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Bisphenol A and DDT disrupt
adipocyte function in the
mammary gland: implications
for breast cancer risk
and progression
Sarah M. Bernhardt1 and Carrie D. House1,2*

1Department of Biology, San Diego State University, San Diego, CA, United States, 2Moores Cancer
Center, University of California, San Diego, La Jolla, CA, United States
As breast cancer incidence continues to rise worldwide, there is a pressing need

to understand the environmental factors that contribute to its development.

Obesogens, including Bisphenol A (BPA) and Dichlorodiphenyltrichloroethane

(DDT), are highly prevalent in the environment, and have been associated with

obesity and metabolic dysregulation. BPA and DDT, known to disrupt hormone

signaling in breast epithelial cells, also promote adipogenesis, lipogenesis, and

adipokine secretion in adipose tissue, directly contributing to the pathogenesis of

obesity. While the adipose-rich mammary glandmay be particularly vulnerable to

environmental obesogens, there is a scarcity of research investigating obesogen-

mediated changes in adipocytes that drive oncogenic transformation of breast

epithelial cells. Here, we review the preclinical and clinical evidence linking BPA

and DDT to impaired mammary gland development and breast cancer risk. We

discuss how the obesogen-driven mechanisms that contribute to obesity,

including changes in adipogenesis, lipogenesis, and adipokine secretion, could

provide a pro-inflammatory, nutrient-rich environment that promotes activation

of oncogenic pathways in breast epithelial cells. Understanding the role of

obesogens in breast cancer risk and progression is essential for informing

public health guidelines aimed at minimizing obesogen exposure, to ultimately

reduce breast cancer incidence and improve outcomes for women.
KEYWORDS

bisphenol A, dichlorodiphenyltrichloroethane, environmental obesogens, mammary
adipocytes, breast cancer
1 Introduction

Breast cancer is a heterogenous disease, which can be classified into different subtypes

based on a tumor’s histological and molecular characteristics, including hormone receptor

(HR) status and gene expression profile (1). Triple-negative breast cancers (TNBC) are an

aggressive subtype, characterized by a lack of estrogen receptor (ER), progesterone receptor
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(PR) and human epidermal growth factor receptor 2 (HER2)

expression. TNBC comprise ~10-20% of all breast cancers (2),

and are associated with worse prognosis relative to HR-positive

breast cancer (3, 4).

As breast cancer incidence continues to rise worldwide, there is

a pressing need to understand the environmental factors that

contribute to its development. Recent evidence has implicated

obesity as a risk factor for breast cancer (5, 6); however, the

relationship between obesity and breast cancer subtype is

complex. Among premenopausal women, obesity is strongly

associated with an increased risk of TNBC, and suggested to

decrease the risk of HR-positive disease (7–9). Further, obesity is

more common in young women with TNBC, compared to women

with HR-positive disease (10–12). In contrast, in postmenopausal

women, obesity is more strongly linked to HR-positive tumors (9).

While obesity has been associated with HR-positive disease in older

women, the relationship between obesity and TNBC in young

women is particularly concerning due to its poor prognosis and

lack of targeted therapies. The biological mechanisms associated

with obesity might also drive the development of more aggressive,

triple-negative breast cancer in young women, suggesting obesity as

a modifiable risk factor for young women’s breast cancer.

While the causes of obesity are complex, recent studies

implicate ‘obesogens’ as playing a key role in their pathogenesis.

Obesogens are environmental chemicals that disrupt hormonal

regulation and metabolic processes, and are associated with an

increased susceptibility for obesity and related metabolic disorders

(13–18). Specifically, obesogens increase fat accumulation by

promoting adipogenesis, disrupting fatty acid metabolism, and

altering adipokine secretion, which can affect satiety signals and

disrupt insulin and glucose regulation. However, given the

propensity of obesogens to accumulate in fat, and their effects on

adipocyte function, the adipose-rich mammary gland might be

particularly prone to the effects of obesogens. Indeed, there is

growing evidence that exposure to obesogens affects mammary

gland development, and may increase the risk of developing breast

cancer (19–23).

Despite the proposed association between obesogen exposure

and breast cancer risk, the relationship between obesogens and the

development of specific breast cancer subtypes are controversial.

Global trends indicate that the rise in breast cancer incidence is

largely driven by an increase in HR-positive disease (24). The

concurrent rise in obesity suggests that obesogens may promote

development of HR-positive disease. However, this relationship is

controversial, as while obesity is strongly linked to HR-positive

disease in postmenopausal women, it increases the risk of TNBC in

premenopausal women. Differences in breast cancer subtypes may

be driven by variations in hormonal and metabolic environments.

In support of this, in breast cancer patients, obesity alters tumor

metabolism in a subtype-specific manner, impacting both tumor

behavior and outcomes (25).

While the relationship between obesogens and specific breast

cancer subtypes remains unclear, there is evidence to suggest that

obesogens might promote the development of more aggressive

disease. Obesogens influence adipogenesis and lipid metabolism,

and alter the adipokine milieu, resulting in a pro-inflammatory and
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nutrient-rich environment (26). These environmental conditions

may be particularly supportive of the initiation and progression of

TNBC, which is characterized by increased proliferation and

chronic inflammation (27). Further, obesity itself is a risk factor

for TNBC in young women, indirectly linking obesogen exposure to

an elevated risk of TNBC. Based on these observations, we suggest

that the impact of obesogens on the adipose-rich mammary gland

may favor the development of TNBC, compared to less

aggressive subtypes.

In this review, we examine the impact of common

environmental contaminants, Bisphenol A (BPA) and

Dichlorodiphenyltrichloroethane (DDT), on breast cancer risk,

with a particular focus on how these obesogens affect mammary

adipocytes and their paracrine interactions with the mammary

epithelium. While this review focuses on the effects of BPA

and DDT due to their extensive environmental presence, other

prevalent obesogens pose health risks. Chronic exposure to

obesogens, including phthalates (found in plastics and cosmetics),

organotins (used as pesticides and in disinfectants), and

perfluorooctanoic acids (used in non-stick coatings and water-

resistant materials) (28) may similarly influence breast cancer risk

through related mechanisms.

BPA is a synthetic chemical widely used in the production of

polycarbonates and epoxy resins (29). BPA is found in numerous

everyday items, including plastic bottles, food containers, cosmetics,

and medical devices (30). In 2022, global production of BPA

reached 8 million tons (31, 32), emphasizing its extensive

presence in consumer products. This widespread use has led to

routine human exposure through ingestion, inhalation, and direct

skin contact (33, 34), as well as significant environmental

contamination. Continued exposure to BPA presents considerable

health risks that warrant further attention (35). Critically, BPA can

cross the placenta (36), and has been detected in breast milk (37),

which raise concerns surrounding its impact on fetal and

infant development.

DDT is another prevalent environmental contaminant, with

significant implications for human health. Discovered in 1939,

DDT was widely used as an insecticide in the US until 1972,

when concerns over environmental and health impacts led to

widespread bans. To date, the World Health Organization

continues to support use of DDT in some African and Asian

countries to combat malaria, due to its role as an insecticide (38).

Despite being banned, these chemicals continue to pose

environmental and health risks today. Their long half-lives lead to

bioaccumulation in the adipose tissue of animals (39), and

persistence in environmental reservoirs such as soil and water

(40). Further, DDT can cross the placenta to enter fetal

circulation (41), and is found in high concentrations in breast

milk in exposed mothers (42, 43), raising concerns for the health

of offspring.

In this review, we discuss how BPA and DDT influence

adipogenesis, lipogenesis, and adipokine secretion in mammary

adipose tissue, and how this could potentially contribute to the

development of breast cancer, with a focus on TNBC. The lack of

estrogen receptor expression on TNBC suggests that obesogen-

driven effects may be mediated by paracrine signaling within the
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surrounding microenvironment. Further, treatment of TNBC poses

significant challenges due to its aggressive phenotype and lack of

therapeutic targets. Understanding the impact of obesogens

on TNBC development is essential for guiding policies to reduce

exposure, with the potential to not only prevent TNBC progression,

but also address the broader effects of these environmental

contaminants on cancer and metabolic disorders.
2 Environmental obesogens BPA and
DDT are associated with obesity

Obesogens are suggested to play a key role in the pathogenesis of

obesity. Obesogens disrupt normal metabolic functions, contributing

to the formation of new adipocytes, increased lipid accumulation, and

altered energy use, thereby increasing the risk of obesity and related

metabolic disorders (44). Among these, BPA and DDT are associated

with impaired metabolic function and an increased risk of obesity in

humans (13–18) and in rodent models (45–48), with early-life

exposure resulting in more pronounced effects (22, 23).

Early life exposure to BPA is suggested to influence long-term

health outcomes, particularly obesity and metabolic disorders in adults.

In rodents, exposure to BPA in the perinatal period—a period which

encompasses both in utero development and the postnatal phase—is

associated with increased body weight and obesity in adult offspring

(45, 46, 48). In children and adolescents, exposure to BPA,measured by

concentrations in urine or serum, associates with an increased risk of

metabolic syndrome, type 2 diabetes, and obesity, as defined by

increased body mass index (BMI), fat mass, and/or waist

circumference (13, 14, 18). Together, these observations raise

concerns that early-life exposure to BPA may predispose individuals

to metabolic disorders and obesity later in life. However, in adults,

concentrations of BPA also associate with an increased risk of obesity

and metabolic disorders (13, 14, 18), suggesting that chronic exposure

during adulthood may similarly contribute to these health outcomes.

Similar to BPA, exposure to DDT—and its primary metabolite

dichlorodiphenyldichloroethylene (DDE)—are associated with obesity.

In rodent models, perinatal exposure to DDT elevates serum DDT and

DDE to concentrations comparable to levels observed in humans, and

associates with increased body weight of offspring (47). In humans,

maternal DDT and DDE concentrations in serum (15, 17) and adipose

tissue (16) associate with increased BMI in offspring. Together, these

results demonstrate that early-life exposure to obesogen DDT can have

profound long-term effects on obesity. While much of the research

surrounding DDT/DDE on obesity investigates early-life exposure, it is

possible that cumulative exposure to these obesogens during adulthood

similarly contributes to long-term metabolic health risks.
3 Obesogen exposure impairs
mammary gland development and
increases breast cancer risk

The impact of obesogens on human health extends beyond

obesity, with emerging concerns on their potential effects on the
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mammary gland. While obesogens primarily act as xenoestrogens

to disrupt estrogen signaling in mammary epithelium, they also

influence mammary gland signaling through other hormone-

related pathways, including thyroid receptors and glucocorticoid

receptors (49, 50). Further, obesogens interact with steroidogenic

enzymes, resulting in impaired steroid hormone synthesis

and regulation (49, 50), and can induce epigenetic changes,

including DNA methylation (49, 50). Together, the diverse effects

of obesogens could collectively disrupt mammary gland

development and contribute to an increased breast cancer risk.

BPA and DDT have been shown to disrupt metabolic processes

in adipose tissue, including increasing inflammatory cytokine

production and altering lipid metabolism (51). Adipocytes

comprise a large proportion of the mammary gland, primarily

white adipocytes that function in lipid storage and hormone

signaling. During pregnancy and lactation, white adipocytes

reversibly transdifferentiate into pink adipocytes (52), which

function to support milk production. Critically, these adipocytes

in the mammary gland are sensitive to estrogens (53, 54) and have

been shown to play a critical role in mammary gland development

(55). While much of the current research has focused on the effects

of obesogens on mammary epithelium, the adipose-rich mammary

gland may be particularly vulnerable to obesogens. In support of

this, studies suggest that BPA and DDT affect mammary gland

development, and potentially increase breast cancer predisposition

later in life.

In rodents, perinatal exposure to BPA perturbs mammary gland

development (56), through increasing terminal end bud number

and lateral branching during puberty (57). Further, in utero

exposure to BPA increases total alveolar bud area and total

epithelial structures in adult offspring (58). These changes in

mammary development may leave the gland susceptible

to neoplastic development. Indeed, preclinical studies

demonstrate that perinatal BPA exposure results in a heightened

responsiveness to estrogen during puberty (57, 59). Further, BPA

exposure during prenatal development accelerates hyperplasia in

rodent models (60–62). Together these data suggest that early

exposure to BPA enhances the mammary gland’s sensitivity

to estrogen, leading to an increased risk and earlier onset of

mammary cancer. While these effects are primarily epithelial,

epithelial-adipocyte interactions are crucial for mammary gland

development. It remains unclear whether BPA-induced changes in

adipocyte function contribute to the observed changes in mammary

gland development, and whether such changes can influence cancer

risk or promote the development of specific breast cancer subtypes.

Epidemiological studies suggest that exposure to BPA,

measured by increased concentrations in urine (19–21) or breast

adipose tissue (20), is associated with an increased risk of breast

cancer development. However, other studies found a lack of

association (63–68), leaving this relationship controversial. These

conflicting results may stem from several factors. Measurement of

BPA in urine or adipose tissue often occurred after cancer diagnosis,

with some studies collecting samples prior to adjuvant therapy

(19, 21, 66), while other studies included pre- and post-treated

samples (65), or did not report chemotherapy exposure (20, 67, 68).

Further, while some studies considered factors including
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menopausal status, reproductive history, and obesity (65, 66, 68),

other studies did not account for these variables (19, 20, 67).

Another limitation in current research is that BPA measurements

are based on single time-point samples collected from older

women, and are unable to assess the potential effects of BPA

exposure during critical periods of breast development. Preclinical

models suggest that the effects of BPA on tumor progression are

amplified in early development (57, 59), emphasizing the

importance of understanding how early-life exposure contributes

to breast cancer risk.

Exposure to DDT/DDE has also been linked to altered

mammary gland development and increased breast cancer risk. In

rodents, DDT exposure in drinking water increases terminal end

bud proliferation and accelerates lobule differentiation (69); effects

that could predispose the mammary gland to carcinogenic

transformation. In mice, DDT treatment promotes growth of

estrogen-responsive tumors (70). In MMTV-Neu mice,

implantation of DDE pellets in the mammary fat-pad, which

mimic the propensity of DDE to accumulate in adipose tissue,

significantly accelerates tumor development (71). Together, these

studies suggest that DDT/DDE similarly acts on epithelial cells to

increase mammary cancer risk. However, it remains unclear

whether DDT/DDE also impacts adipocyte function during

mammary gland development, and whether such effects

contribute to mammary cancer susceptibility or the development

of specific subtypes.

While some meta-analyses report that increased serum DDT

and/or DDE concentrations associate with increased breast cancer

risk (22, 23, 64); other analyses found no association (72–74). This

controversy could be due to the heterogeneity of studies included in

the meta-analyses, where variability in sample collection methods

(serum, tissue, urine), differences in exposure to adjuvant therapy

(pre- versus post-chemotherapy), and variability in accounting for

confounding factors, including obesity, menopausal status, and

reproductive history, could contribute to heterogenous findings.

Further, differences in the methodology of meta-analyses, including

different criteria for study inclusion and different statistical

approaches, could contribute to inconsistent results.

While current meta-analyses are limited by their inability to

measure DDT/DDE exposure at key windows of mammary gland

development, two prospective studies examined the impact of early

DDT exposure on breast cancer risk. These studies report that

elevated concentrations of DDT—but not DDE—are associated

with a five-fold increase in breast cancer risk, particularly among

women exposed to DDT before puberty (22, 23). Unfortunately,

these prospective studies did not investigate the clinical or

pathological characteristics of the tumors that are associated with

obesogen exposure.

Together, these findings suggest that BPA and/or DDT

exposure during critical developmental stages increase breast

cancer risk. While early-life exposure to obesogens is known to

disrupt mammary gland development, exposure during adulthood

may also contribute to breast cancer risk. In premenopausal

women, the breast undergoes morphological changes each month

under the influence of fluctuating concentrations of estrogen and

progesterone during the menstrual cycle. Cumulative exposure to
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ovarian hormones during the menstrual cycle is a well-established

risk factor for breast cancer development (75, 76). Chronic exposure

to BPA and DDT/DDE in adulthood, through contaminated food,

water, and consumer products, may mimic these hormone-driven

pathways, potentially affecting adipocyte-epithelial interactions

during breast remodeling to influence breast cancer risk. Another

critical window of breast development that may be influenced by

obesogens is the pregnancy/lactation/involution period, during

which the breast undergoes extensive remodeling under hormonal

regulation. This period is marked by dramatic changes in the

adipocyte compartment, including the depletion of adipocytes

during lactation and their replenishment during mammary gland

involution. Disruptions in breast remodeling in premenopausal

women might explain the increased risk of TNBC observed in

young women with obesity (7–9). However, the specific effects of

obesogens on adipocytes during these critical post-pubertal stages

of breast development, and how changes in adipocyte function may

contribute to breast cancer risk, remains underexplored.

In women with breast cancer, BPA and DDT may also drive the

development of more aggressive disease. Ovarian hormones—

estrogen and progesterone—are known to promote more

aggressive, proliferative tumor phenotypes (77, 78). As such, the

xenoestrogenic properties of BPA and DDT (79) may drive tumor

aggressiveness in HR-positive subtypes. The prevalence of BPA and

DDT in the environment, their ability to cross the placenta (36, 41),

and their presence in mother’s milk (37, 42, 43), makes it crucial to

understand the long-term risks associated with exposure to

elucidate mechanisms that contribute to breast cancer risk and

the development of aggressive disease. Future large-scale,

longitudinal studies that account for key factors such as

menopausal status, reproductive history, and obesity, and

interpret results in light of BPA and DDT/DDE concentrations

during critical windows of breast development, are required. These

studies should also collect information on tumor subtypes to better

understand the relationship between obesogen exposure and

cancer aggressiveness.
4 Obesogens promote adipogenesis
and pro-inflammatory phenotypes
in adipocytes

Alterations in adipogenesis, lipogenesis, and adipokine secretion

are intricately linked to the development of obesity, and may

represent mechanisms through which obesogens increase breast

cancer risk. Adipogenesis is the process by which mesenchymal

stem cells differentiate into mature adipocytes, regulated by

transcription factors peroxisome proliferator-activated receptor-g
(PPAR-g) and C/EBPa (80). This process plays a role in obesity by

increasing the number and size of adipocytes, leading to excess fat

accumulation and altered metabolic profiles (81, 82). Critically,

emerging research implicates the adipogenesis pathway in cancer

progression (83). In the tumor microenvironment, tumor-derived

exosomes and WNT signaling stimulate de-differentiation of

adipocytes into cancer-associated adipocytes, through modulation
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of PPAR-g and C/EBPa function (84). Cancer-associated adipocytes

promote breast cancer progression through secretion of adipokines

and inflammatory cytokines, IL-6, IL-1b, and TNFa (85–87); and

release of fatty acids, which are captured by breast cancer cells to

support their increased metabolic demands (88, 89).

While the tumor microenvironment can activate adipocytes to

drive breast cancer progression, obesogens have also been implicated

in modulating the adipogenesis pathway. BPA treatment of

preadipocytes increases PPAR-g and C/EBPa expression (90),

promotes differentiation into mature adipocytes (91–93), and

increases lipid accumulation (90, 92–94) in vitro. In rodents, in

utero exposure to BPA impairs mammary fat-pad development,

through increasing expression of PPAR-g and accelerating fat-pad

maturation (95). Critically, BPA-exposed adipocytes show increased

expression of inflammatory cytokines, IL-6, IL-1b, and TNFa (96),

which are known to activate key oncogenic pathways in breast cancer

cells, such as STAT3 and NF-kB (97). These pathways promote

epithelial cell proliferation and survival, driving tumor development.

Although direct evidence linking adipocyte-derived cytokines to

tumor progression in the context of BPA exposure is limited, these

findings could suggest a potential mechanism through which BPA-

altered adipocytes contribute to oncogenic transformation and tumor

progression in the breast.

Exposure to DDT and/or DDE has a similar effect on

adipogenesis. Treatment of pre-adipocytes with DDT and DDE

increases expression of PPAR-g and C/EBPa (98, 99), induces

differentiation into mature adipocytes (17, 98, 100) and promotes

lipid accumulation (101). While treatment with DDT and/or DDE

promotes expression of inflammatory cytokines (IL-6, IL-1b, and
TNFa) in other cell types (102–104), the effects of DDT/DDE on

adipocytes remains unknown. In humans, plasma concentrations of

DDT and DDE positively correlate with inflammatory markers, IL-

6, IL-1b, and TNFa (105). These cytokines may promote mammary

tumorigenesis through activating STAT3 and NF-kB signaling

pathways suggesting a potential link between DDT/DDE exposure

and breast cancer development. However, further research is

required to identify whether DDT/DDE-exposed adipocytes

express inflammatory cytokines and how this impacts

mammary tumorigenesis.

Together, these observations are consistent with a role for BPA

and DDT/DDE in modulating adipogenesis, which promotes

formation of adipocytes with a pro-inflammatory phenotype. The

resulting inflammatory milieu might contribute to breast cancer

progression through creating an immune microenvironment

supportive of tumor growth (85). Specifically, TNBC tumors are

enriched for metabolism-related genes (83) and are highly

immunogenic (27); phenotypes which might be promoted by the

milieu associated with adipogenesis (83, 106). These findings are

consistent with the observation that adipogenesis correlates with a

worse prognosis in TNBC (83), suggesting potential mechanisms

through which obesogens impact TNBC progression. However,

while these observations suggest adipogenesis as a potential

mechanism through which BPA and DDT/DDE might promote

the development of TNBC, direct evidence of causality is lacking.

Further research is required to determine whether obesogen-driven

changes in adipogenesis influence TNBC development.
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5 Obesogens promote adipocyte
lipogenesis and fatty acid secretion

Another mechanism that may support development of

aggressive tumor subtypes is de novo fatty acid synthesis; a

process which provides essential lipids for rapidly proliferating

cells (107, 108). De novo fatty acid synthesis is regulated by

enzymes, ATP citrate lyase (ACLY), Acetyl-CoA Carboxylase

(ACC), and Fatty Acid Synthase (FASN), under the control of

transcription factor SREBP-1c (109). Together, these enzymes

catalyze the conversion of citrate into fatty acids, which are used

for production of triglycerides (109, 110).

Emerging research implicates a role for fatty acid synthesis in

cancer (109–112). In breast cancer, increased activity of de novo lipid

synthesis is an early event for progression from in situ to invasive

disease (113, 114). Further, expression of lipogenic enzymes, ACLY

(115), ACC and FASN (113), are increased in invasive breast cancer,

compared to normal breast tissue, where their expression positively

correlates with worse clinical outcomes (115–117).

Obesogens are suggested to activate de novo lipogenesis in

adipose tissue. Exposure of mice to BPA in drinking water

increases adipocyte expression of lipogenic enzymes ACC (48)

and FASN (48, 90) and SREBP-1c (48, 90), suggesting increased

de novo synthesis. In humans, BPA exposure is associated with

increased serum triglyceride (46, 118, 119), consistent with

metabolic alterations and release of triglycerides from adipocytes.

Similarly, DDT/DDE also enhances lipogenesis in adipocytes.

Treatment of preadipocytes with DDT or DDE increases

expression of ACC (99), FASN (99, 101) and SREBP-1c (101).

Further, serum concentrations of DDT/DDE positively associate

with serum triglycerides in humans (47, 120), consistent with

increased de novo lipogenesis.

Together, these studies suggest that exposure to BPA and DDT

accelerates adipocyte fatty acid synthesis. An enhanced capability of

adipocytes to synthesize and secrete fatty acids may promote tumor

growth, not only by supplying tumor cells with necessary metabolic

resources needed for rapid proliferation, but also by initiating

signaling pathways in mammary epithelial cells to drive

proliferation (121). Critically, TNBC overexpresses genes involved

in metabolism of exogenous-derived fatty acids (122, 123),

suggesting that increased fatty acid synthesis in mammary

adipocytes support the growth of TNBC. However, studies linking

obesogen-induced fatty acid synthesis to TNBC development are

lacking. Further research is required to address whether these

metabolic changes directly contribute to TNBC growth

and progression.
6 Obesogens alter adipocyte
adipokine expression to
promote inflammation

Adipocytes secrete adipokines, which are hormones or

cytokines that regulate metabolic function. Among these are

adiponectin, which enhances insulin sensitivity and exhibits anti-
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inflammatory properties; and leptin, often termed the ‘satiety

hormone,’ which regulates energy balance by inhibiting hunger,

and possesses inflammatory properties (124). In obesity,

concentrations of adiponectin decrease, contributing to insulin

resistance and metabolic dysfunction (125, 126). Conversely,

concentrations of leptin are elevated during obesity, leading to

leptin resistance, reducing its effectiveness in appetite suppression

(127, 128). Altered adiponectin and leptin concentrations are

associated with increased inflammation in obesity (129).

Adipokines may play a role in cancer development. Decreased

serum adiponectin correlates with increased inflammation, and an

increased risk of breast cancer development (130–132). In breast cancer

patients, low serum adiponectin associates with more aggressive

tumors, including larger size and higher grade (132). Similarly, leptin

promotes inflammation (124) and positively correlates with increased

breast cancer risk (133–135). In breast cancer patients, serum leptin

associates with worse clinical features (133), and is highest in TNBC,

compared to HR-positive tumors (134). Together, these findings

suggest that alterations in adipokine secretion might favor the

development of more aggressive, triple-negative, tumors.

Obesogens are suggested to influence adipokine expression. Ex

vivo, BPA treatment of breast adipose explants suppresses adiponectin

release (136). In rodents, perinatal BPA exposure reduces adiponectin

concentrations in serum and adipose tissue (137). Further, in humans,

serum BPA negatively correlates with adiponectin concentrations

(138–140), and positively correlates with leptin (138, 140).

While the effect of DDT/DDE on adipokine expression is less

studied, one study reported an association between prenatal

exposure to DDE with decreased serum adiponectin (141).

Despite the lack of studies of DDT/DDE on adipokine expression,

the established influence of these chemicals on obesity indirectly
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implies a potential effect on adipokine expression in the mammary

gland. Research investigating the effect of DDT/DDE exposure on

adiponectin and leptin is warranted, to clarify their roles in

metabolic dysregulation and associated health risks.

Together, these results suggest that BPA and DDT reduce

adiponectin and increase leptin expression in adipose tissue;

alterations that are independently linked to the development of

more aggressive, triple-negative tumors. Consequently, obesogens

may promote TNBC development, through disruption of the

adipokine milieu in the mammary gland. In addition to altering

adipokine profiles, BPA can also directly affect the surrounding

immune microenvironment, through altering T cells, B cells,

macrophages and dendritic cells (50, 142), to promote a pro-

inflammatory microenvironment that may be particularly

supportive of TNBC development. Currently, studies linking

obesogen-induced changes in adipokine secretion profiles to

TNBC development are lacking. Further research is required

to address whether these metabolic changes directly contribute to

TNBC growth and progression, and to identify underlying

mechanisms that could inform therapeutic strategies.
7 Conclusion

The prevalence of obesogens in our environment remains a

significant concern. While research has begun to elucidate the

estrogen-mediated mechanisms through which these chemicals

disrupt mammary gland development, the role of obesogens in

altering the function of mammary adipocytes and their contribution

to epithelial cell growth and the development of aggressive breast

cancer subtypes remains unclear. Obesogens affect adipogenesis,
FIGURE 1

The effects of obesogens on the breast. Obesogens bisphenol A (BPA) and dichlorodiphenyltrichloroethane (DDT) are suggested to contribute to
breast cancer development through two pathways; (i) directly through their estrogenic effects on mammary epithelial cells, or (ii) indirectly through
their impact on adipocyte function. Specifically in adipocytes, BPA and DDT promote adipogenesis, increase lipogenesis, and increase secretion of
adipokines (e.g., leptin), cytokines (e.g., IL-6, IL-1b, TNFa), and triglycerides. These adipokines and cytokines contribute to chronic inflammation, and
are known to activate oncogenic pathways in mammary epithelial cells, such as NF-kB and STAT3, leading to epithelial cell proliferation. Together,
these processes may contribute to oncogenic transformation and breast cancer progression. Created in BioRender.com.
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and lipogenesis, and alter the adipokine secretion profile,

contributing to breast cancer risk and progression by creating a

pro-inflammatory, nutrient-rich environment that can promote

oncogenic transformation. Critically, the cumulative effects of

lifelong exposure to multiple obesogens may amplify these

disruptions, further increasing breast cancer risk. The effects of

obesogens on the breast are summarized in Figure 1. Understanding

how obesogens drive breast cancer development is crucial for

informing updated health guidelines to reduce exposure and

mitigate associated risks. Such actions would reduce the impact of

environmental chemicals on global breast cancer incidence,

contributing to improved outcomes for women.
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