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Deep learning model for the
early prediction of pathologic
response following neoadjuvant
chemotherapy in breast
cancer patients using dynamic
contrast-enhanced MRI
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Xiaohui Su3, Zaixian Zhang3, Jie Wu4,
Xueqiang Gao1 and Qi Wang2*

1Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University,
Qingdao, Shandong, China, 2Department of Radiation Oncology, The Affiliated Hospital of
Qingdao University, Qingdao, Shandong, China, 3Department of Radiology, The Affiliated Hospital
of Qingdao University, Qingdao, Shandong, China, 4Department of Pathology, The Affiliated Hospital
of Qingdao University, Qingdao, Shandong, China
Purpose: This study aims to investigate the diagnostic accuracy of various deep

learning methods on DCE-MRI, in order to provide a simple and accessible tool

for predicting pathologic response of NAC in breast cancer patients.

Methods: In this study, we enrolled 313 breast cancer patients who had complete

DCE-MRI data and underwent NAC followed by breast surgery. According to

Miller-Payne criteria, the efficacy of NAC was categorized into two groups: the

patients achieved grade 1-3 of Miller-Payne criteria were classified as the non-

responders, while patients achieved grade 4-5 of Miller-Payne criteria were

classified as responders. Multiple deep learning frameworks, including ViT,

VGG16, ShuffleNet_v2, ResNet18, MobileNet_v2, MnasNet-0.5, GoogleNet,

DenseNet121, and AlexNet, were used for transfer learning of the classification

model. The deep learning features were obtained from the final fully connected

layer of the deep learning models, with 256 features extracted based on DCE-

MRI data for each patient of each deep learningmodel. Variousmachine-learning

techniques, including support vector machine (SVM), K-nearest neighbor (KNN),

RandomForest, ExtraTrees, XGBoost, LightGBM, and multiple-layer perceptron

(MLP), were employed to construct classification models.

Results: We utilized various deep learning models to extract features and

subsequently constructed machine learning models. Based on the performance

of different machine learning models’ AUC values, we selected the classifiers with

the best performance. ResNet18 exhibited superior performance, with an AUC of

0.87 (95% CI: 0.82 - 0.91) and 0.87 (95% CI: 0.78 - 0.96) in the train and test

cohorts, respectively.

Conclusions: Using pre-treatment DCE-MRI images, our study trained multiple

deep models and developed the best-performing DLR model for predicting

pathologic response of NAC in breast cancer patients. This prognostic tool
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provides a dependable and impartial basis for effectively identifying breast cancer

patients who are most likely to benefit from NAC before its initiation. At the same

time, it can also identify those patients who are insensitive to NAC, allowing them

to proceed directly to surgical treatment and prevent the risk of losing the

opportunity for surgery due to disease progression after NAC.
KEYWORDS

breast cancer, neoadjuvant chemotherapy, Miller-Payne grading criteria, dynamic
contrast enhancement MRI, deep learning model
Introduction

Breast cancer has become the most common prevalent

malignancy worldwide and the first leading cause of cancer death

in women (1). Neoadjuvant chemotherapy (NAC) is recommended

as the standard treatment for both locally advanced and early

invasive breast cancer patients with an intent to perform breast-

conserving surgeries (2). The evaluation of NAC also provided

prognosis prediction and in vivo drug susceptibility test. Research

has indicated that a significant proportion of patients may

experience beneficial effects from NAC, potentially achieving a

complete pathologic response (pCR). Nevertheless, a subset of 10-

35% of breast cancer cases have been identified as unresponsive to

NAC, with approximately 5% of patients exhibiting tumor growth

following treatment (3). In such cases, NAC has been shown to be

ineffective and may even delay surgical intervention. Therefore,

early prediction of response to NAC is critical for optimizing and

adjusting therapeutic strategies, which may mitigate toxicity

without impacting efficacy. The Miller-Payne grading criteria

serves as a suitable pathological assessment method, utilizing

tumor cell density and morphology to classify residual tumors as

Grade 1-5. Grade 4-5 tumors are characterized by no evidence of

residual tumor or microscopic foci of invasive carcinoma, and are

indicative of chemotherapy-sensitive breast cancers with a

optimistic long-term prognosis.

Dynamic contrast enhancement MRI (DCE-MRI) is the most

common and effective imaging test for clinical breast MRI

examinations. It has shown superiority of identifying small breast

cancer lesions, and evaluating blood perfusion and distribution of

tumor vessels. Therefore, DCE-MRI is recommended to evaluate

the efficacy of NAC in breast cancer patients following an early

treatment period (4). Previous studies investigated the role of
RI, dynamic contrast-

rning radiomic; DWI,

N, K-nearest neighbor;

r; MLP, multiple-layer

complete pathological
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tor machine; T2WI, T2-
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quantitative DCE-MRI parameters in the therapeutic evaluation

of NAC. A retrospective study enrolled 37 breast cancer patients

and found changes in DCE-MRI kinetic parameters were correlated

with pathologic response after NAC (5). Li and colleagues (6)

discovered the signal enhancement ratio washout volume and Kep

might prognosticate pathologic response in breast cancer patients.

The diagnostic efficacy of quantitative parameters ranged from 0.73

to 0.78. The efficacy of DCE-MRI in prediction of pathologic

response was limited and relied on dynamic changes of radiologic

parameters. Importantly, the reliable volumetric and kinetic

parameters in the prediction of therapeutic efficacy cannot require

prior to NAC treatment (7).

Radiomics, an emerging field in cancer treatment, involves the

automated analysis of quantitative data extracted from medical

images to correlate with malignant biological properties,

therapeutic efficacy, and clinical prognosis. This approach offers

the potential for individualized precision therapy in a non-invasive

manner, allowing for the characterization of tumor properties solely

through imaging data rather than invasive sampling procedures.

Advancements in deep learning radiomics (DLR) and data

processing tools have facilitated the interpretation and utilization

of data in clinical settings. Unlike traditional radiomics methods,

deep learning-based radiomics techniques exploit the inherent non-

linearity of deep neural networks to extract relevant features

automatically without manual feature extraction. On the other

hand, deep learning has the capability to leverage comprehensive

feature data, particularly with respect to the spatial arrangement of

pixels, in order to extract information pertaining to the textures and

shapes. Consequently, even when employing basic digital images,

deep learning is anticipated to excel in the precise and detailed

identification. Verma (8) et al. investigated a multimodal

spatiotemporal DLR to predict pCR of NAC among breast cancer

patients. The AUC of 3D-VGGNet and 3D-ResNet signatures were

0.68, and 0.50, respectively. Due to the limited prognostic efficacy,

many studies focused on the fusion of different DLR models with

multimodal images, which complicated the development of

predictive signature. In a retrospective study, 536 breast cancer

patients were enrolled to provide a DLR signature for predicting

pCR to NAC (9). The fusion of different DLR signatures with

multiple MR images yielded an AUC of 0.745. Although DLR has

been proposed for predicting pathologic response following NAC,
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these studies have been hindered by small sample sizes and limited

predictive accuracy. Meanwhile, most of these studies focused on

the prediction of pCR, instead of pathologic response, following

NAC in breast cancer patients. Hence, this study aims to investigate

the diagnostic accuracy of various deep learning methods on DCE-

MRI, in order to provide a simple and accessible tool for predicting

pathologic response of NAC in breast cancer patients.
Materials and methods

Patients

A total of 313 newly diagnosed breast cancer patients treated at

the Affiliated Hospital of Qingdao University between 2016 and

2020 were included in this retrospective study, for which informed

consent was waived. The study was approved by the ethics

committee of the Affiliated Hospital of Qingdao University and

adhered to the principles outlined in the Declaration of Helsinki.

The study established specific inclusion criteria, including (1)

primary invasive breast cancer confirmed by histology; (2)

complete medical records; (3) qualified dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) images before

neoadjuvant chemotherapy (NAC); (4) receipt of preoperative

systemic chemotherapy; (5) adherence to NAC protocols based

on either the National Comprehensive Cancer Network or Chinese

Society of Clinical Oncology guidelines; (6) confirmation of surgical

outcomes through pathologic examination of Miller-Payne grading

criteria. Concurrently, the exclusion criteria included (1) advanced

cancer patients with distant metastases; (2) a prior history of other

malignancy, incomplete neoadjuvant chemotherapy (NAC)

treatment prior to surgery; (3) incomplete essential clinical data

(molecular subtype).
Pathological evaluation

The patients who underwent surgery following NAC were

assessed using the Miller-Payne criteria. The efficacy of NAC was

categorized into five levels: G1 denoting some changes in cancer

cells without a decrease in total numbers, G2 indicating a reduction

rate of <30% with high total numbers, G3 representing a moderate

decrease of ≥30% but <90% in cancer cells, G4 showing a significant

reduction of ≥90% with only scattered cell clusters remaining, and

G5 indicating the absence of cancer cells at the original tumor site.

The patients achieved G1, G2, and G3 were classified as the non-

responders, while patients achieved G4 and G5 were classified

as responders.
Magnetic resonance acquisition protocol

Pre-treatment dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) was carried out for each patient prior to

biopsy, within a timeframe of 1-2 weeks before NAC. The MRI

scan was performed using a 3.0 T scanner equipped with either an
Frontiers in Oncology 03
8-channel or 16-channel breast coil (Signa HDxt, GE Healthcare),

with patients positioned in a prone manner. The DCE-MRI

protocol included one pre-contrast and eight post-contrast T1-

weighted images with fat saturation. Following the intravenous

administration of gadolinium-DTPA contrast agent (0.2ml/kg), a

subsequent flush of 20 ml of saline solution was administered at a

flow rate of approximately 2 ml/s. The initial post-contrast images

were acquired 60 seconds after the start of the gadolinium-DTPA

injection, followed by seven additional scans. The configurations

used to obtain MR images were described previously (10).
Tumor segmentation and deep learning
features extraction

The identification and delineation of regions of interest (ROI)

were conducted manually on individual slices of DCE-MRI,

focusing on the peak enhanced phase determined by the time-

intensity curve, utilizing the itk-SNAP software (www.itksnap.org).

This task was executed by two radiologists possessing five years of

experience each. In the peak enhanced phase of the time-intensity

curve, the breast carcinoma exhibited significant enhancement,

whereas the surrounding stroma displayed slight enhancement.

Subsequent to the completion of tumor masking contouring by

the junior radiologist, the senior radiologist boasting 10 years of

experience reviewed the ROI for accuracy and implemented any

necessary modifications.

Multiple deep learning frameworks, including Vision

Transformer (ViT), VGG16, ShuffleNet_v2, ResNet18,

MobileNet_v2, MnasNet-0.5, GoogleNet, DenseNet121, and

AlexNet, were used for transfer learning of the classification

model. In deep learning analysis, a ROI images measuring 448 ×

448 pixels was utilized to crop the largest cross-section of breast

tumor as input. In order to standardize image signal intensity across

patients, image intensity was normalized to a consistent range of 0–

1000. The detailed description of the model architectures used in

our study was shown in Supplementary Table S1. The deep learning

process involved the development of independent inputs for each

image. Following the completion of training for the deep learning

model, features were downscaled from the final fully connected

layer to 256 and use them as input for the machine learning model.

In the test cohort, ROI images were inputted into the trained deep

learning model. The deep learning features from the fully connected

layer were also extracted for further analysis.
Deep learning models construction
and validation

The dataset was randomly partitioned into train and test

cohorts at an 8:2 ratio. The train cohort was employed for the

development of deep learning models utilizing the extracted deep

learning features. The radiomic features underwent an initial

screening using the Mann-Whitney U test with a significance

level set at P < 0.05. Following this, the Pearson correlation

coefficient was utilized to assess the correlation between each pair
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of radiomic features, with features exhibiting a correlation

coefficient |r| greater than 0.9 being removed. Feature selection in

the train cohort was conducted using the least absolute shrinkage

and selection operator (LASSO) method. The settings for the Lasso

model are as follows: alpha = 1, and the maximum number of

iterations for the optimization algorithm is set to 1000. Various

machine-learning techniques, including support vector machine

(SVM), K-nearest neighbor (KNN), RandomForest, ExtraTrees,

XGBoost, LightGBM, and multiple-layer perceptron (MLP), were

employed to construct classification models. A 5-fold cross-

validation was performed using the StratifiedKFold function from

scikit-learn, which divided the train cohort into five non-

overlapping subsets. In each iteration, one partition was used as

the test set, while the remaining partitions served as the train set.

This approach ensures that each class is represented proportionally

across both the training and testing folds, helping to determine the

optimal model hyperparameters. The performance of these models

was assessed through ROC analysis, as well as the calculation of

sensitivity, specificity, positive predictive value(PPV) and negative

predictive value(NPV). A calibration curve was utilized to plot

prediction probabilities against measured rates. The evaluation of

model adequacy was carried out using the Hosmer-Lemeshow test.
Statistical analyses

Statistical analyses were performed using R Studio

(version:2023.12.1) and Python 3.12.2, with the Fisher’s test, c2

test, or Mann-Whitney U test utilized to assess the association

between the effectiveness of NAC and clinical variables. “pROC”,

“rms”, “rmda”, and “generalhoslem” were used to generate the ROC

curve, calibration curve, and Hosmer-Lemeshow test. We used a

two-tailed P value of 0.05 for the statistical analysis.
Results

Study population characteristics

This study enrolled 313 patients with breast cancer from 2016 to

2021. The flowchart of the screening process is summarized in

Figure 1. We randomly divided 313 breast patients into train and

test sets at an 8:2 ratio. Based on pathological analysis of the surgical

specimens, the Miller-Payne grading results were as follows: 16, 67,

86, 54, and 90 patients achieved G1, G2, G3, G4, and G5,

respectively. 144 patients were classified as responders, and 169

patients were classified as non-responders.

Table 1 lists the clinical characteristics of all patients. The ER status,

PR status, Her-2 status, Ki-67 index, and clinical T stage showed a

significant association with pathologic response after NAC in breast

cancer patients. There was no significant difference between responders

and non-responders in terms of age, menopausal status, and clinical N

stage. Meanwhile, no statistically significant disparities were found in

clinical parameters, including age, menopausal status, ER status, PR

status, Her-2 status, Ki-67 index, and clinical T/N stages, between the

train and test cohorts (shown in Supplementary Table S2).
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Deep learning features extraction
and selection

The flowchart of building the DLR signatures is summarized in

Figure 2. Multiple deep learning frameworks, including ViT,

VGG16, ShuffleNet_v2, ResNet18, MobileNet_v2, MnasNet-0.5,

GoogleNet, DenseNet121, and AlexNet, were used for transfer

learning of the classification model. The deep learning features

were obtained from the final fully connected layer of the deep

learning models, with 256 features extracted based on DCE-MRI

data for each patient of each deep learning model. The Pearson

correlation coefficient analysis and subsequent LASSO regression

analysis were conducted to eliminate redundant and irrelevant

features. As an example, 10 features and 11 features were chosen

to construct classification model in ViT model and VGG16 model,

respectively. The screened features were used for subsequent

construction of classification model. The detailed selection

features of deep learning models were shown in Supplementary

Table S3.
Deep learning models construction
and validation

We analyzed the performance of SVM, KNN, RandomForest,

ExtraTress, XGBoost, LightGBM, and MLP to construct

classification models for predicting pathologic response following

NAC in breast cancer patients. The detailed results of the models

are shown in Table 2.

Taking the ViT deep learning model as an example, in the train

cohort, the AUC for SVM, KNN, RandomForest, ExtraTress,

XGBoost, LightGBM, and MLP were recorded at 0.90, 0.77, 1.00,

1.00, 0.99, 0.93, and 0.80, respectively. Within the test cohort, these

values were observed as 0.73 for SVM, 0.63 for KNN, 0.74 for

RandomForest, 0.59 for ExtraTrees, 0.72 for XGBoost, 0.74 for

LightGBM, and 0.78 for MLP, respectively. The MLP classification

model exhibited good performance with an AUC of 0.80 (95% CI,

0.74 - 0.85) and 0.78 (95% CI, 0.67 - 0.89) in train and test groups,

respectively. The Delong’s test was utilized to access the disparities

in predictive performance between MLP and other alternative

models in the test cohort. The predictive capacity of MLP model

is better than that of the KNN (p < 0.01) and ExtraTrees (p =0.02)

models; however, it exhibits no statistically significant differences

when compared with other models.

Sequentially, we utilized various deep learning models to extract

features and subsequently constructed machine learning models.

Based on the performance of different machine learning models, we

selected the classifiers with the best performance. The specific

results of the best-performing classifiers among various deep

models are presented in Table 3. The comparative performance of

diverse deep learning models exhibits substantial equivalence,

although ResNet18 and AlexNet demonstrates marginally

superior outcomes. The ROC curves of different deep learning

models are shown in detail in Figures 3 and 4. In the training set,

the sensitivity, specificity, PPV, and NPV of the ResNet18 model are

0.77, 0.81, 0.77, and 0.80, respectively. In the test set, the sensitivity,
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specificity, PPV, and NPV of the ResNet18 model are 0.83, 0.74,

0.73, and 0.83, respectively. In the internal validation set, the

DeLong test revealed that the predictive performance of ResNet18

was significantly superior to MobileNet_v2 (p= 0.04), MnasNet-0.5

(p=0.04), and DenseNet121 (p=0.04), with statistical significance.

The calibration curves for ResNet18 consistently showed agreement

both in the train set (illustrated in Figure 5A) and the test set

(illustrated in Figure 5B).
Discussion

NAC stands as the established therapeutic approach for both

locally advanced and early invasive breast cancer patients who

aimed at facil itating breast-conserving surgeries. The

identification of a reliable method for predicting sensitivity to

NAC before surgical intervention holds significant importance in

treatment planning. This assessment profoundly influences the
FIGURE 1

Flow chart of patient enrollment.
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TABLE 1 The clinical characteristics between Non-responders
and responders.

Characteristics
Non-

responders
Responders P value

169 144

age, median (IQR) 51 (43, 58) 49.5 (42, 57) 0.206

Menopausal status,
n (%)

0.248

Non-menopausal 84 (26.8%) 81 (25.9%)

Post-menopausal 85 (27.2%) 63 (20.1%)

ER, n (%) < 0.001

Negative 39 (12.5%) 79 (25.2%)

Positive 130 (41.5%) 65 (20.8%)

(Continued)
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choice between initiating NAC followed by surgery or proceeding

directly to surgery without prior NAC administration. Radiomics

has emerged as a burgeoning domain within cancer treatment.

Typically, quantitative data extracted from images is automatically

analyzed to correlate with malignant biological properties,

therapeutic efficacy, and clinical prognosis. This approach offers a

promising avenue for delivering tailored precision therapy in a non-

invasive manner. With advancements in deep learning radiomics

and associated data processing tools, the interpretation and

utilization of data in clinical contexts have become more accessible.
In this study, we enrolled 313 breast cancer patients who had

complete DCE-MRI data and underwent NAC followed by breast

surgery. Various deep learning frameworks, such as ViT, VGG16,

ShuffleNet_v2, ResNet18, MobileNet_v2, MnasNet-0.5, GoogleNet,

DenseNet121, and AlexNet, were utilized for transfer learning to

develop the classification model. Deep learning features were

extracted from the fully connected layer and used to construct

classification models. ResNet18 exhibited superior performance,

with an AUC of 0.87 (95% CI: 0.82 - 0.91) and 0.87 (95% CI:

0.78 - 0.96) in the train and test cohorts, respectively.
In the realm of medical image analysis, deep learning-driven

radiomic features have demonstrated superior performance. Li (11)

et al. recruited 95 breast cancer patients to construct a DLR model

that integrates pre-treatment and early-treatment DCE-MRI data

for predicting pCR to NAC. The AUC of DLR was 0.64 for pre-

treatment, 0.88 for early-treatment, and 0.90 for combined data. In

a multicenter retrospective study, 1262 patients were included in
TABLE 1 Continued

Characteristics
Non-

responders
Responders P value

169 144

PR, n (%) < 0.001

Negative 55 (17.6%) 93 (29.7%)

Positive 114 (36.4%) 51 (16.3%)

HER-2, n (%) < 0.001

Negative 130 (41.5%) 55 (17.6%)

Positive 39 (12.5%) 89 (28.4%)

Ki-67, median (IQR) 30 (20, 50) 50 (30, 60) < 0.001

cT, n (%) 0.018

cT1 5 (1.6%) 16 (5.1%)

cT2 85 (27.2%) 66 (21.1%)

cT3 66 (21.1%) 46 (14.7%)

cT4 13 (4.2%) 16 (5.1%)

cN, n (%) 0.905

cN0 2 (0.6%) 1 (0.3%)

cN1 148 (47.3%) 127 (40.6%)

cN2 19 (6.1%) 16 (5.1%)
FIGURE 2

The flowchart of building deep learning radiomic models.
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TABLE 2 The detailed results of different classifiers among various deep models for predicting pathologic response following NAC in breast
cancer patients.

Deep learning
model

Model AUC 95% CI Sensitivity Specificity PPV NPV

ViT

SVM train 0.90 0.86-0.94 0.69 0.92 0.88 0.78

test 0.73 0.61-0.86 0.54 0.77 0.65 0.67

KNN train 0.77 0.71-0.82 0.63 0.76 0.69 0.71

test 0.63 0.49-0.76 0.54 0.59 0.52 0.61

RandomForest train 1.00 1.00-1.00 0.95 1.00 1.00 0.96

test 0.74 0.61-0.87 0.50 0.82 0.70 0.66

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.59 0.45-0.74 0.32 0.71 0.47 0.56

XGBoost train 0.99 1.00-1.00 0.98 0.985 0.983 0.985

test 0.72 0.59-0.85 0.61 0.67 0.61 0.67

LightGBM train 0.93 0.89-0.96 0.80 0.89 0.86 0.84

test 0.74 0.61-0.87 0.57 0.73 0.64 0.676

MLP train 0.80 0.74-0.85 0.59 0.86 0.78 0.71

test 0.78 0.67-0.89 0.50 0.79 0.67 0.66

VGG16

SVM train 0.92 0.88-0.95 0.76 0.89 0.85 0.81

test 0.76 0.63-0.90 0.82 0.77 0.74 0.84

KNN train 0.82 0.77-0.86 0.65 0.85 0.78 0.74

test 0.70 0.57-0.83 0.68 0.71 0.66 0.73

RandomForest train 1.00 1.00-1.00 0.96 1.00 1.00 0.97

test 0.67 0.54-0.81 0.50 0.71 0.58 0.63

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.64 0.50-0.78 0.57 0.74 0.64 0.68

XGBoost train 1.00 1.00-1.00 0.99 1.00 1.00 0.99

test 0.71 0.57-0.84 0.57 0.74 0.64 0.68

LightGBM train 0.97 0.95-0.99 0.85 0.95 0.93 0.88

test 0.67 0.54-0.81 0.57 0.62 0.55 0.64

MLP train 0.85 0.80-0.90 0.66 0.82 0.76 0.74

test 0.79 0.67-0.90 0.75 0.79 0.75 0.79

ShuffleNet_v2

SVM train 0.92 0.89-0.96 0.79 0.92 0.89 0.84

test 0.81 0.70-0.92 0.55 0.91 0.84 0.71

KNN train 0.80 0.74-0.85 0.75 0.73 0.70 0.77

test 0.70 0.57-0.83 0.62 0.71 0.64 0.69

RandomForest train 1.00 1.00-1.00 0.94 1.00 1.00 0.95

test 0.65 0.51-0.79 0.45 0.82 0.68 0.64

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.67 0.54-0.81 0.45 0.79 0.65 0.63

XGBoost train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.77 0.65-0.89 0.55 0.85 0.76 0.69
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TABLE 2 Continued

Deep learning
model

Model AUC 95% CI Sensitivity Specificity PPV NPV

LightGBM train 0.94 0.92-0.97 0.80 0.94 0.92 0.85

test 0.74 0.61-0.86 0.41 0.82 0.67 0.62

MLP train 0.84 0.80-0.89 0.67 0.90 0.85 0.76

test 0.81 0.69-0.92 0.45 0.97 0.93 0.67

ResNet18

SVM train 0.96 0.94-0.98 0.88 0.94 0.93 0.90

test 0.81 0.70-0.92 0.72 0.82 0.78 0.78

KNN train 0.86 0.82-0.90 0.62 0.91 0.86 0.74

test 0.64 0.51-0.78 0.52 0.68 0.58 0.62

RandomForest train 1.00 0.99-1.00 0.97 0.99 0.98 0.98

test 0.61 0.48-0.75 0.45 0.65 0.52 0.58

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.61 0.47-0.75 0.45 0.79 0.65 0.63

XGBoost train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.59 0.44-0.73 0.69 0.47 0.53 0.64

LightGBM train 0.96 0.94-0.98 0.80 0.96 0.94 0.85

test 0.59 0.44-0.73 0.31 0.59 0.39 0.50

MLP train 0.87 0.82-0.91 0.77 0.81 0.77 0.80

test 0.87 0.78-0.96 0.83 0.74 0.73 0.83

MobileNet_v2

SVM train 0.91 0.87-0.95 0.76 0.90 0.87 0.82

test 0.72 0.59-0.85 0.52 0.91 0.83 0.69

KNN train 0.78 0.72-0.83 0.69 0.75 0.70 0.74

test 0.59 0.46-0.73 0.35 0.65 0.46 0.54

RandomForest train 1.00 1.00-1.00 0.97 0.99 0.99 0.98

test 0.63 0.49-0.76 0.35 0.77 0.56 0.58

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.57 0.42-0.71 0.41 0.65 0.50 0.56

XGBoost train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.70 0.57-0.83 0.48 0.74 0.61 0.63

LightGBM train 0.94 0.91-0.97 0.83 0.94 0.92 0.87

test 0.70 0.57-0.83 0.45 0.88 0.77 0.65

MLP train 0.83 0.78-0.88 0.63 0.85 0.78 0.73

test 0.74 0.62-0.87 0.62 0.79 0.72 0.71

MnasNet-0.5

SVM train 0.87 0.83-0.92 0.61 0.92 0.86 0.74

test 0.65 0.52-0.79 0.38 0.74 0.55 0.58

KNN train 0.77 0.71-0.83 0.66 0.76 0.70 0.73

test 0.55 0.41-0.69 0.41 0.68 0.52 0.58

RandomForest train 1.00 1.00-1.00 0.97 0.99 0.99 0.97

test 0.58 0.44-0.72 0.41 0.65 0.50 0.56
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TABLE 2 Continued

Deep learning
model

Model AUC 95% CI Sensitivity Specificity PPV NPV

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.68 0.55-0.81 0.45 0.74 0.59 0.61

XGBoost train 1.00 1.00-1.00 1.00 0.99 0.99 1.00

test 0.66 0.51-0.80 0.55 0.79 0.70 0.68

LightGBM train 0.92 0.89-0.96 0.75 0.91 0.88 0.81

test 0.75 0.63-0.88 0.41 0.88 0.75 0.64

MLP train 0.79 0.73-0.84 0.54 0.85 0.76 0.69

test 0.65 0.50-0.79 0.35 0.65 0.46 0.54

GoogleNet

SVM train 0.93 0.90-0.96 0.74 0.91 0.88 0.81

test 0.80 0.68-0.91 0.62 0.77 0.69 0.70

KNN train 0.80 0.74-0.85 0.69 0.80 0.75 0.75

test 0.66 0.53-0.80 0.59 0.77 0.68 0.68

RandomForest train 1.00 0.99-1.00 0.96 0.99 0.98 0.96

test 0.69 0.56-0.82 0.52 0.74 0.63 0.64

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.65 0.51-0.78 0.55 0.65 0.57 0.63

XGBoost train 1.00 1.00-1.00 0.99 1.00 1.00 0.99

test 0.68 0.55-0.81 0.59 0.71 0.63 0.67

LightGBM train 0.95 0.92-0.97 0.79 0.93 0.91 0.84

test 0.74 0.61-0.86 0.69 0.68 0.65 0.72

MLP train 0.84 0.79-0.88 0.64 0.84 0.77 0.74

test 0.79 0.67-0.90 0.62 0.77 0.69 0.70

DenseNet121

SVM train 0.96 0.94-0.98 0.70 0.80 0.75 0.76

test 0.75 0.63-0.87 0.62 0.77 0.69 0.70

KNN train 0.82 0.77-0.87 0.97 0.99 0.99 0.97

test 0.72 0.60-0.85 0.38 0.79 0.61 0.60

RandomForest train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.67 0.54-0.80 0.48 0.79 0.67 0.64

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.69 0.56-0.82 0.69 0.68 0.65 0.72

XGBoost train 1.00 1.00-1.00 0.79 0.93 0.90 0.84

test 0.73 0.60-0.86 0.52 0.71 0.60 0.63

LightGBM train 0.95 0.92-0.97 0.70 0.85 0.79 0.77

test 0.72 0.59-0.84 0.62 0.74 0.67 0.69

MLP train 0.88 0.83-0.92 0.70 0.80 0.75 0.76

test 0.74 0.62-0.87 0.62 0.77 0.69 0.70

AlexNet
SVM train 0.94 0.92-0.97 0.79 0.93 0.91 0.84

test 0.84 0.74-0.94 0.69 0.82 0.77 0.76
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order to develop a novel tool for predicting pCR of breast cancer to

NAC (12). The stacking model, which integrates pre-, post-, and

delta-models based on traditional radiomic features and DLR

features, achieved AUC values of 0.89, 0.92, and 0.89 in the

external validation cohorts, respectively. Traditional methods are

simple, conventional, and not black-box models. However, models

based solely on traditional radiomic features do not show ideal
Frontiers in Oncology 10
predictive performance, while models based on multi-omics, multi-

temporal data, traditional radiomic features, and deep learning

features demonstrate better predictive power, albeit with a more

complex process.

We conducted experiments to explore the base DLR model’s

performance without machine learning step. The results are

included in the Supplementary Table S4, where we provide a
TABLE 2 Continued

Deep learning
model

Model AUC 95% CI Sensitivity Specificity PPV NPV

KNN train 0.83 0.78-0.88 0.76 0.79 0.75 0.79

test 0.62 0.47-0.76 0.62 0.59 0.56 0.65

RandomForest train 1.00 1.00-1.00 0.97 1.00 1.00 0.97

test 0.70 0.57-0.83 0.52 0.74 0.63 0.64

ExtraTrees train 1.00 1.00-1.00 1.00 1.00 1.00 1.00

test 0.59 0.45-0.73 0.31 0.71 0.47 0.55

XGBoost train 1.00 1.00-1.00 0.99 1.00 1.00 0.99

test 0.74 0.61-0.87 0.72 0.74 0.70 0.76

LightGBM train 0.95 0.93-0.98 0.78 0.95 0.93 0.84

test 0.62 0.48-0.77 0.59 0.71 0.63 0.67

MLP train 0.87 0.82-0.91 0.73 0.88 0.84 0.80

test 0.84 0.73-0.94 0.72 0.88 0.84 0.79
TABLE 3 The best-performing classifiers among various deep models.

Model Best-performing classifier AUC 95% CI Sensitivity Specificity PPV NPV

ViT MLP train 0.80 0.74-0.85 0.59 0.86 0.78 0.71

test 0.78 0.67-0.89 0.50 0.79 0.67 0.66

VGG16 MLP train 0.85 0.80-0.90 0.66 0.82 0.76 0.74

test 0.79 0.67-0.90 0.75 0.79 0.75 0.79

ShuffleNet_v2 SVM train 0.92 0.89-0.95 0.79 0.92 0.89 0.84

test 0.81 0.70-0.92 0.55 0.92 0.84 0.71

ResNet18 MLP train 0.87 0.82-0.91 0.77 0.81 0.77 0.80

test 0.87 0.78-0.96 0.83 0.74 0.73 0.83

MobileNet_v2 MLP train 0.83 0.78-0.88 0.63 0.85 0.78 0.73

test 0.74 0.62-0.87 0.62 0.79 0.72 0.71

MnasNet-0.5 LightGBM train 0.92 0.89-0.96 0.75 0.91 0.88 0.81

test 0.75 0.63-0.88 0.41 0.88 0.75 0.64

GoogleNet SVM train 0.93 0.90-0.96 0.74 0.91 0.88 0.81

test 0.80 0.68-0.91 0.62 0.77 0.69 0.70

DenseNet121 SVM train 0.96 0.94-0.98 0.70 0.80 0.75 0.76

test 0.75 0.63-0.87 0.62 0.77 0.69 0.70

AlexNet MLP train 0.87 0.82-0.91 0.73 0.88 0.84 0.80

test 0.84 0.73-0.94 0.72 0.88 0.84 0.79
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detailed analysis of the performance metrics for each approach. The

findings indicate that while the base DLR models showed suboptimal

performance, we further conducted a two-stage system with deep

learning (for feature generation), and machine learning (for feature

transformation followed by classifiers). The integration of machine

learningwith feature transformation significantly enhances the overall

performance, justifying the need for the proposed approach.

Our study has the following advantages. At first, it focused on

identifying patients with Miller-Payne grade 4-5 who responded

better to NAC, rather than solely predicting pCR status. This

approach allowed us to select patients who may benefit from NAC.

Additionally, it enabled patients who were insensitive to NAC to

proceed directly to surgical therapy, avoiding excessive therapy and

potentially losing the opportunity for surgery due to disease

progression after NAC. Simultaneously, pCR indicated complete

pathological remission of both the metastatic axillary lymph nodes

and the primary breast tumor. Predicting pCR through radiomics

requires delineation and feature extraction of ROI separately for the

metastatic lymph nodes and the primary breast tumor, which
Frontiers in Oncology 11
undoubtedly increased the complexity of the radiomics model,

affecting its reproducibility and practical application. Finally,

previous studies have mostly focused on building models for

predicting NAC response in breast cancer patients using MRI

parameters and traditional radiomics. In contrast, we explored

multiple deep learning models for predicting NAC response and

found ResNet18 demonstrated excellent performance, achieving an

AUC of 0.87 and 0.87 in the train and test cohorts, respectively.

Despite the strengths of our study, there is a lot of room for

enhancement. Initially, a singular imaging protocol is utilized for

pre-treatment NAC. Although DCE-MRI of the breast stood out as

the most distinctive, the multiparametric MRI, including T2WI and

DWI, might provide more comprehensive and unbiased data.

Furthermore, this study was limited by its retrospective and single-

center nature. A prospective, multicenter investigation could help in

creating a universal prognostic model applicable to various

clinical scenarios.

Using pre-treatment DCE-MRI images, our study trained

multiple deep models and developed the best-performing DLR
FIGURE 3

The ROC curves of different deep learning models for predicting pathological response of breast cancer patients after NAC in train cohort. (A) ROC
curve for ViT model; (B) ROC curve for VGG16 model; (C) ROC curve for ShuffleNet_v2 model; (D) ROC curve for ResNet18 model; (E) ROC curve
for MobileNet_v2 model; (F) ROC curve for MnasNet-0.5 model; (G) ROC curve for GoogleNet model; (H) ROC curve for DenseNet121 model;
(I) ROC curve for AlexNet model.
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FIGURE 4

The ROC curves of different deep learning models for predicting pathological response of breast cancer patients after NAC in test cohort. (A) ROC
curve for ViT model; (B) ROC curve for VGG16 model; (C) ROC curve for ShuffleNet_v2 model; (D) ROC curve for ResNet18 model; (E) ROC curve
for MobileNet_v2 model; (F) ROC curve for MnasNet-0.5 model; (G) ROC curve for GoogleNet model; (H) ROC curve for DenseNet121 model;
(I) ROC curve for AlexNet model.
FIGURE 5

The calibration curves of radiomic signature based on different classification models. (A) Calibration curve of ResNet18 model in the train set;
(B) Calibration curve of ResNet18 model in the test set.
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model for predicting pathologic response of NAC in breast cancer

patients. The model demonstrated excellent performance in both

the train and test cohorts. As a result, this prognostic tool provides a

dependable and impartial basis for effectively identifying breast

cancer patients who are most likely to benefit from NAC before its

initiation. At the same time, it can also identify those patients who

are insensitive to NAC, allowing them to proceed directly to surgical

treatment and prevent the risk of losing the opportunity for surgery

due to disease progression after NAC.
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