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Transforming growth factor-beta (TGF-b) has long been known to be associated

with early embryonic development and organogenesis, immune supervision, and

tissue repair and homeostasis in adults. TGF-b has complex roles in fibrosis and

cancer that may be opposing at different stages of these diseases. Under

pathological conditions, overexpression of TGF-b causes epithelial–

mesenchymal transition, deposition of extracellular matrix, and formation of

cancer-associated fibroblasts, leading to fibrotic disease or cancer. Fibroblasts,

epithelial cells, and immune cells are the most common targets of TGF-b, while

fibrosis and cancer are the most common TGF-b-associated diseases. Given the

critical role of TGF-b and its downstreammolecules in fibrosis and progression of

cancer, therapies targeting TGF-b signaling appear to be a promising strategy.

Preclinical and clinical studies have investigated therapies targeting TGF-b,
including antisense oligonucleotides, monoclonal antibodies, and ligand traps.

However, development of targeted TGF-b therapy has been hindered by

systemic cytotoxicity. This review discusses the molecular mechanisms of

TGF-b signaling and highlights targeted TGF-b therapy for cancer and fibrosis

as a therapeutic strategy for related diseases.
KEYWORDS
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1 Background

Transforming growth factor-beta (TGF-b) is a multifunctional polypeptide cytokine

that belongs to the TGF-b superfamily and plays an important role in multiple biological

processes, including cell growth, differentiation, apoptosis, the immune response, and

wound healing (1, 2). Accurate TGF-b signaling is essential for normal function and

homeostasis in humans, and abnormalities of TGF-b can lead to a variety of diseases (2).

However, TGF-b has dual functionality. In normal cells, TGF-b halts the cell cycle in G1
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phase and can inhibit cell proliferation and promote apoptosis (3).

In contrast, cancer cells become resistant to inhibition by TGF-b
signaling through mutations or epigenetic modifications. In the

tumor microenvironment (TME), TGF-b contributes to tumor

growth, invasion, and spread, and advanced tumors produce an

excessive amount of TGF-b that promotes proliferation of tumor

cells, vascular cells, immune cells, and fibroblasts (4–7). These

processes convert TGF-b into a tumor-promoting agonist as the

disease progresses. TGF-b functions as a tumor promoter by

stimulating tumor cells to undergo what is known as epithelial-

mesenchymal transition (EMT). EMT can activate angiogenesis and

cancer-related fibroblasts and enable tumors to evade inhibitory

immune responses, further promoting growth and progression of

cancer (8).

In recent years, researchers have found that inactivating the

TGF-b signaling pathway in CD4+ cells leads to increased

production of interleukin-4 by T helper 2 cells in mouse models

of breast cancer and regression of the disease (9, 10). Given the

important role of TGF-b in human fibrosis and cancer, anti-TGF-b
approaches have been used to treat several diseases, including

melanoma, colorectal cancer, and breast cancer (11–13). A

growing body of preclinical and clinical data suggests that

blocking TGF-b signaling is an effective treatment for cancer and
Frontiers in Oncology 02
fibrosis. This review focuses on the latest advances in use of TGF-b
inhibitors for therapeutic management of these diseases.

(see Figure 1).
2 TGF-b signaling in cancer and
fibrosis

TGF-b is a multifunctional polypeptide cytokine and has three

mammalian subtypes, namely, TGF-b1, TGF-b2, and TGF-b3,
which are encoded by different genes but act through the same

signaling system (14–16). During the synthesis of TGF-b in cell,

TGF-b precursors are hydrolyzed by the endopeptidase furin in the

Golgi apparatus and then transported to and bound to the

extracellular matrix (ECM) together with the latency-associated

peptide (LAP) in the amino terminal region (17–19). In the

extracellular space, the LAP/TGF-b complex can be cleaved by a

variety of proteases to release active TGF-b, including plasmin,

matrix metalloproteinase (MMP) 2, and MMP9 (20, 21).TGF-b
influences multiple processes, including cell growth and

differentiation, apoptosis, cell motility, angiogenesis, and the

immune response (22–25). These effects are heavily dependent on

the TME, including tumor hypoxia. This pleiotropy is manifested in
FIGURE 1

Schematic representation of the TGF-b activation pathway. (By Figdraw.).
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the following process: TGF-b is released from ECM. Subsequently,

it binds to the transmembrane TGF-b receptor type II (TbRII) on
the target cell and recruits the type I receptor (TbRI) to exert its

function. The phosphorylation of type I receptor by type II receptor

and subsequent phosphorylation of R-SMAD is a central feature of

the TGF-b family of ligand signaling mechanisms (26, 27). TbRII is
t ransphosphorylated , act ivated , and s ignals through

phosphorylation of the SMAD 2/3 protein. In the process of

signal transmission, auxiliary receptors facilitate or inhibit signal

transmission through TGF-b receptors. Among them, endoglin can

promote signal transmission to regulate angiogenesis, while BAMBI

interferes with the signaling of receptor complexes, leading to the

association of BAMBI expression with various human diseases,

including cancer and tissue fibrosis (28–31). The key regulatory

proteins in the TGF-b intracellular signaling axis mainly include the

SMAD protein family, such as SMAD2 and SMAD3, which are

receptor-regulated SMADs. Phosphorylation allows SMAD 2/3 to

form heteromeric complexes with SMAD 4 proteins and translocate

into the nucleus. By binding to transcription factors, SMAD

complexes affect mRNA splicing, stability, and translation

through RNA-binding proteins (RBPs) and non-coding RNAs

(ncRNAs) (32, 33). SMAD can also control the maturation

process of miRNAs. In addition, TGF-b/SMAD signaling can

modulate the expression of several long non-coding RNAs

(lncRNAs) that act as mediators of TGF-b reactions (34). R-

Smads and Smad4 are not highly regulated by extracellular

signaling in most cell types (35). Ubiquitin-proteasome-mediated

degradation controls the levels of post-translational Smads, and E3

ubiquitin ligase, Smurf1, and Smurf2 antagonize TGF-b conduction

by interacting with and targeting R-Smad (36). Following TGF-b
signaling, phosphorylated Smad2 or Smad3 can form stable

complexes with Smurf2. Thus, the majority of nucleus Smad2 or

Smad3 is not a target for degradation, but is dephosphorylated and

relocalized into the cytoplasm (37–39). In contrast to R-Smads,

Smad4 is not normally subject to ubiquitin-mediated degradation,

and some tumor-associated mutations allow ubiquitination or

reduce the stability of Smad4 (40, 41). The initiation and

propagation of TGF-b signaling are counteracted by the activities

of SMAD6 and SMAD7, which are inhibitory SMADs (I-SMAD)

(42). SMAD7 antagonizes the TGF-b pathway by recruiting the E3

ubiquitin ligases SMURF1 and SMURF2 to the type I receptor,

promoting its ubiquitination and subsequent degradation, making

it a more effective inhibitor of TGF-b signaling than SMAD6, which

preferentially inhibits BMP signaling (43, 44). Although there is a

typical SMAD-dependent pathway, TGF-b also initiates SMAD-

independent signal transduction. Research indicates that ERK

activation occurs in cholesterol-rich lipid rafts in human

keratinocytes. The regulation of JNK and p38 MAP kinase

pathways is crucial in inflammation, cell differentiation, and

apoptosis, where TGF-b-activated kinase 1 (TAK1) also serves as

a classic inhibitory regulator of TGF-b signaling (45, 46). The

MAPK and phosphoinositide 3-kinase pathways also have potent

agonists. Similarly, stress sensors regulate the activation of p38

MAPK and c-Jun amino-terminal kinase, while tumor necrosis

factor, interleukin-1, and Toll-like receptors control activation of
Frontiers in Oncology 03
TAK1. Therefore, the role of TGF-b in the regulation of these

pathways under normal physiological conditions and in disease

remains difficult to determine.

Dysregulation of TGF-b signaling is associated with many

pathological processes, including tumor progression and fibrosis

(47). In advanced malignant disease, tumor cells undergo genetic

and/or epigenetic changes that gradually render them insensitive to

TGF-b by weakening the pathway via which TGF-b inhibits their

growth and accumulate mutations in the TGF-b signaling cascade

that allow them to evade the antitumor surveillance activity of TGF-

b. Examples of such escape include SMAD4 mutations in gastric

cancer and TbRI mutations in colon cancer, where loss of the

functional mutant component of TGF-b is not sufficient to cause

tumorigenesis but promotes transformation of precancerous cells to

a more malignant phenotype (48–51). In the later stages of tumor

development, TGF - b, through the secreted TGF - b protein, plays a
multifaceted role. It stimulates cell proliferation, triggers the

formation of new blood vessels , and strengthens the

immunosuppressive state of the tumor (52). The carcinogenic

events that lead to TGF-b switching are diverse. For example, co-

activation of KRAS, inactivation of SMAD4, and changes in the

CDKN2A genome lead to rapid transformation of non-invasive

pancreatic intraepithelial neoplasms into invasive pancreatic ductal

adenocarcinomas, a large number of which are related to tumor

stage, with the SMAD4 inactivation rate in high-grade tumors

reaching up to 31% (53–56). TGF-b increases the ability of cells

to migrate and invade neighboring tissues via EMT, allowing

epithelial cells to change from a cuboidal shape to an elongated

spindle shape and an invasive phenotype (57). During EMT,

epithelial cells lose E-cadherin and zonula occludens-1 proteins

from the plasma membrane and upregulate their expression of

vimentin, fibronectin, and N-cadherin, thereby increasing their

mobility (58, 59). Studies in cultured cells and mice have shown

that remodeling of the ECM can release the underlying TGF-b
complex and interact with inflammatory mediators, resulting in a

stiffer ECM, and also increased metastasis of hepatocellular

carcinoma in rats (60). Furthermore, the TGF-b-regulated
immunosuppressive microenvironment indirectly promotes

tumor escape, inhibits natural killer cells, and regulates the

proliferation of macrophages, antigen-presenting dendritic cells,

and granulocytes to control the development and function of the

innate immune system (61–63). Deletion or mutations of SMAD4

in NK cells leads to impairment of NK cell homeostasis, and NK cell

immune surveillance against metastases (64).

In addition to its effects on tumor development, TGF-b-induced
EMT leads to fibrosis in the tissues of many organs, including the

lungs and liver (65). Fibrosis involves necrosis of parenchymal cells

and excessive deposition of ECM, which results in connective tissue

hyperplasia, fibrosis, and eventually organ failure. Fibrosis also entails

conversion of fibroblasts into cancer-associated fibroblasts (CAFs)

(66). All three isoforms of TGF-b have fibrotic effects, and TGF-b is

considered a major factor in both classical and non-classical signaling

pathways in fibrosis, affecting the liver, kidney, and lung (67–69).

Dysregulation of TGF-b leads to excessive deposition of ECM, which

promotes pathological fibrosis and tumorigenesis and is also
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associated with migration of tumor cells. Furthermore, studies in

zebrafish have shown that breast and prostate cancers promote tissue

fibrosis and migration of cancer cel ls in the unique

microenvironment provided by TGF-b produced in CAFs (70–72).

Other studies have demonstrated a strong association between

pulmonary fibrosis and an increased risk of lung cancer. This pro-

fibrotic state stimulates increased expression of TGF-b, which is

followed by crosstalk between or activation of downstream pathways,

such as SMAD3 or other atypical pathways, leading to resistance of

cancer cells to apoptosis and progression of cancer via CAFs (68, 73,

74). Abnormal accumulation of ECM triggers fibrotic and

immunosuppressive processes by linking SMAD4, BRAF, and TP53

mutations with MYC amplification and produces a CAF phenotype

(66, 75–78). In breast cancer, TGF-b not only promotes tumor

growth but also forms a stable breast cancer stem cell phenotype

by changing the metabolic reprogramming of CAFs. EMT of breast

cancer cells is regulated by a TGF-b/SMAD-dependent pathway and

activated by tumor necrosis factor-alpha/nuclear factor-kappa B/

Twist, promoting metastasis (79, 80). Calon A et al. found that all

poor prognostic features in colorectal cancer patients had elevated

TGF-b expression, and in colon cancer, CAF produced TGF-b, which
in turn activated the gene expression program in CAF. On the other

hand, TGF-b in CAFs improves the tumor-initiating capacity of

colorectal cancer cells, even in patients classified as having a good

prognosis, and if CAF levels are elevated, this property increases

metastatic potential and the ability to regenerate disease after

treatment (81–84).
3 Strategies for inhibition of TGF-b

Given that the mechanisms of tissue fibrosis and tumorigenesis

are inextricably linked and TGF-b signaling plays an important role

in both conditions, inhibition of TGF-b is an area of intense interest

in cancer research. Inhibitors of TGF-b signal transduction have

been investigated in preclinical studies and are divided into five

types according to whether their mechanism of action entails

blocking the synthesis of TGF-b, blocking the TGF-b ligand,

blocking activation of latent TGF-b, blocking the TGF-b receptor,

or blocking intracellular signal transduction (85).
3.1 Blocking synthesis of TGF-b

Transcription and translation, two crucial steps in gene

expression, are key to converting genetic information into the

protein - based material essential for biological functions. One

strategy is to use antisense oligonucleotides, which are

complementary to mRNA targets and generate single-stranded

deoxyribonucleotides. One such agent is trabedersen (AP-12009),

an 18-po l ymer i c th iopho spha t e -mod ifi ed an t i s en se

oligodeoxynucleotide that is complementary to TGF-b2 mRNA

(86). Developed by Antisense Pharma GmbH (Regensburg,

Germany), trabedersen is specifically designed for clinical use in

patients with highly aggressive TGF-b2-overexpressing tumors,
Frontiers in Oncology 04
such as malignant melanoma and high-grade glioma. In a cell line

established from a patient with high-grade glioma, trabedersen led

to a significant reduction in synthesis of TGF-b2 protein and

inhibited cell proliferation and migration. Trabedersen was also

well tolerated in a safety study by Schlingensiepen et al. in animals

(87, 88). In a Phase I/II study, seven patients achieved stable disease

and two achieved complete remission (88, 89). These encouraging

results led to a Phase IIb clinical trial (NCT00431561) in which the

efficacy and safety of trabedersen were assessed in patients. In this

study, trabedersen was well tolerated with no serious adverse events

and performed better than conventional chemotherapy in terms of

median survival. At present, large Phase III trials of trabedersen are

underway in patients with high-grade glioma. Phase I trials of this

agent have also been initiated in patients with pancreatic cancer and

colon cancer after it was found to inhibit the proliferation and

migration of pancreatic cancer cells in mice (90, 91). ISTH0036 is an

antisense oligonucleotide developed by Isarna Therapeutics GmbH

(Munich, Germany) that targets TGF-b2 mRNA. Pfeiffer et al.

evaluated the ability of this agent to inhibit fibrosis after

glaucoma filtration surgery in a Phase I clinical trial and

confirmed its safety and potential antifibrotic activity (92).

However, there are challenges in the development of antisense

oligonucleotides as a therapeutic target, including off-target effects,

delivery to target tissues, and RNA-binding affinity.
3.2 Blocking the TGF-b ligand

Therapies that block the TGF-b pathway have been successfully

developed for a variety of cancers. Neutralizing antibodies are the

preferred approach because they bind directly to the ligand and

block into the receptor. Thus far, three drug candidates have been

investigated in clinical trials by Cambridge Antibody Technology

(Cambridge, UK), namely, lerdel imumab (CAT-152) ,

metelimumab (CAT-192) and fresolimumab (CAT-193) (93, 94).

Blocking TGF-b ligands from binding to the receptor by using

ligand traps or neutralizing antibodies is a promising strategy in

cancer therapy. Among the neutralizing antibodies, fresolimumab

(GC1008) is a human monoclonal antibody designed to neutralize

all three subtypes of TGF-b and is the most widely investigated

agent in this class (95). Soluble TGF-b receptors are another

effective strategy for blocking binding of TGF-b ligands to cell

receptors. The Phase I clinical study of AVID200 is currently in

progress (96). Chen et al. discovered that in a mouse model of

pancreatic ductal adenocarcinoma (PDAC), AVID200 is capable of

regulating the heterogeneity of cancer - associated fibroblasts

(CAFs) and significantly decreasing tumor metastasis to the

liver (97).

3.2.1 Studies in cancer
Fresolimumab has been investigated as a pan-TGF-b

neutralizing antibody in patients with advanced melanoma and

renal cell carcinoma, some of whom achieved stable disease or

remission (98–100). A preclinical study in a mouse model of 4T1

breast cancer showed that use of 1D11 (Genzyme Corporation,
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Cambridge, MA, USA), another pan-TGF-b neutralizing antibody,

slowed tumor growth, particularly when combined with

radiotherapy. These findings indicated that the efficacy of TGF-b
inhibitors depends on the combination of tumor parenchyma and

microenvironment and drugs (101–103). Combination of

fresolimumab with a programmed cell death protein 1 (PD-1)

inhibitor has also shown promising results in a variety of cancers.

However, although fresolimumab has a similar affinity for all TGF-

b subtypes, these subtypes are expressed in varying amounts in

different cancers, and thus antagonists need to be developed with

specific targets. Accordingly, Sanofi Aventis has suspended clinical

development of fresolimumab as an oncologic agent. Nevertheless,

development of antibodies against fibrosis continues.

Similarly to neutralizing antibodies, soluble TGF-b receptors

can interfere with or block the interaction between ligands and

membrane binding receptors, acting as a “ligand trap.” Soluble

TGF-b receptors have shown antitumor efficacy in preclinical

mouse models of mesothelioma, liver cancer, and pancreatic

cancer, with increased apoptosis of primary tumors and decreased

metastasis (104, 105). TGF-b type III receptors bind to all subtypes

of TGF-b. Furthermore, studies in the MDA-MB-23 breast cancer

cell line showed that reduction of serum TGF-b levels decreased the

movement and invasiveness of tumor cells and metastasis to the

lungs (106–108).

3.2.2 Studies in fibrosis
Many studies have shown that TGF-b1 signaling plays an

important role in the pathogenesis of fibrosis. TGF-b is an effective

promoter of fibrosis in cardiac fibrosis and idiopathic or interstitial

pulmonary fibrosis (109). In various clinical trials, direct neutralization

of TGF-b has been shown to have an anti-fibrotic effect. AVID200 is

an engineered TGF - b ligand trap. It exhibits higher sensitivity to TGF
- b1 than to TGF - b2, where TGF - b2 is a positive factor for

hematopoiesis and cardiac function. As a result, AVID200 is more

precisely targeted in treating anemia, such as that associated with

myelodysplastic syndrome. Moreover, its ability to increase platelet

count represents an effect not previously observed in other therapeutic

approaches (8, 110). Systemic sclerosis is characterized by excessive

deposition of ECM components in tissues and organs resulting in

fibrosis. Metelimumab has been evaluated as an early treatment for

systemic sclerosis but has not shown a therapeutic effect (111). In a

Phase I trial (NCT01284322), biomarkers of systemic sclerosis

(thrombospondin 1 and cartilage oligomeric protein) declined

rapidly after treatment with fresolimumab. These findings suggest

that fresolimumab holds promise as a treatment for systemic sclerosis.

The US Food and Drug Administration has approved disitertide

(P144), a peptide derived from the human beta-glycan ligand-

binding domain, for testing in cutaneous fibrosis (112).
3.3 Blocking activation of latent TGF-b

Blocking the conversion of latent TGF-b to activated TGF-b has

become an attractive target. Integrin avb6 is usually detected on

fibrotic and remodeled cells and can promote invasion of cancer
Frontiers in Oncology 05
cells in several solid tumors (113). Overexpression of integrin avb6
is associated with low survival rates in patients with colon cancer or

lung cancer (114). Several studies have shown that inhibiting

integrin or knocking out integrin genes can reduce or reverse

drug resistance and the aggressiveness of breast cancer and

stomach cancer. Therefore, integrins are considered to be

therapeutic targets in a variety of cancers. Abituzumab is an

antibody against integrins. In clinical trials, use of abituzumab

was associated with increased progression-free survival and

response rates in patients with metastatic colorectal cancer and

high integrin expression (115). Cilengitide is a selective integrin

inhibitor that has been studied in a series of Phase II/III studies in

non-small cell lung cancer, pancreatic cancer, and prostate cancer

(116–118). However, inhibition of activation of TGF-b has

hampered development of abituzumab because of the effects on

homeostasis and the risk of serious adverse events. However, Van

Aarsen et al. found that TGF-b signaling did not need to be

prevented completely, and only the phosphorylated portion of

SMAD2/3 was suppressed, and its collagen expression was

significantly reduced (119). For example, BG00011, an anti-avb6
monoclonal antibody, significantly reduced bronchoalveolar levels

of phosphorylated SMAD2 in patients with idiopathic pulmonary

fibrosis in a Phase IIA clinical trial, but the trial has been halted

owing to safety concerns (120).
3.4 Blocking the TGF-b receptor

Blockade of the receptor inhibits the kinase activity of TGF-b,
thereby preventing typical and atypical signaling downstream, where

TGF-b1 receptors are associated with signal transduction by SMADs.

Therefore, these receptors are attractive targets for inhibition. TGF-b
receptor inhibitors include vactosertib and galunisertib. Vactosertib

was found to inhibit metastasis of breast cancer and enhance anti-

tumor T cell immunity and antigen diffusion in mouse models of

breast cancer (121). To date, clinical trials of vactosertib have focused

on the treatment of cancer, and the efficacy of this agent in human

fibrotic diseases is yet to be investigated. Galunisertib is a TbRI kinase
inhibitor that is showing promising anticancer activity in breast,

colon, lung, and hepatocellular carcinoma xenografts. In a mouse

model of colorectal cancer, clinically relevant doses of galunisertib

were used to enhance the antitumor activity of anti-programmed

death-1 ligand 1 (PD-L1) therapies (anti-mouse PD-L1 clones, which

resulted in regression of tumors and enhanced activation of T cells)

(122). The aforementioned studies further suggest that, in contrast to

other receptor blockers, Galunisterib can remarkably decrease

adverse events and toxicity, particularly cardiovascular toxicity.
3.5 Blocking intracellular signal
transduction

Targeted inhibition of intracellular Smad signaling molecules

enables prevention of TGF - b activity triggered by other signaling

pathways. This approach differs from blocking TGF - b at the ligand
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or receptor level. In the classical pathway, interfering with formation

of SMAD 2/3 and SMAD 4 complexes reduces the expression of

TGF-b response genes, which is a useful way of reducing the risk of

negative outcomes (123). Using thioredoxin A as a scaffold, Cui et al.

developed three peptide aptamers that can help disrupt

subpopulations of TGF-b reactions (124). LY2157299

(Galunisertib) has been shown to inhibit lung cancer and breast

cancer cell growth, inhibit the activity of TGF-b receptor I, reduce

phosphorylation of SMAD2 and SMAD3, and indirectly affect the

formation and function of SMAD2/3/4 complexes, and has been used

to evaluate therapeutic effects in a variety of cancer clinical trials (125,

126). SB-431542 is a small-molecule selective inhibitor of ALK-5 that

inhibits TGF-b-mediated transcription of renal cancer proteins.

However, due to its unstable pharmacokinetics, it has only been

studied in vitro (127, 128). Overall, targeting only one signaling

pathway is impractical and inefficient in view of the complexity of

carcinogenesis. Recent clinical studies have demonstrated the

therapeutic potential of TGF-b inhibitors used in combination with

adjuvant treatments. TGF-b has a pleiotropic effect on normal

physiological function and in tumorigenesis, and thus long-term

inhibition of TGF-b and related signaling pathways may produce

adverse reactions (129). Therefore, fine-tuning the downstream

signaling pathway of TGF-b rather than eliminating it completely

at the ligand level would be a better therapeutic strategy. TGF-b
signaling mediators, including SMAD2 and SMAD3, vary in their
Frontiers in Oncology 06
sensitivity to stimulation by TGF-b and bind to different

transcription factors, thereby regulating expression of different genes.
4 Potential strategies and future
prospects for TGF-b inhibitors

As of August 2023, 124 TGF-b blocking agents had been

identified worldwide, two of which have received regulatory

approval and 73 are still in the clinical research stage. Six agents

are in clinical Phase III trials, 33 in clinical Phase II trials, 32 in

clinical Phase I trials, and two in clinical application studies (18,

130). These clinical trials are summarized in Table 1. As can be seen

in this table, inhibition of the TGF-b pathway remains an active

area of investigation in cancer research. TGF-b-targeted
neutralizing antibodies, vaccines, antisense oligonucleotides, and

small molecule inhibitors have been studied in solid tumors in

clinical trials (131). Belagenpneumatucel–L is an anti-cancer

vaccine developed for non-small cell adenocarcinoma (NSCLC)

that theoretically increases the immunogenicity of allogeneic lung

cancer vaccine cells, resulting in an immune tumor response (24).

However, owing to pleiotropic and safety issues, anti-TGF-b agents

are difficult to develop. Fresolimumab appears to be relatively safe

in clinical trials, and 10 mM has been identified as the optimal dose

for clinical development of this agent. Vincenti et al. reported that
TABLE 1 Shows the summary of various strategies of TGF-b inhibition in clinical trials.

Strategy Target Type Treatments Diseases Clinical trials

Blocking synthesis TGF-b2 mRNA ASO Trabedersen Pancreatic ductal
adenocarcinoma and
malignant
pleural mesothelioma

NCT06079346 (phase 2/3)
and NCT05425576 (phase 2)

TGF-b2 mRNA ASO TASO-001 Solid tumors NCT04862767 (phase1)

Blocking ligand TGF-b1, TGF-b2 Antibody NIS793 Colorectal cancer,
pancreatic cancer
and MDS

NCT04952753 (phase2),
NCT05417386 (phase1),
NCT04390763 (phase2) and
NCT04097821 (phase1/2)

TGF-b2 Antibody Lerdelimumab Fibrosis (after surgery) CAS285985-06-0

TGF-b1,
TGF-b2, TGF-b3

Antibody Fresolimumab Breast cancer, lung caner
and IPF

NCT01401062 (phase2),
NCT02581787 (phase1/2)
and NCT00125385 (phase1)

TGF-b1,
TGF-b3

Soluble receptor AVID200 Solid tumor and
myelofibrosis

NCT03834662 (phase1) and
NCT03895112 (phase1)

Blocking latent activation Integrin Antibody SRK-181 Solid tumor NCT04291079 (phase1)

Integrin Small molecule inhibitor GSK3008348 IPF NCT03069989 (phase1)

Blocking receptor ALK5 Small molecule inhibitor Galunisertib Prostate cancer and
pancreatic cancer

NCT02452008 (phase2) and
NCT0234160 (phase1)

ALK5 Small molecule inhibitor Vactosertib Urothelial carcinoma and
solid tumor

NCT04064190 (phase2) and
NCT02160106 (phase1)

ALK5 Small molecule inhibitor LY3200882 Solid tumor NCT02937272 (phase1)

Blocking intracellular
signaling

JNK Small molecule inhibitor Tanzisertib IPF NCT01203943 (phase2)
The bold values correspond to the five strategies of TGF-b inhibition in clinical trials: Blocking synthesis; Blocking ligand; Blocking latent activation; Blocking receptor; Blocking
intracellular signaling.
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inhibition of TGF-b delayed wound healing and caused mild

gingival bleeding (132, 133). Adverse events are still higher

compared to targeting TGF-b2 mRNA, but this finding could

mean that future TGF-b-targeted therapies developed at the

protein level will have a better safety profile than those developed

at the gene level. Bintrafusp alfa is a bifunctional fusion protein that

targets TGF-b and PD-L1 and is formed by fusing the extracellular

domain of TGF-bRII with a human IgG1 monoclonal antibody that

blocks PD-L1. This agent blocks both the TGF-b and PD-L1

immunosuppressive signaling pathways at the same time. It has

been demonstrated that inhibition of both these pathways using a

bi-functional approach has better antitumor activity relative to

TGF-b “traps” and anti-PD-L1 antibodies. In mouse tumor

models, bintrafusp alfa significantly reduced fibrosis, helped

reduce local drug resistance, and was more effective in tumor

regression on day 24 compared with anti-PD-L1 or anti-TGF-b
alone (134). In mouse models of breast and colon cancer, Knudsom

et al. demonstrated that bintrafusp alfa not only blocked activation

of TGF-b signals in the TME but also significantly reduced the

transduced TGF-b signal (135). Preclinical data indicate that

bintrafusp alfa reduces the expression of vascular endothelial

growth factor (VEGF) in cancer - associated fibrosis and the

subsequent angiogenesis by sequestering TGF - b. It may also

restore normal vascular homeostasis, thus facilitating drug

delivery and the infiltration of T cells into the tumor

microenvironment (TME) (134, 136, 137). Simultaneous targeting

of two non-redundant immunosuppressive pathways may have

superior antitumor activity. Liu et al. conducted a clinical

expansion Phase I treatment for advanced solid tumors. They

discovered that a dose of 30mg/kg demonstrated the optimal anti

- tumor activity. Notably, compared to other doses, there was no

significant increase in toxicity. Among the treated patients, 37%

showed a reduction in the target - lesion tumor (138, 139).

Many TGF-b-targeted therapies are presently under investigation

for their effects when used in combination with anti-PD-L1 therapies,

particularly in cancers that do not respond well to PD-L1

monotherapy. Gemogenovatucel-T is being used alone or in

combination with atezolizumab (NCT03073525) or duvaliumab

(NCT02725489) in advanced gynecological cancers (140). Valeria

et al. found that the neutralizing antibody 1D11 combined with anti-

PD-1 helps T cells penetrate into the center of a tumor and enhances

anti-tumor immunity (141, 142). Simultaneous administration of anti-

TGF-b, anti-VEGF (Y332D), and anti-PD-1 inhibited tumor growth

and metastasis in lung metastasis models and was superior to anti-

VEGF and anti-TGF-b alone in reducing nodules in lung tissue (143,

144). Furthermore, anti-PD-1 and Y332D significantly increased

survival time in mouse models of hepatocellular carcinoma (145).

Y332D promotes transition of tumors from “cold” to “hot”, potentially

increasing the sensitivity of PD-1 antibodies. Studies in pancreatic

cancer cell lines and xenografts in mice have found that combination

therapy consisting of galunisertib, a TGF-b receptor inhibitor, and

lapatinib, an inhibitor of both the epidermal growth factor receptor and

human epidermal growth factor receptor 2, reduces tumor growth and

metastasis by inhibiting lymphangiogenesis and angiogenesis (147).

Other studies in cultured cell lines and mouse xenografts have shown
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that LY2109761, an inhibitor of TGFBR1 and TGFBR2 kinase activity,

has antitumor effects that are synergistic with those of gemcitabine and

reduces metastasis (148, 149). Galunisertib in combination with

gemcitabine extends survival of unresectable pancreatic cancer in

humans (150). In conclusion, these results offer evidence suggesting

that combination therapy involving TGF-b inhibitors may present a

more favorable safety profile and be more easily managed compared to

TGF-bmonotherapy. Traditional Chinese Medicine is a multi-targeted

treatment, in which each target can cooperate with others with a low

risk of adverse effects. Therefore, there are many possibilities for

integration of traditional Chinese and Western medicine. Dachaihu

decoction reduced expression of TGF-b in a rodent model of non-

alcoholic fatty liver disease, and psoralen decreased TGF-b levels in

bleomycin-induced pulmonary fibrosis (146, 151). No biomarker of an

inhibitory response to TGF-b has been identified to date. More studies

of immunophenotypes and the characteristics of TGFb-related gene

expression, as well as genomic biomarkers, are warranted.

TGF-b is a ubiquitous, multifunctional cytokine that is believed

to be a central pathway in the development and progression of

cancer. TGF-b inhibition strategies have demonstrated beneficial

effects in mouse models of cancer. Considering the pleiotropic

nature of TGF-b and its role in biological homeostasis, the safety

of TGF-b antagonists in human patients must be carefully

evaluated. Considering that targeting TGF-b signaling by

inhibition of its receptors or neutralizing all TGF-b subtypes may

be associated with serious adverse events, such as keratoacanthoma,

squamous cell carcinoma, and impaired immunity. Many of these

approaches have shown promising anti-metastasis effects in

preclinical models and potential for further clinical development.
5 Limitations of anti–TGF-b therapy

Preclinical and clinical data of anti-TGF-b therapies suggest

promise for targeting this pathway as anti-cancer therapies.

However, anti-TGF-b therapy has a number of limitations:

At present, most of the data for anti-TGF-b therapy are derived

from animal experiments, which are difficult to fully simulate the

complexity and heterogeneity of human tumors. However, some

reports used in human experiments have pointed to adverse effects in

some patients. For example, in a multicenter, phase II clinical trial,

researchers used fresolimumab, an anti-TGF-bmonoclonal antibody, in

patients with advanced pancreatic cancer in an attempt to block the

TGF-b signaling pathway to curb tumor progression, but the overall

survival rate of patients was not significantly improved (152, 153). In

addition, some early clinical studies in non-small cell lung cancer

(NSCLC) have introduced anti-TGF-b therapies in combination with

conventional chemotherapy, and some patients have not only not

benefited from the combination therapy, but their disease has

accelerated their deterioration (154–157). This has the opposite effect

of TGF-b in the stage of tumorigenesis, so it is difficult for anti-TGF-b to
accurately distinguish the stage of the tumor, which may counteract the

original antitumor effect and accelerate the deterioration of the tumor.

For the treatment of tumors, a combination of drugs is often

used, such as TGF-b is combined with radiotherapy, chemotherapy,
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immunotherapy and other drugs (90, 158). However, the TGF-b
signaling pathway intersects and overlaps with many other

anticancer drug pathways, and when combined, complex

interactions between drugs may cancel out each other’s effects or

cause unpredictable toxicity stacking. For example, the combination

of anti-TGF-b drugs with platinum-based chemotherapy drugs may

alter the uptake and metabolism of chemotherapy by tumor cells,

making chemotherapy response unstable (159, 160). The sequence

and time interval of combination therapy and the optimal timing of

intervention in different tumor stages are different, and if anti-TGF-

b therapy is intervened too early or too late, it will not be able to

form a synergistic effect with other therapies.

In addition to the antitumor effects of TGF-b, this cytokine is
also important for normal tissues homeostasis. Since TGF-b is
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involved in many normal physiological processes, systemic

inhibition of TGF-b may have harmful side effects, and when

anti-TGF-b drugs are applied systemically, healthy tissues will

also be affected, such as interfering with the normal renewal of

liver and kidney cells, resulting in abnormal liver and kidney

function, and may also affect the repair of the gastrointestinal

mucosa, causing digestive disorders (90, 161, 162).
6 Conclusion

The TGF-b signaling pathway is essential under normal

physiological conditions but is also involved in progression of

cancer, and thus has attracted considerable research interest in
FIGURE 2

The function of TGF-b during tumor progression and therapeutic strategies of TGF-b inhibition. ASO, antisense oligonucleotides; EMT, Epithelial-
mesenchymal transition; TME, Tumor micro-environment. During tumorigenesis, TGF - b transitions from acting as a tumor suppressor in the
premalignant stages to promoting tumor growth in the later stages of the disease, a process that ultimately leads to metastasis. (A) Normal
epithelium; (B) Early tumorigenesis; (C) Advanced cancer; (D) Invasive metastatic cancer.
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recent years. TGF-b shapes the TME in a way that is conducive to

tumor progression (Figure 2). Therefore, blocking TGF-b has the

potential to reduce invasion and migration of tumor cells and holds

promise for broad application in clinical practice. However, the

potential adverse effects of TGF-b inhibitors have hindered

their clinical application. The results of recent clinical trials have

raised concerns regarding the toxicity of TGF-b inhibitors

and suggest the possibility that inhibiting the TGF-b signaling

pathway may worsen rather than improve the outlook for

patients with cancer. At present, none of these agents has been

approved for the treatment of cancer or fibrosis. Inflammation

and bleeding are common adverse effects of TGF-b therapy, and

TGF-bR inhibitors have been found to cause significant

cardiotoxicity. Therefore, there is a need for more targeted

clinical treatment. Targeted nanotechnology-based interventions

have been used as an available measure to improve treatment.

Considering the pleiotropic effect of TGF-b, targeting its

downstream signal transduction may identify better targets for

cancer therapy. Finally, patients need to be carefully selected for

participation in clinical trials, and the indications and dosages of

drugs should be carefully defined to limit both targeted and off-

target adverse effects.
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