging data.

These features underwent rigorous selection based on reproducibility and non-

redundancy. The unsupervised two-way clustering method was then employed

to simultaneously stratify patients and reduce the dimensionality of features,

resulting in the generation of meta-features that were subsequently used to

predict overall survival.

Results: Kaplan-Meier survival analysis demonstrated that the two-way

clustering method successfully stratified patients into distinct risk groups with

significant survival differences (P<0.001), outperforming traditional K-means

clustering. Predictive models constructed using meta-features derived from

two-way clustering showed superior performance compared to those using

principal component analysis (PCA), particularly when more than four features

were included. The highest C-index values for the COX, COX_Lasso, and RSF

models were observed with nine meta-features, yielding results of 0.691 ± 0.026,

0.634 ± 0.018, and 0.684 ± 0.020, respectively. In contrast, models based solely

on clinical variables exhibited lower predictive performance, with C-index values

of 0.645 ± 0.041, 0.567 ± 0.016, and 0.561 ± 0.033. The combination of clinical
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data, inflammatory markers, and radiomic features achieved the highest

predictive accuracy, with a mean AUC of 0.88 ± 0.07.

Conclusion: Integrating radiomic data with inflammatory markers using

unsupervised two-way clustering offered a robust approach for predicting

survival outcomes in cervical cancer patients. This methodology presented a

promising avenue for personalized patient management, potentially leading to

more informed treatment decisions and improved outcomes.
KEYWORDS

PET/CT, cerv ical cancer , unsupervised machine learning, concurrent
chemoradiotherapy (CCRT), prognostic prediction
1 Introduction

Cervical cancer is the fourth most common cancer affecting

women globally, representing a considerable public health issue,

particularly in low- and middle-income countries (1, 2). Despite

this, recent advances in medical treatment have positioned

concurrent chemoradiotherapy (CCRT) as the standard of care

for locally advanced cervical cancer, significantly enhancing survival

rates when compared to radiotherapy alone (3, 4). However, if

initial CCRT proves unsuccessful, the prolonged treatment course

may hinder the timely implementation of alternative, potentially

more effective therapies (5). Moreover, CCRT is associated with a

range of adverse effects. For instance, extra-pelvic irradiation can

affect bones that harbor a significant portion of the body’s actively

proliferative bone marrow, raising the risk of myelosuppression (6,

7). Given these challenges, accurately predicting clinical outcomes is

essential for tailoring personalized treatment strategies for cervical

cancer patients at different risk levels and ensuring prompt

intervention in high-risk cases.

[18F]Fluorodeoxyglucose ([18F]FDG) positron emission

tomography (PET/CT) is widely employed in the diagnosis,

clinical staging, and treatment monitoring of cervical cancer and

other malignancies (8, 9). The standardized uptake value (SUV)

derived from [18F]FDG-PET is particularly valuable, offering critical

biological insights into tumor aggressiveness by reflecting

parameters such as vascular function, cellularity, and glucose

metabolism (10, 11). Additionally, numerous studies have

demonstrated a strong correlation between inflammatory

markers, such as neutrophil count (NC), C-reactive protein

(CRP), and the neutrophil-to-lymphocyte ratio (NLR), and the

prognosis of cervical cancer (12, 13). Thus, integrating data from

these various modalities could potentially lead to a more accurate

risk stratification, surpassing the precision currently achievable with

single-modality assessments.

In recent years, the field of radiomics has experienced

remarkable growth in the study of cervical cancer, particularly in

predicting treatment responses, patient stratification, and prognosis
02
using radiological imaging data (14). Radiomic features derived

from PET images, in particular, have demonstrated strong potential

in forecasting overall survival (OS) and disease-free survival in

cervical cancer patients (15, 16). Additionally, several studies have

underscored the utility of radiomics in predicting recurrence and

metastasis in patients undergoing CCRT (17).

However, radiomics studies in cervical cancer face significant

challenges, notably the high dimensionality that arises from small

sample sizes coupled with extensive feature sets. This complexity

necessitates the application of feature selection or dimensionality

reduction techniques to improve predictive accuracy (18). While

supervised feature selection methods are commonly employed, they

often carry the risk of overfitting, and unsupervised techniques like

principal component analysis (PCA) may not always deliver

optimal results. To address these limitations, we introduced a

novel unsupervised two-way clustering approach that not only

reduced dimensionality but also generated meta-features by

simultaneously sub-clustering both features and samples. This

method effectively captured covariation among features and

delineated distinct patterns across sample groups, providing a

form of weak supervision that enhances the informativeness and

utility of the feature representation (19).

Therefore, the primary objective of this study was to develop a

composite model for predicting the prognosis of cervical cancer

patients undergoing CCRT. This model integrated PET/CT imaging

features with inflammatory markers through the application of an

innovative, unsupervised two-way clustering method.
2 Materials and methods

2.1 Patients

This retrospective study received approval from the

institutional review board of the First Affiliated Hospital of

Soochow University, with informed consent being waived due to

the study’s retrospective nature. The research was conducted in
frontiersin.org

https://doi.org/10.3389/fonc.2025.1486654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2025.1486654
accordance with the Declaration of Helsinki, and the trial

registration number is (2024) Ethical Research Approval No. 305.

From June 2013 to June 2022, a total of 154 participants with

histologically confirmed primary cervical cancer were included in

the study, all of whom underwent [18F]FDG PET/CT scans for

staging purposes. The inclusion criteria were (1) age 18 years or

older, (2) no prior treatment before the initial [18F]FDG PET/CT

scan, (3) histological confirmation of the cancer type and grade,

obtained via biopsy (typically for larger lesions) or surgical

specimens (commonly for smaller lesions), and (4) treatment

with CCRT. The exclusion criteria included (1) the absence of

CCRT, (2) incomplete clinical data, (3) a primary lesion too small

for accurate segmentation, (4) the presence of other inflammatory

conditions, (5) a diagnosis of other types of cancers, and (6)

insufficient [18F]FDG uptake of the primary lesion, making

accurate lesion delineation unfeasible (Figure 1).
2.2 Inflammatory marker assessment

In this study, a panel of inflammatory markers, including white

blood cell (WBC) count, NC, lymphocyte count (LC), platelet count

(PLT), and the NLR (defined as NC divided by LC), was

systematically assessed as part of the patients’ baseline

hematological profile. These indicators were selected to examine

their potential correlations with clinical disease features and patient

prognoses. All parameters were measured using standardized

laboratory protocols, and their prognostic significance in relation

to survival outcomes was subsequently analyzed.
2.3 [18F]FDG PET/CT imaging

In this study, patients received an injection of [18F]FDG at a

dose ranging from 4.07 to 5.55 MBq/kg after fasting for a minimum

of 6 hours to maintain blood glucose levels below 11.1 mmol/L.

Approximately 40 to 60 minutes post-injection, imaging was

conducted using an integrated PET/CT scanner (Discovery STE,

General Electric Medical Systems, Milwaukee, WI, USA), which
Frontiers in Oncology 03
scanned from the base of the skull to the midthigh. The imaging

parameters included a 70-cm transaxial field of view, a pitch of 1.75,

a rotation time of 0.8 seconds, and a slice thickness of 3.75 mm.

Low-dose CT images were acquired at 140 kV and 120 mA, serving

dual purposes: attenuation correction and providing an anatomical

reference. This was immediately followed by PET scans, conducted

over 2 to 3 minutes per bed position. The images were then

reconstructed using the ordered subset expectation maximization

(OSEM) algorithm to ensure the generation of high-quality

diagnostic images.
2.4 Feature extraction

PET images were analyzed using 3D Slicer software (version

5.2.2, available at http://www.slicer.org). The images were reviewed

in axial, coronal, and sagittal planes, including both standalone CT

and combined PET/CT images, by two experienced nuclear

medicine physicians to accurately identify the primary cervical

cancer lesions. These specialists manually delineated the lesions to

ensure precision. Key semi-quantitative metrics from the PET/CT

scans, including the maximum standardized uptake value

(SUVmax), mean standardized uptake value (SUVmean), and peak

standardized uptake value (SUVpeak, automatically calculated as the

highest average SUV within a 1.0 cm³ spherical volume of the

tumor), were meticulously measured.

When the PET and CT images were well-aligned, the volume of

interest (VOI) delineated on the PET images was mirrored onto the

CT images to define the corresponding CT VOI. A total of 1,702

image features were extracted, comprising 107 general features

(Table 1) and 744 filtered features from both CT and PET

images, creating a comprehensive dataset for subsequent analysis.

All PET/CT scans were independently reviewed and manually

segmented by two seasoned nuclear medicine physicians (L.J. and

X.X.), who possessed 10 and 12 years of diagnostic experience with

PET/CT, respectively. Each physician delineated the lesions for all

patients in a blinded fashion to ensure objectivity. To minimize

variability arising from differences in segmentation approaches

(anatomical versus metabolic), only radiomic features
FIGURE 1

Flowchart of selection of cervical cancer patients.
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demonstrating high inter-observer consistency (intraclass

correlation coefficient [ICC] > 0.75) were retained for further

analysis (Section 2.5 for additional details).
2.5 Selection of radiomic features

To assess the consistency between observers, an interclass

correlation coefficient (ICC) analysis was conducted on 20

randomly selected cases, independently delineated by two

researchers, L.J. and X.X., who had 10 and 12 years of experience

in PET/CT diagnostics, respectively. Radiomic features with an ICC

greater than 0.75 were deemed reproducible. Additionally, a

pairwise Pearson correlation matrix (PCM) was employed to

identify pairs of highly correlated features (|r| ≥ 0.76 for PET and

|r| ≥ 0.4 for CT) within inner clusters, ensuring feature non-

redundancy. The results were visually represented in a heatmap

to facilitate comparative analysis. This rigorous selection process

identified 64 imaging features as significant, comprising 12 features

from CT images and 52 from PET images (Table 2).
2.6 Unsupervised two-way clustering
analysis

To simultaneously cluster patients and radiomic features into

sub-clusters, we utilized an unsupervised two-way clustering

approach, leveraging a matrix tri-factorization technique. Given

the feature matrix X∈RN×F, where N represents the number of

patients and F is the number of radiomic features, matrix tri-
Frontiers in Oncology 04
factorization decomposes X into three low-rank matrices A, S, and

Y. This decomposition minimizes the approximation error. min
A,S,Y jj

X − ASY jj2F ,s.t. A≥0, S≥0, Y≥0, ATA=I, YYT=I, where I is an identify

matrix. As illustrated in Figure 2, the low-rank matrix A∈ RN�KS
+

encodes the membership of Ks sub-clusters of patients, matrix Y∈
R
Kf�F
+ encodes the membership of Kf subclusters of features, matrix

S∈ R
KS�Kf
+ encodes scales of different data points as well as

interactions between A and Y. The parameters Ks and Kf, which

define the number of sub-clusters for patients and features, were

predetermined before the clustering process. The optimization

challenge was tackled using an alternating optimization strategy.

Upon obtaining the decomposition results, the low-dimensional

meta-features M∈ R
N�Kf
+ were calculated as M = AS. These meta-

features were subsequently employed to construct prediction

models aimed at forecasting clinical outcomes (Figure 2).
2.7 Patient stratification methods and
evaluation

Based on the patient clustering results and the meta-features

generated through the unsupervised two-way clustering approach,

we performed patient stratification and predicted OS. To assess the

effectiveness of the two-way clustering method in stratifying

patients, we used Kaplan-Meier estimation to calculate survival

functions for each patient group, with differences between groups

analyzed using the Log-rank test. We explored two configurations

for patient sub-clustering: setting the number of sub-clusters (Ks) to

2 and 3. We hypothesized that two sub-clusters might effectively
TABLE 1 The list of extracted radiomic features.

Shape (14) First order (18) GLCM (24) GLDM (14) GLRLM (16) GLSZM (16) NGTDM (5)

Elongation
Flatness
Least axis
Major axis
M2DDC
M2DDR
M2DDS
M3DD
Mesh volume
Minor axis
Sphericity
Surface Area
SVR
Voxel volume

10Percentile
90Percentile
Energy
Entropy
Interquartile range
Kurtosis
Maximum
MAD
Mean
Median
Minimum
Range
RMAD
RMS
Skewness
Total energy
Uniformity
Variance

Autocorrelation
Cluster prominence
Cluster shade
Cluster tendency
Contrast
Correlation
Difference average
Difference entropy
Difference variance
Id
Idm
Idmn
Idn
Imc1
Imc2
Inverse variance
Joint average
Joint energy
Joint entropy
MCC
Max Probability
Sum average
Sum entropy
Sum squares

Dependence entropy
DNU
DNUN
Dependence variance
GLNU
GLV
HGLE
LDE
LDHGLE
LDLGLE
LGLE
SDE
SDHGLE
SDLGLE

GLNU
GLNUN
GLV
HGLRE
LRE
LRHGLE
LRLGLE
LGLRE
Run entropy
RLNU
RLNUN
Run percentage
Run Variance
SRE
SRHGLE
SRLGLE

GLNU
GLNUN
GLV
HGZE
LAE
LAHGLE
LALGLE
LGLZE
SZNU
SZNUN
SAE
SAHGLE
SALGLE
Zone entropy
Zone percentage
Zone variance

Busyness
Coarseness
Complexity
Contrast
Strength
A full list of abbreviations used in this table is provided in Supplementary Table S1.
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distinguish patients into low- and high-mortality risk groups, while

three sub-clusters could further differentiate them into low-,

medium-, and high-risk categories. The number of meta-features

was fixed at 9, a value determined through a cross-validation

approach that demonstrated optimal performance in

survival prediction.
2.8 Construction of survival prediction
model

To predict each patient’s risk of mortality, the meta-features

extracted from the unsupervised two-way clustering were used to

build prediction models employing three distinct survival modeling

techniques: Cox proportional hazard regression (Cox regression),

Cox regression with Lasso (Cox_Lasso), and random survival

forests (RSF). The Cox regression, a widely used method in

survival analysis, serves as a standard semi-parametric model,

while Cox_Lasso, also a semi-parametric model, incorporates

feature selection during model training to improve predictive

accuracy. In contrast, the RSF method is a fully non-parametric

approach that not only predicts survival outcomes but also

identifies the most informative features. Before model

development, the complete cohort of 154 patients was randomly

partitioned into a training set (n = 108) and a validation set (n = 46),

adhering to an approximate 7:3 ratio. The training set served to

construct the survival prediction models and optimize their

hyperparameters, while the validation set was exclusively utilized

to assess model generalizability. This data-splitting approach was

uniformly applied across all modeling strategies to ensure equitable

comparisons and a rigorous evaluation of predictive performance.

We explored various parameter settings for Ks and Kf within the

two-way clustering method to assess their impact on the prediction

performance. This thorough evaluation aimed to optimize the

model’s predictive capabilities, ensuring that the most effective

combination of parameters was utilized for accurate mortality

risk prediction.

Specifically, the number of patient sub-clusters (Ks) was fixed at

3, while the number of feature sub-clusters (Kf) was varied from 2 to

10 in increments of 1, which was deemed an appropriate range

given the study’s sample size of 154 patients. All prediction models

were trained and evaluated using a consistent 3-fold cross-

validation framework. The concordance index (c-index) was used

as the metric to assess the predictive performance of these models.

To ensure robustness, this cross-validation procedure was repeated

100 times, with the results reported as the mean and standard

deviation of the c-index.

The prediction models were developed using the CoxPHFitter

and RandomSurvivalForest modules in Python. For the Cox_Lasso

method, the sparsity parameter was automatically determined

through a nested 3-fold cross-validation process to optimize

feature selection and model performance. In the RSF model, 500

decision trees were employed, with a minimum leaf size set to 5, to

enhance the model’s precision and stability in survival prediction.
TABLE 2 The list of selected features.

Category Selected features

PET features Elongation
Flatness
Least axis
Sphericity
10Percentile
90Percentile
Kurtosis
Minimum
Cluster shade
Id
DNUN
LDLGLE
GLCM_Contrast
Skewness
Correlation
MCC
wavelet-LLH_glcm_Cluster shade
wavelet-LLH_firstorder_Kurtosis
wavelet-LHL_firstorder_Median
wavelet-LHL_firstorder_Skewness
wavelet-LHL_glcm_Cluster shade
wavelet-LHL_gldm_Dependence variance
wavelet-LHH_firstorder_Kurtosis
wavelet-LHH_firstorder_Mean
wavelet-LHH_glcm_Cluster tendency
wavelet-LHH_glcm_Correlation
wavelet-LHH_glcm_Imc2
wavelet-LHH_gldm_LGLE
wavelet-LHH_glrlm_GLV
wavelet-HLL_firstorder_Kurtosis
wavelet-HLL_firstorder_Range
wavelet-HLL_glcm_Cluster shade
wavelet-HLL_glcm_Correlation
wavelet-HLL_glrlm_HGLRE
wavelet-HLH_firstorder_Median
wavelet-HLH_firstorder_Skewness
wavelet-HLH_glcm_Correlation
wavelet-HLH_gldm_SDE
wavelet-HLH_gldm_LGLE
wavelet-HLH_glrlm_RunVariance
wavelet-HHL_firstorder_Mean
wavelet-HHL_firstorder_Maximum
wavelet-HHL_glcm_Correlation
wavelet-HHL_gldm_LDLGLE
wavelet-HHL_glszm_GLNU
wavelet-HHH_firstorder_Kurtosis
wavelet-HHH_firstorder_Range
wavelet-HHH_firstorder_Skewness
wavelet-HHH_glcm_Cluster shade
wavelet-HHH_gldm_GLNU
wavelet-HHH_glrlm_LRE
wavelet-LLL_gldm_DNUN

CT features Elongation
Least axis
10Percentile
Kurtosis
wavelet-LHL_firstorder_Mean
wavelet-LHH_glcm_Difference average
wavelet-LHH_firstorder_Median
wavelet-HLL_glcm_Idn
wavelet-HLH_glcm_MCC
wavelet-HHL_glcm_InverseVariance
wavelet-HHH_firstorder_Mean
wavelet-LLL_firstorder_90Percentile
For detailed definitions of abbreviations, please refer to Supplementary Table S2.
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2.9 Method comparison and validation

To thoroughly assess the effectiveness of our proposed method,

we benchmarked it against several alternative techniques, adding a

layer of comparative analysis to validate our approach. For patient

stratification, we contrasted our method with K-means clustering,

applying the same set of 64 radiomic features under identical

conditions. This comparison aimed to highlight the superiority of

our technique in accurately categorizing patients into distinct

risk groups.

In terms of feature dimensionality reduction, we pitted our

method against PCA. PCA was employed to generate low-

dimensional feature representations, which were then used to

construct survival prediction models. The predictive accuracy of
Frontiers in Oncology 06
the PCA-derived features was rigorously tested using the same

cross-validation framework we applied to our method.

To ensure that our models were constructed with optimal

parameters, we utilized a nested 5-fold cross-validation approach.

This process meticulously optimized the parameter combinations

(Ks = 3; Kf ∈ [2, 10]) based on training data, maximizing the

model’s performance. Similarly, for PCA-based feature extraction,

the optimal number of features was determined within the range of

2 to 10, following the same rigorous method.

In addition, we developed prediction models using traditional

clinical variables, such as age, body mass index (BMI), T stage,

inflammatory markers, and semi-quantitative PET/CT parameters, to

predict individual mortality risk. These models underwent evaluation

through a 3-fold cross-validation process, repeated 100 times to
FIGURE 2

Outline of the predictive modeling workflow for unsupervised learning of radiomic signatures.
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guarantee robustness and reliability. The results were reported as the

mean prediction performance across these iterations, providing a

comprehensive and rigorous comparison that underscored the

advantages of our method over conventional techniques. This multi-

layered benchmarking not only reinforced the validity of our approach

but also demonstrated its potential as a superior tool for patient

stratification and survival prediction.

3 Results

3.1 Baseline demographic information

The baseline characteristics of the study population are detailed

in Table 3, offering a comprehensive overview of the 154 patients
Frontiers in Oncology 07
recruited for this study. The average age of the participants was

54.88 ± 12.99 years, with a mean BMI of 22.42 ± 1.41 kg/m². The

mean SUVmax recorded was 15.01 ± 6.67, reflecting the metabolic

activity of the tumors. The mean OS for the cohort was 34.72 ±

22.38 months, with survival times ranging from 2 to 60 months.

Lymph node metastasis was present in a significant majority of

patients, with 126 individuals (81.82%) testing positive, while 28

patients (18.18%) were negative. Regarding the squamous cell

carcinoma antigen (SCCA), 107 patients (69.48%) showed

positive results, compared to 47 patients (30.52%) who were

negative. Similarly, carcinoembryonic antigen (CEA) was positive

in 93 patients (60.39%), leaving 61 patients (39.61%) negative.

The hematological profile of the patients revealed a mean WBC

count of 7.20 ± 2.74×109/L, a mean NC of 5.16 ± 2.47×109/L, and a

mean LC of 1.53 ± 0.53×109/L. Tumor staging showed that 59

patients (38.31%) were classified as T2, 60 patients (38.96%) as T3,

and 35 patients (22.73%) as T4. The histological analysis identified

that eight patients (5.19%) had adenocarcinoma, while the

overwhelming majority, 146 patients (94.81%), were diagnosed

with squamous cell carcinoma. This dataset provided a detailed

snapshot of the study cohort, encompassing key demographic,

clinical, and pathological features that were pivotal in the

subsequent analysis and model development.
3.2 Patient stratification

Figure 3 presents the Kaplan-Meier survival plots for patients

stratified by the unsupervised two-way clustering method into two

groups (Figure 3A) and three groups (Figure 3B). When patients

were divided into two groups, the Log-rank test revealed no

statistically significant difference in survival rates between the two

groups (P=0.112), although a visual inspection of the Kaplan-Meier

plots suggested a noticeable difference. However, when stratified

into three groups, the survival differences became more

pronounced. The low-risk mortality group (orange curve) showed

a statistically significant survival advantage over the high-risk group

(green curve) (P< 0.001). Additionally, both the low-risk group and

the high-risk group demonstrated statistically significant differences

in mortality compared to the medium-risk group (blue curve)

(P=0.012; P=0.017; Figure 3B). These findings suggested that the

two-way clustering method effectively distinguished patients with

varying clinical outcomes, providing meaningful stratification based

on survival.

In contrast, Figures 3C, D display the results of patient

stratification achieved by applying K-means clustering to the

original radiological features. Similar to the two-way clustering

method, dividing patients into two groups resulted in no

significant differences in survival rates (P=0.119). However, unlike

the two-way clustering, dividing patients into three groups using K-

means did not yield statistically significant differences in survival

among the groups. This indicated that traditional K-means

clustering was less effective than the two-way clustering method
TABLE 3 Characteristics of patients in this study.

Age (years) 54.88 ± 12.99

BMI (kg/m2) 22.42 ± 1.41

SUVmax 15.01 ± 6.67

Lymph node metastasis (positive)
(negative)

126 (81.82%)
28 (18.18%)

SCCA (positive)
(negative)

107 (69.48%)
47 (30.52%)

CEA (positive)
(negative)

93 (60.39%)
61 (39.61%)

CA-19.9 (positive)
(negative)

57 (37.01%)
97 (62.99%)

CA-125 (positive)
(negative)

78 (50.65%)
76 (49.35%)

WBC (1×109/L) 7.20 ± 2.74

NC (1×109/L) 5.16 ± 2.47

LC (1×109/L) 1.53 ± 0.53

PLT (1×109/L) 263.44 ± 138.87

NLR 3.85 ± 2.55

T stage (T2) 59 (38.31%)

(T3) 60 (38.96%)

(T4) 35 (22.73%)

FIGO (II) (IIA) 28(18.18%)

(IIB) 31(20.13%)

(III) (IIIA) 38(24.68%)

(IIIB) 22(14.29%)

(IV) (IVA) 35(22.73%)

Histology (adenocarcinoma) 8 (5.19%)

(squamous cell carcinoma) 146 (94.81%)
BMI, Body Mass Index; SUVmax, maximum standardized uptake value; WBC, White blood
cells; NC, Neutrophil count; LC, Lymphocyte count; PLT, Platelets; NLR, Neutrophil-to-
lymphocyte ratio; SCCA, Squamous cell carcinoma antigen; CEA, Carcinoembryonic antigen;
CA-19.9, Carbohydrate antigen 19.9; CA125, Carbohydrate antigen 125.
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in stratifying patients for predicting survival outcomes, highlighting

the superior performance of the two-way clustering approach in

this context.
3.3 Representative cases

The patient described in Figure 4A was diagnosed with cervical

cancer accompanied by extensive systemic metastasis. However,

after receiving CCRT treatment, the patient’s overall survival (OS)

reached an impressive 37 months. This patient was classified as

being in the low-risk group based on unsupervised two-way cluster

analysis of radiomic features. In contrast, the patient shown in

Figure 4B was diagnosed with cervical cancer without systemic

metastasis, but was classified as being in the high-risk group with an

OS of only 4 months. These contrasting cases highlight the ability of

our unsupervised two-way clustering hierarchical model to

accurately identify patients with advanced disease and high

prognostic risk, thereby demonstrating the model’s potential

utility in guiding personalized treatment strategies.
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3.4 Prediction of OS

The prediction performances of the various models are

illustrated in Figure 5, revealing key insights into the effectiveness

of different feature extraction methods. Notably, the prediction

model constructed using meta-features derived from the

unsupervised two-way clustering method consistently

outperformed the model that utilized PCA for dimensionality

reduction, particularly when the number of features exceeded

four. A significant finding was that when nine meta-features were

extracted through the two-way clustering method, the C-index

values for the three models, COX, COX_Lasso, and RSF, reached

their optimal levels, with values of 0.691 ± 0.026, 0.634 ± 0.018, and

0.684 ± 0.020, respectively.

When examining scenarios where the number of features

exceeded four, the survival C-indexes for the Cox, Cox_Lasso,

and RSF models based on meta-features from two-way clustering

were 0.794 ± 0.025, 0.716 ± 0.027, and 0.761 ± 0.015 in the training

set, and 0.664 ± 0.020, 0.598 ± 0.022, and 0.648 ± 0.025 in the

validation set, respectively. In contrast, using PCA-derived features,
FIGURE 3

Kaplan–Meier survival analysis of patient subgroups stratified by two distinct unsupervised clustering algorithms. (A, B) Survival curves for patients
grouped using an unsupervised bidirectional clustering approach, with two (A) and three (B) clusters, respectively. (C, D) Survival curves for patients
stratified by K-means clustering, also set to two (C) and three (D) clusters, respectively. Statistical comparisons of survival distributions between
subgroups were performed using the log-rank test. In panels (B, D), pairwise p-values are provided in the corresponding tables to illustrate
intergroup differences in overall survival among Cluster 1, Cluster 2, and Cluster 3. Notably, the bidirectional clustering approach (B) demonstrated
statistically significant separation among clusters, whereas K-means clustering (D) did not yield significant intergroup differences.
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the survival C-indexes in the training set for the same models were

0.702 ± 0.031, 0.679 ± 0.022, and 0.698 ± 0.015, while in the

validation set, they were 0.640 ± 0.019, 0.565 ± 0.008, and 0.608 ±

0.004, respectively.

Overall, these results strongly indicated that the best-

performing survival prediction models were those built upon the

meta-features extracted using the two-way clustering method,

demonstrating its superior ability to enhance predictive accuracy

over conventional PCA-based approaches.

Figure 6 illustrates the overall predictive performance of models

using different meta-features derived from unsupervised two-way

clustering and PCA-based dimensionality reduction. The

calculation was based on the sum of the C-index values from the

Cox, Cox_Lasso, and RSF prediction models across varying

numbers of features. The results demonstrated that when the

number of meta-features was five or more, the predictive

performance of the extracted meta-features consistently exceeded
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that of the PCA-derived features. This suggested that the meta-

features generated through two-way clustering provided more

valuable information for predicting survival outcomes. Notably,

the overall C-index reached its maximum value of 2.009 when the

number of meta-features was limited to nine, surpassing the

performance of the PCA-derived features, which achieved a C-

index of 1.806 (p< 0.05). This result highlighted the nine-feature

meta-set as the optimal configuration for survival prediction.

In comparison, prediction models built solely on clinical

variables performed significantly worse. In the training cohort,

the C-index values of the Cox, Cox_Lasso, and RSF models were

0.659 ± 0.038, 0.607 ± 0.019, and 0.613 ± 0.031, respectively. In the

validation cohort, the corresponding C-index values were 0.645 ±

0.041, 0.567 ± 0.016, and 0.561 ± 0.033, respectively (p< 0.05).

These values were considerably lower than those obtained from

models based on radiological features, highlighting the superior

predictive power of the radiomic features over traditional clinical
FIGURE 5

Performance of prediction models built based on meta-features extracted by unsupervised bidirectional clustering (K3) and PCA in terms of survival
using different prediction models. (A) Cox regression model. (B) LASSO-penalized Cox regression model. (C) Random survival forest (RSF) model.
FIGURE 4

The patient depicted in (A), aged 58, was diagnosed with cervical cancer characterized by multiple metastases. Her disease was classified as Stage IV
according to the FIGO system. Despite this, unsupervised two-way clustering analysis of her imaging features categorized her into the low-risk
group, and she achieved an overall survival of 37 months. The patient shown in (B), aged 56, was diagnosed with primary cervical cancer without
metastases. Her condition was staged as II according to the FIGO classification. Despite this staging, she was categorized as high-risk, with an actual
overall survival of only 4 months. This suggests that unsupervised two-way clustering analysis can identify risk groups that may not be apparent
through traditional clinical assessments. The white arrows indicate the primary cervical tumors, while the red arrows indicate distant
metastatic lesions.
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variables. This underscored the importance of integrating advanced

imaging-derived features into survival prediction models to achieve

more accurate and informative outcomes.
3.5 Receiver operating characteristic
curves and feature combination analysis

Figure 7 presents the ROC curves for models built using various

combinations of features, highlighting the impact of integrating

different data types on predictive performance. In Panel A, the

model relying solely on traditional clinical data achieved a mean

area under the curve (AUC) of 0.59 ± 0.04 in the validation set,

reflecting modest predictive accuracy, and the corresponding

training set AUC was 0.64 ± 0.05. As illustrated in Panel B,

incorporating inflammatory markers into the clinical dataset led

to a marked improvement in model performance, with the mean

AUC increasing to 0.77 ± 0.07 on the validation set and 0.83 ± 0.06

on the training set. The most pronounced enhancement was

observed in Panel C, where the integration of clinical variables,

inflammatory markers, and radiomic features produced the highest

predictive accuracy, achieving a mean AUC of 0.88 ± 0.07 in the test
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set and 0.93 ± 0.03 in the training set. These results clearly

demonstrated the cumulative benefits of integrating multiple

feature sets. Adding inflammatory markers to clinical data

substantially boosted the model’s accuracy, and including

radiomic features further elevated the predictive power. The

combination of all three types of features, clinical data,

inflammatory markers, and radiomic features, produced the most

precise survival predictions, underscoring the value of a

comprehensive, multi-modal approach in prognostic modeling.
4 Discussion

Radiomics analysis has emerged as a powerful tool for

quantitatively exploring the relationship between imaging data

and clinical outcomes, offering a nuanced approach to

understanding disease characteristics (20–22). The extraction of

high-dimensional features from imaging data presents a unique

challenge, particularly in radiomics studies with smaller sample

sizes, where feature selection and dimensionality reduction become

crucial for ensuring the reliability and robustness of the results (23–

25). In our present study, we employed an innovative, unsupervised
FIGURE 7

ROC curves for different feature sets and models. (A–C) illustrate the ROC curves of the models constructed using traditional clinical features alone,
the combination of traditional clinical features and inflammatory indicators, and the combination of clinical features, inflammatory indicators, and
radiomic features, respectively. The blue line represents the average AUC value of the three models, COX, COX_Lasso, and RSF.
FIGURE 6

Overall predictive performance in terms of survival of the prediction model based on PCA features (A) and two-way clustering features (B).
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two-way clustering technique to predict OS in cervical cancer

patients undergoing CCRT. This approach not only facilitated

simultaneous patient stratification but also effectively managed

feature dimensionality reduction. We hypothesized that by

integrating patient stratification with feature reduction, we could

enhance the analytical power of the study.

The experimental results supported this hypothesis,

demonstrating that our method was highly competitive in both

patient stratification and survival prediction when compared to

traditional techniques. Notably, the prediction models

incorporating radiological features significantly outperformed

those relying solely on clinical indicators, underscoring the

superior predictive value of imaging-derived data in determining

patient outcomes. This finding highlighted the potential of

radiomics as a critical component in developing more precise and

personalized treatment strategies for cervical cancer patients.

In recent years, there has been a growing interest in integrating

clinical data with imaging features to improve the prediction of

lymph node metastasis, treatment response, and overall prognosis

in various cancers, including cervical cancer (26, 27). For instance,

Fang et al. have conducted a retrospective analysis of pre-treatment

MRI images from 120 cervical cancer patients undergoing CCRT to

predict tumor response, achieving AUCs of 0.820 and 0.798 in the

training and internal validation sets, respectively (28). Similarly, Xu

et al. have developed a CT-based hybrid radiomics nomogram for

predicting OS in cervical cancer patients receiving CCRT, reporting

AUCs of 0.871 in the training set and 0.730 in the internal

validation set (29). Zhang et al. have adopted a different approach

by employing a LASSO-Cox model to predict PFS based on MRI

imaging characteristics and clinical data collected before CCRT

treatment, with C-indexes of 0.792 and 0.809 for the training and

internal validation sets, respectively (17). These studies, much like

our own, underscore the significant potential of radiomics in

enhancing prediction models through the integration of detailed

imaging features. Notably, the integrated model developed in our

study, encompassing clinical data, inflammatory markers, and

radiomic features, demonstrated outstanding predictive

performance, achieving AUCs of 0.93 ± 0.03 in the training set

and 0.88 ± 0.07 in the validation set. These results surpassed those

reported in comparable studies, underscoring the robustness and

clinical utility of the multimodal approach.

However, it is important to note that the prediction models in

these cited studies primarily rely on supervised machine learning

techniques, where feature selection is a critical step in improving

model performance. This selection process typically focuses on

features that demonstrate high repeatability and strong

discriminatory power (18, 30). While these features are indeed

valuable for prediction, their selection can introduce a risk of

overfitting, especially in studies with limited sample sizes. On the

other hand, unsupervised dimensionality reduction techniques,

such as PCA, are adept at identifying underlying relationships

among raw features but fall short when it comes to prognostic

tasks. This limitation arises because unsupervised methods do not

take clinically relevant endpoint data into account during feature
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extraction, making them less effective for tasks that require a direct

link between features and clinical outcomes.

Our study addressed this gap by employing an unsupervised

two-way clustering approach. This approach simultaneously

managed feature selection and patient stratification, thereby

reducing the risk of overfitting while enhancing the model’s

prognostic accuracy. This method allowed us to uncover clinically

meaningful patterns in the data that might be overlooked by more

traditional approaches, providing a robust framework for predicting

patient outcomes in cervical cancer.

In this study, we introduced an innovative, unsupervised two-

way clustering method that simultaneously performed patient

stratification and feature dimensionality reduction (meta-feature

extraction). This approach is grounded in the premise that the two

processes mutually reinforce each other, leading to enhanced

analytical outcomes. The patient stratification process in our

method provided a form of weak supervision, which facilitated

the extraction of features that were particularly informative for

predicting clinical endpoints. These refined features, in turn,

contributed to more precise and effective patient stratification.

The survival analysis results for cervical cancer patients clearly

demonstrated the superiority of our method over traditional

approaches, where patient stratification and meta-feature

extraction were typically carried out independently. Our method,

when compared to the conventional K-means clustering technique,

revealed more distinct survival differences across various patient

groups, underscoring the significant advantages of integrating

meta-feature extraction with patient stratification. Moreover,

when it came to predictive performance, the meta-features

derived through two-way clustering consistently outperformed

those obtained via the PCA method across different feature

dimensions and prediction model configurations. This finding

highlighted the value of the weak supervision inherent in patient

stratification, which enhanced the overall predictive accuracy of the

model. By leveraging this integrated approach, our method not

only improved the reliability of the predictions but also offered a

more comprehensive understanding of the underlying patterns

within the data, ultimately leading to better-informed clinical

decision-making.

The inclusion of inflammatory markers such as NC, CRP, and

NLR in our predictive model was consistent with recent research

that highlights their prognostic significance in cervical cancer (12,

31–33). These markers reflect systemic inflammatory responses,

which have been closely associated with tumor progression and

poor outcomes across various malignancies. By combining these

biomarkers with radiomic signatures, our study not only reinforced

the importance of inflammation in cancer prognosis but also

underscored its critical role in shaping tumor behavior,

particularly in the context of CCRT.

However, several limitations warrant consideration. The

retrospective design of this study, along with its reliance on data

from a single institution, might limit the broader applicability of our

findings. Furthermore, the computational complexity inherent in

the two-way clustering analysis could present practical challenges
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for routine implementation in clinical settings. To address these

limitations, future research should focus on validating these results

through prospective multicenter trials and investigating the

feasibility of incorporating this advanced analytical method into

standard clinical workflows. Such efforts will be crucial in

determining the true potential of this approach in improving

patient outcomes on a larger scale.
5 Conclusion

In conclusion, our study demonstrated the significant potential

of leveraging unsupervised machine learning to improve prognostic

predictions for cervical cancer patients undergoing CCRT. By

integrating radiomic features with inflammatory markers, this

approach offered a more nuanced and precise method for patient

stratification, which in turn could guide personalized treatment

strategies. The promising results suggested that this technique could

be crucial in enhancing patient outcomes, paving the way for more

tailored and effective interventions in cervical cancer care.
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