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Preoperative prediction of
recurrence risk factors in
operable cervical cancer based
on clinical-radiomics features
Xue Du1,2, Chunbao Chen2, Lu Yang2, Yu Cui2 and Min Li1*

1Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China,
2Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
Objective: To investigate the value of preoperative prediction of risk factors for

recurrence of operable cervical cancer based on the radiomics features of

biparametric magnetic resonance imaging (bp-MRI) combined with

clinical features.

Method: A retrospective collection of cervical cancer cases undergoing radical

hysterectomy + pelvic and/or para-aortic lymph node dissection at the Affiliated

Hospital of North Sichuan Medical College was conducted. Region of interest

(ROI) was outlined using the 3D Slicer software, and radiomics after feature

extraction and feature screening was performed using the least absolute

shrinkage and selection operator (LASSO) algorithm. Logistic regression

algorithms were used to construct a fusion clinical-radiomics model to

visualize nomograms. Receiver operating characteristic (ROC), DeLong test,

calibration curve (CC), and decision curve (DC) were used to evaluate the

predictive performance and clinical benefit of the model.

Result: A total of 99 patients with cervical cancer were included in this study, with

79 and 20 cases in the training and test groups, respectively. Seventeen key

features were selected for radiomics model construction. Three clinical features

were screened to construct a clinical model. A fusion model of the radiomics

model combined with the clinical model was constructed. The area under the

curve (AUC) values in the training group were 0.710 (95% CI 0.602–0.819), 0.892

(95% CI 0.826–0.958), and 0.906 (95% CI 0.842–0.970), for the comparative

clinical model, radiomics model, and fusion model, respectively, and the AUC

values in the testing group were 0.620 (95% CI 0.366–0.874), 0.860 (95% CI

0.677–1.000), and 0.880 (95% CI 0.690–1.000), respectively. The DeLong test

showed a statistically significant difference between the AUC values of the fusion

model and the clinical model (p < 0.05). Decision curve analysis (DCA) showed

that the fusion model had the greatest net benefit when the threshold probability

was approximately 0.5.

Conclusion: The fusion model constructed based on bp-MRI radiomics features

combined with clinical features provides an important reference for predicting

the risk status of recurrence in operable cervical cancer. The findings of this study

are preliminary exploratory results, and further large-scale, multicenter studies

are needed to validate these findings.
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Introduction

According to global cancer statistics, the incidence of cervical

cancer ranks 14th among all cancers and is the fourth most

common cancer among women worldwide, seriously affecting

women’s physical and mental health (1). Treatment modalities

and prognosis of cervical cancer depend largely on the stage of

the primary diagnosis, and treatment options for early-stage and

locally invasive cervical cancer include simple hysterectomy or

radical hysterectomy plus pelvic and/or para-abdominal aortic

lymph node dissection (2). The 5-year survival rate of cervical

cancer treated with surgery can reach 80%–90%, but 20%–30% of

patients still develop recurrence or metastasis within 3 years (3). In

patients with poor prognostic factors after radical hysterectomy, the

addition of postoperative adjuvant therapy is recommended to

reduce the risk of recurrence and improve progression-free

survival. The International Federation of Gynecology and

Obstetrics (FIGO) 2021 guidelines for cervical cancer state that

radical radiotherapy or concurrent chemoradiotherapy (CCRT) is

preferred for patients who may require postoperative radiotherapy

in order to avoid treatment-related complications (4). Establishing a

risk prediction model before treatment and accurately assessing risk

factors for recurrence and risk stratification of cervical cancer

patients can help guide the clinic, promote the development of

individualized treatment strategies, reduce toxic side effects and

economic pressure caused by multimodal treatment, and improve

the quality of survival.

In 2010, Gillies RJ et al. (5) first proposed the concept of

radiomics. In 2012, Lambin P et al. (6) further refined the concept

of radiomics, defined as the high-throughput extraction of a large

number of quantitative features from imaging images and the

transformation of the data in medical images into a mineable data

space with high resolution by automated or semiautomated analytical

methods, allowing for comprehensive, non-invasive, and quantitative

observation of spatial and temporal heterogeneity of tumors. Wu Q

et al. (7), based on sagittal T2-weighted imaging (T2WI) and axial

apparent diffusion coefficient (ADC) images, extracted radiomics

features from intra-tumor and peri-tumor tissues, and established a

support vector machine (SVM) model to predict the lymph node

status of cervical cancer; the area under the curve (AUC) values and

sensitivity were 0.895 and 94.3% and 0.847 and 100% in the training

and testing groups, respectively, and the model had promising

performance in predicting cervical cancer lymph node metastasis.

Wang T et al. (8) developed an SVM model based on the radiomics

features of T2WI and T2WI combined with diffusion-weighted

imaging (DWI), which showed favorable performance in the

assessment of paracervical infiltration and can be used as a

complementary tool to provide individualized treatment options for

patients with early-stage cervical cancer. Du W et al. (9) extracted
02
radiomics features from T2WI to establish an SVM model for

preoperative non-invasive prediction of lymphovascular space

invasion (LVSI) status in cervical cancer, and the results showed an

AUC of 0.925 with an accuracy of 87.5% in the training group and an

AUC of 0.911 with an accuracy of 84.0% in the testing group.

Radiomics has shown high diagnostic efficacy in the prediction of

early-stage cervical cancer risk factors and has good potential for

clinical application. However, the current studies mainly focus on the

construction of prediction models for single risk factors. Benedetti-

Panici et al. (10) found that pelvic lymph node metastasis was always

associated with parietal uterine infiltration, revealing that individual

risk factors are not independent but interrelated. Therefore, predictive

models for a single risk factor alone cannot comprehensively assess the

recurrence risk status of cervical cancer.

In this study, based on preoperative biparametric magnetic

resonance imaging (bp-MRI) images, high-throughput extraction of

quantitative features combined with clinical data through a radiomics

approach was used to construct an individualized prediction model

for the stratification of risk factors for the recurrence of operable

cervical cancer in order to comprehensively and accurately assess the

risk of recurrence, achieve preoperative accurate stratification of the

risk of recurrence, and assist in the clinical development of an

individualized treatment strategy.
Materials and methods

Characteristics of patients

A total of 99 cases of cervical cancer undergoing radical

hysterectomy + pelvic and/or para-abdominal aortic lymph node

dissection at the Affiliated Hospital of North Sichuan Medical

College were retrospectively collected and randomly divided into

a training group and a testing group in a ratio of 8:2 for the

construction and validation of the prediction model. Figure 1 shows

the flowchart of case screening.
Clinical laboratory and pathology data

Clinical data included age, menstrual status, number of

pregnancies, deliveries and abortions, and clinical stage.

Laboratory parameters included neutrophil count, lymphocyte

count, monocyte count, platelet count, hemoglobin (Hb), red cell

distribution width (RDW), plasma fibrinogen, albumin, squamous

cell carcinoma antigen (SCCA), lymphocyte-to-monocyte ratio

(LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-

lymphocyte ratio (PLR), systemic inflammatory response index

(SIRI), systemic immunoinflammatory index (SII), albumin-to-
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fibrinogen ratio (FAR), and prognostic nutritional index (PNI).

Pathological data included histological type, metastatic lymph

nodes, para-uterine infiltration, surgical margins, LVSI, depth of

interstitial infiltration (DSI), and tumor size (TS).
Risk stratification

High-risk factors included lymph node metastasis (+), para-uterine

infiltration (+), and surgical margins (+) (11); fulfilling any one of them

was classified as a high-risk group. Intermediate-risk factors included

LVSI (+), DSI > 1/3, and TS ≥ 4 cm; satisfying any two were classified

as intermediate-risk group (12). Further, the high-risk and

intermediate-risk groups were labeled the positive-risk (PR) group,

while the other case groups were recorded as the low-risk (LR) group.
Image collection and segmentation

MR image data in DICOM format were collected for sagittal

T2WI and contrast-enhanced T1-weighted imaging (CE-T1WI)

sequences. N4 bias field correction was performed on the images

before image segmentation. Region of interest (ROI) outline on

sagittal T2WI and CE-T1WI images was performed by an

oncology radiotherapist by first manually outlining using the 3D

Slicer software (version 4.11.0) (https://www.slicer.org/). ROI outline

along the tumor margins was performed to cover the entire tumor

including areas of intra-tumor hemorrhage, cystic degeneration, or

necrosis. The ROIs were manually sketched layer by layer to form a

three-dimensional (3D) volume of interest (VOI) (Figure 2). The

ROIs were checked by an experienced oncology radiotherapist after

all the ROIs were sketched.
Frontiers in Oncology 03
Radiomics feature extraction and screening

First, 99 sagittal T2WI and CE-T1WI images of cervical cancer

cases were resampled to a voxel size of 1 * 1 * 1 mm3 to standardize

voxel spacing. Voxel intensity values were discretized using a fixed

bin width of 25 SI. The images were also normalized to reduce the

differences in signal intensity of images captured by different

machines. Then, the ROIs of all cases were subjected to radiomics

feature extraction by the 3D Slicer software using the “Pyratomics”

package of open-source Python software (https://pypi.org/project/

pyradiomics/). ROI outlining and feature extraction were

performed again for 30 randomly selected cases, and the

intraclass correlation coefficient (ICC) was calculated to select

features with an ICC > 0.75. The data were then normalized to 0

to 1, and features with p < 0.05 were screened using the t-test or U-

test. Pearson’s correlation coefficient was then calculated by

correlation analysis to identify redundant features, and features

with correlation coefficients ≥ 0.9 were removed. Finally,

redundancy features were further removed using the least

absolute shrinkage and selection operator (LASSO) algorithm.
Construction of the model

Eleven machine learning algorithms were used to develop

radiomics models. Clinical features with statistically significant

differences in the training group (p < 0.05) were used to construct

a clinical prediction model based on the k-nearest neighbor (KNN)

machine learning algorithm. A logistic regression algorithm was

applied to construct a preoperative prediction model for the risk

status of cervical cancer recurrence by combining clinical models

with radiomics models and visualizing in nomograms. The
FIGURE 1

The flowchart of case screening.
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nomograms generated individual probabilities of clinical events by

integrating different prognostic and deterministic variables, thus

meeting the needs of clinical practitioners for integrated biological

and clinical models (13).
Evaluation and validation of models

The predictive performance of the risk model was quantified by

the AUC value of the area under the receiver operating

characteristic (ROC) curve and the corresponding 95%

confidence interval. It is generally considered that an AUC < 0.6

has poor discriminatory ability, an AUC of 0.6–0.75 has some

discriminatory ability, and an AUC > 0.75 has good discriminatory

ability (14). Other indicators for evaluating the model in the

training and validation groups were calculated separately,

including accuracy, sensitivity, and specificity. Decision curve

analysis (DCA) was applied to assess the clinical utility value of

the model.
Statistical analysis methods

The statistics for this study were analyzed using the R software

(version 4.2.2), and all statistical tests were two-sided, with p < 0.05

considered a statistically significant difference. Continuous variables
Frontiers in Oncology 04
were analyzed using a t-test or Wilcoxon rank sum test, and

categorical variables were analyzed using the chi-square test.
Ethics approval and consent to participate

Studies involving human participants were reviewed, processed,

and approved, and data analysis was conducted in accordance with

the Declaration of Helsinki. All experiments involving human

participants were approved by the Ethics Committee of the

Affiliated Hospital of North Sichuan Medical College (No.

2023ER327-1). As this was a retrospective case–control study and

the cases were obtained from an electronic case bank, exemption

from informed consent was granted by the Ethics Committee.
Results

Characteristics of the patients

A total of 99 cases of patients with operable cervical cancer were

included and randomly divided into a training group (n = 79) and a

testing group (n = 20). General clinical characteristics, age, number of

pregnancies, number of deliveries, number of miscarriages, FIGO stage,

menstrual status, and blood indices FAR, LMR, NLR, PLR, SIRI, PNI,

SII, RDW, Hb, and SCCA were not statistically different between the
FIGURE 2

Manual outlining of ROI: (A) sagittal T2WI image and (B) sagittal CE-T1WI image. ROI, region of interest; T2WI, T2-weighted imaging; CE-T1WI,
contrast-enhanced T1-weighted imaging.
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training and test groups (p > 0.05) (Table 1). There was a statistical

difference in PLR, SCCA, and number of deliveries between the PR and

LR groups in the training group (p < 0.05) (Table 2).

The results of pathological features of all cases were compared

(Table 3). There were 39 and 10 cases in the PR group and 40 and 10

cases in the LR group in the training and test groups, respectively. There

were 67 and 12 cases of squamous and non-squamous carcinoma in the

training group and 15 and 5 cases of squamous and non-squamous

carcinoma in the testing group, respectively. Between the training and

test groups, lymph node metastasis (negative/positive), paravaginal

infiltration (negative/positive), vaginal margin (negative/positive),

LVSI (negative/positive), DSI (>1/3 or ≤1/3), TS (≥4 cm or <4 cm),

histological type (squamous/non-squamous), and risk stratification

differences were not statistically significant (p > 0.05).
Radiomics features

A total of 1,223 radiomics features were extracted from the

images of the T2WI and CE-T1WI sequences of the training group,
Frontiers in Oncology 05
respectively. A total of 2,446 features were extracted from the two

sequences, including 468 first-order features (firstorder), 624

texture features (glcm), 364 texture features (gldm), 416 texture

features (glrlm), 416 texture features (glszm), 112 texture features

(ngtdm), and 28 morphological features (shape). Among all the

extracted features, 1,821 features were retained by screening the

repeatable features by ICC > 0.75. Then, features with p < 0.05 were

retained by t-test or U-test, totaling 575. Then, using Pearson’s

correlation analysis, features with correlation coefficients >0.9 were

excluded, and a total of 121 features were retained for both

sequences. Finally, 17 key radiomics features were filtered out

after dimensionality reduction by the LASSO algorithm

(Figure 3). The weights of the 17 radiomics features (Figure 4)

and the Rad-score formula were calculated.

Rad-score Formula: 0.482845896481464 − 0.017516 *

original_glrlm_ShortRunHighGrayLevelEmphasis_T1C − 0.054809 *

l o g - s i g m a - 2 - 0 - mm - 3 D _ g l d m _ Sm a l l D e p e n d e n c e

HighGrayLevelEmphasis_T1C + 0.025203 * log-sigma-4-0-mm-

3D_firstorder_Skewness_T1C − 0.013897 * wavelet-LHL_firstorder_

Median_T1C − 0.032844 * wavelet-LHH_gldm_LowGrayLevel

Emphasis_T1C − 0.067680 * wavelet-HHL_glcm_SumAverage_T1C

+ 0.032331 * wavelet-HHH_glszm_ZoneVariance_T1C + 0.123124 *

wavelet-LLL_glcm_Imc1_T1C − 0.012611 * original_glszm_SmallArea

HighGrayLevelEmphasis_T2 + 0.084444 * log-sigma-5-0-mm-

3D_glrlm_LongRunLowGrayLevelEmphasis_T2 − 0.002119 *

wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis_T2 +

0.021768 * wavelet-HLH_firstorder_Kurtosis_T2 − 0.017925 *

wavelet-HLH_gldm_DependenceVariance_T2 + 0.002260 * wavelet-

HHL_glszm_LargeAreaLowGrayLevelEmphasis_T2 + 0.025433 *

wavelet-HHH_firstorder_Kurtosis_T2 − 0.014920 * wavelet-

LLL_fi r s torder_Skewness_T2 + 0 .005486 * wave le t -

LLL_glrlm_LongRunHighGrayLevelEmphasis_T2.
Model construction and validation

Radiomics models were constructed by 11 machine learning

algorithms, and the diagnostic performance of different radiomics

models is shown in Table 4. Combining the AUC values, accuracy,

sensitivity, and specificity of each model in the training and test

groups, KNN was considered the best machine learning algorithm

for radiomics model building. Clinical features with significant

differences in the training group included PLR, SCCA, and

number of deliveries, and the clinical prediction model

(Clinic_Sig) was constructed based on the KNN algorithm. The

fusion model of the clinical model combined with the radiomics

model was constructed by logistic regression algorithm and

visualized in the nomogram (Figure 5).

In this study, the accuracy, AUC value, sensitivity, specificity,

and precision of the three predictive models finally constructed

were compared (Table 5). The AUC values of the clinical model, the

radiomics model, and the fusion model in the training group were

0.710 (95% CI 0.602–0.819), 0.892 (95% CI 0.826–0.958), and 0.906

(95% CI 0.842–0.970), respectively, and the AUC values in the

testing group were 0.620 (95% CI 0.366–0.874), 0.860 (95% CI

0.677–1.000), and 0.880 (95% CI 0.690–1.000), respectively
TABLE 1 Clinical characteristics between the training group and the
testing group.

Clinical
characteristics

Training group
(n = 79)

Testing group
(n = 20) p

Age 51.94 ± 10.18 52.90 ± 8.96 0.312

Number
of pregnancies 4.00 [3.00, 5.50] 4.00 [3.00, 5.00] 0.518

Number of deliveries 2.00 [2.00, 2.50] 2.00 [2.00, 2.00] 0.55

Number of abortions 2.00 [1.00, 3.00] 2.00 [1.00, 2.25] 0.793

FAR 0.07 [0.07, 0.09] 0.07 [0.07, 0.09] 0.828

LMR 4.68 [3.86, 5.98] 4.48 [3.81, 5.26] 0.236

NLR 2.69 [1.73, 3.40] 2.83 [2.03, 3.41] 0.632

PLR
143.27

[116.72, 179.38]
141.15

[111.64, 210.16] 0.741

SIRI 0.77 [0.50, 1.09] 1.01 [0.73, 1.28] 0.115

PNI 51.74 ± 4.54 52.90 ± 4.55 0.312

SII
540.74

[394.11, 798.70]
677.00

[482.89, 765.00] 0.347

RDW 13.00 [12.70, 13.60] 13.25 [12.70, 13.75] 0.309

Hb 44.20 [42.40, 46.35] 45.30 [41.88, 45.99] 0.625

SCCA 0.496

<2 ng/mL 53 (67.09%) 15 (75.00%)

≥2 ng/mL 26 (32.91%) 5 (25.00%)

Menopausal state 0.887

Non-menopausal 29 (36.71%) 7 (35.00%)

Menopausal 50 (63.29%) 13 (65.00%)
FAR, albumin-to-fibrinogen ratio; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-
lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SIRI, systemic inflammatory response
index; PNI, prognostic nutritional index; SII, systemic immunoinflammatory index; RDW,
red cell distribution width; Hb, hemoglobin; SCCA, squamous cell carcinoma antigen.
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(Figure 6). The fusion model had an accuracy of 82% and 90%,

sensitivity of 77% and 90%, specificity of 88% and 90%, and

precision of 86% and 90% in the training and test groups,

respectively. The AUC values of the fusion model were higher

than those of the clinical and radiomics models in both the training

and test groups, and the fusion model had the best predictive

efficacy. The DeLong test was used to compare the differences

between the AUC values of the models, and the results showed that

there was a statistically significant difference between the AUC

values of the fusion model and the clinical model (p < 0.05), and the

difference between the AUC values of the fusion model and the

radiomics model was not statistically significant (p > 0.05). For the

calibration curves of the three models in the training and testing

groups (Figure 7), the p-values of the Hosmer–Lemeshow test were

0.589 and 0.101 in the training and testing groups of the fusion

model, respectively, indicating that there is a better agreement in the

predicted and actual values. The comparison of the decision curves

of the three models for both the training and test groups showed

that, in most cases, the fusion model brought more net gain in most
Frontiers in Oncology 06
of the threshold probability range and brought the greatest net gain

when the threshold probability was approximately 0.5 (Figure 8).
Discussion

In early-stage cervical cancer patients, radical surgical treatment

or CCRT is feasible, both of which have comparable therapeutic

efficacy (15), whereas postoperative patients receive postoperative

adjuvant therapy based on pathological risk factors and stage. The
TABLE 3 Comparison of pathological characteristics in the training and
test groups.

Pathological
characteristics

Training
group

Testing
group

p

Lymph No. (%)

Negative 15 (18.99%) 3 (15.00%) 0.929

Positive 64 (81.01%) 17 (85.00%)

Paravaginal infiltration No. (%)

Negative 4 (5.06%) 1 (5.00%) 1

Positive 75 (94.94%) 19 (95.00%)

Vaginal margin No. (%)

Negative 4 (5.06%) 0 (0.00%) 0.58

Positive 75 (94.94%) 20 (100.00%)

TS No. (%)

<4 cm 65 (82.28%) 15 (75.00%) 0.46

≥4 cm 14 (17.72%) 5 (25.00%)

DSI No. (%)

≤1/3 47 (59.49%) 14 (70.00%) 0.388

>1/3 32 (40.51%) 6 (30.00%)

LVSI No. (%)

Negative 24 (30.38%) 7 (35.00%) 0.691

Positive 55 (69.62%) 13 (65.00%)

Histological type

Squamous 67 (84.81%) 15 (75.00%) 0.326

Non-squamous 12 (15.19%) 5 (25.00%)

Risk stratification

Low 40 (50.63%) 10 (50.00%) 0.939

Medium 18 (22.78%) 4 (20.00%)

High 21 (26.58%) 6 (30.00%)

FIGO staging 0.740

Stage IA 6 (7.59%) 1 (5.00%)

Stage IB 48 (60.76%) 14 (70.00%)

Stage IIA 25 (31.65%) 5 (25.00%)
frontier
TS, tumor size; DSI, depth of interstitial infiltration; LVSI, lymphovascular interstitial
infiltration; FIGO, International Federation of Gynecology and Obstetrics.
TABLE 2 Clinical characteristics between the PR and the LR in the
training group.

Clinical
characteristics

LR group PR group p

Age 51.13 ± 10.45 52.73 ± 9.97 0.489

Number of pregnancies 4.00 [2.00, 5.00] 4.00 [3.00, 6.00] 0.186

Number of deliveries 2.00 [1.00, 2.00] 2.00 [2.00, 3.00] 0.033

Number of abortions 2.00 [1.00, 3.00] 2.00 [1.00, 3.00] 0.944

FAR 0.07 [0.07, 0.09] 0.07 [0.07, 0.08] 0.433

LMR 4.64 [4.18, 5.98] 4.74 [3.71, 5.94] 0.641

NLR 2.69 [1.73, 3.06] 2.67 [1.77, 3.67] 0.424

PLR
134.48

[112.83, 166.19]
153.12

[125.15, 202.17] 0.045

SIRI 0.73 [0.54, 0.98] 0.79 [0.49, 1.15] 0.543

PNI 51.00 ± 4.87 52.47 ± 4.12 0.149

SII
555.31

[359.05, 764.76]
510.86

[430.45, 881.19] 0.468

RDW
13.00

[12.60, 13.30]
13.05

[12.80, 13.72]
0.202

Hb
128.00

[117.00, 133.00]
128.00

[118.50, 134.00]
0.914

SCC <0.001

<2 ng/mL 18 (46.15%) 35 (87.50%)

≥2 ng/mL 21 (53.85%) 5 (12.50%)

Menopausal state 0.75

non-menopausal 15 (38.46%) 14 (35.00%)

menopausal 24 (61.54%) 26 (65.00%)
LR, low risk; PR, positive risk; FAR, albumin-to-fibrinogen ratio; LMR, lymphocyte-to-
monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio;
SIRI, systemic inflammatory response index; PNI, prognostic nutritional index; SII, systemic
immunoinflammatory index; RDW, red cell distribution width; Hb, hemoglobin; SCC,
squamous cell carcinoma antigen.
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prognosis of patients with cervical cancer is closely related to the

presence of risk factors, and the 3-year recurrence rate of patients

with intermediate-risk factors increased from 2% to 31% compared

with those without intermediate-risk risk factors, and postoperative

adjuvant therapy can significantly reduce the recurrence rate and

mortality (16). High-risk factors increase the postoperative

recurrence rate of patients with early-stage cervical cancer by

approximately 40%, and the 5-year recurrence-free survival rate

decreases from 80%–90% to 40%–70% (17). Clinicopathological

evaluation should be performed before radical surgical resection in

patients with cervical cancer, which is beneficial for treatment

planning and may avoid toxic side effects from multimodality

therapy (18). In this study, an individualized prediction model for

cervical cancer recurrence risk stratification was constructed based

on preoperative bp-MRI images combined with clinical data from

patients with operable cervical cancer, and the results showed that

the fusion model had the best predictive efficacy, with AUC values

of 0.906 (95% CI 0.842–0.970) for the training group and 0.880

(95% CI 0.690–1.000) for the testing group. This enables
Frontiers in Oncology 07
preoperative risk stratification of cervical cancer patients, which is

useful in supporting the clinical development of individualized

treatment decisions.

In this study, ROI outlining covered the entire tumor, including

areas of intra-tumor hemorrhage, cystic degeneration, or necrosis,

in order to reduce the impact of intra-tumor heterogeneity on

radiomics features. Radiomics has been widely applied to a variety

of tumors, demonstrating that quantitative imaging histological

features are associated with tumor pathological characteristics,

survival outcomes, identification of lymph node metastases, and

assessment of tumor response to treatment, facilitating improved

decision support in a cost-effective and non-invasive manner. More

hematological indexes including LMR, NLR, PLR, SIRI, PNI, SII,

RDW, Hb, FAR, and SCCA were incorporated into the clinical

baseline characteristics of this study. The analysis of the difference

between the PR group and the LR group in the training group

showed that there was a statistically significant difference in the

number of deliveries of PLR and SCCA. A clinical prediction model

based on the KNN algorithm was constructed with AUC values of
FIGURE 3

Radiomics feature screening using the LASSO algorithm. LASSO, least absolute shrinkage and selection operator.
FIGURE 4

Weighted bar chart of key radiomics features.
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0.765 and 0.620 for the training group and 0.765 and 0.620 for the

testing group, and their predictive efficacy was significantly inferior

to that of the radiomics model and the fusion model. In this study, a

maximum tumor diameter of 4 cm was used as the threshold value

for assessment in risk stratification of cervical cancer. However, it

has been reported that a maximum tumor diameter greater than 2

cm is a prognostic risk factor for cervical cancer (19), and the FIGO

staging of cervical cancer (2018 version) uses a maximum tumor

diameter line of 2 cm as a threshold value for stage (20). Therefore,

future studies are necessary to further explore the impact of
Frontiers in Oncology 08
different criteria on risk stratification. In this study, the AUC

values of the radiomics model with combined T2WI and CE-

T1WI sequences were 0.893 and 0.825 in the training and test

groups, respectively, and the AUC values of the clinical-radiomics

fusion model with combined clinical predictive parameters were

0.913 and 0.850 in the training and test groups, respectively; the

AUC values of the fusion model were significantly higher, and the

predictive efficacy was better. The DeLong test showed no

statistically significant difference in the AUC values between the

fusion model and the radiomics model (p > 0.05). This may be due
TABLE 4 Predictive efficacy of radiomics models with 12 machine learning algorithms.

Cohort Model Accuracy AUC 95% CI Sensitivity Specificity Precision

Training LR 0.785 0.882 0.808–0.956 0.795 0.775 0.775

Testing LR 0.750 0.840 0.645–1.000 0.700 0.800 0.778

Training NaiveBayes 0.759 0.852 0.770–0.934 0.667 0.850 0.813

Testing NaiveBayes 0.750 0.850 0.678–1.000 0.700 0.800 0.778

Training SVM 0.937 0.962 0.925–0.999 0.897 0.975 0.972

Testing SVM 0.800 0.810 0.606–1.000 0.700 0.900 0.875

Training KNN 0.747 0.892 0.826–0.958 0.590 0.900 0.852

Testing KNN 0.800 0.860 0.677–1.000 0.700 0.900 0.875

Training RandomForest 0.962 0.995 0.987–1.000 0.974 0.950 0.950

Testing RandomForest 0.750 0.840 0.637–1.000 0.700 0.800 0.778

Training ExtraTrees 1.000 1.000 1.000 1.000 1.000 1.000

Testing ExtraTrees 0.650 0.845 0.666–1.000 0.600 0.700 0.667

Training XGBoost 1.000 1.000 1.000 1.000 1.000 1.000

Testing XGBoost 0.700 0.820 0.616–1.000 0.700 0.700 0.700

Training LightGBM 0.823 0.882 0.809–0.956 0.795 0.850 0.838

Testing LightGBM 0.450 0.635 0.353–0.917 0.300 0.600 0.429

Training GradientBoosting 0.962 0.992 0.977–1.000 0.949 0.975 0.974

Testing GradientBoosting 0.700 0.725 0.475–0.975 0.700 0.700 0.700

Training AdaBoost 0.911 0.982 0.962–1.000 0.949 0.875 0.881

Testing AdaBoost 0.700 0.855 0.688–1.000 0.800 0.600 0.667

Training MLP 0.835 0.929 0.875–0.983 0.795 0.875 0.861

Testing MLP 0.850 0.850 0.666–1.000 0.800 0.900 0.889
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor.
FIGURE 5

Nomogram of fused clinical-radiomics models.
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to the fact that the radiomics model alone can show better

predictive efficacy, whereas the limited number of case samples in

this study, as well as the fewer features used to build the clinical

model, necessitates future analysis of large data samples.

Postoperative risk factors for recurrence of cervical cancer

include pelvic lymph node metastasis, surgical margins and

paracervical infiltration, tumor diameter, deep mesenchymal

infiltration, lymphovascular infiltration, and other independent

prognostic factors, stratified according to different risk classes

(21). Cervical cancer patients presenting an intermediate risk

have up to a 30% recurrence and mortality risk rate after surgery

alone (22), and high-risk patients not receiving adjuvant therapy

have a 40% recurrence rate and a 50%mortality risk rate (23). DuW

et al. (9) predicted lymphovascular infiltration in cervical cancer

based on preoperative MR images, constructed a radiomics model

with a clinical model with AUC values of 0.925 and 0.786 in the

training group and 0.911 and 0.706 in the testing group, and

produced the best diagnostic performance in the fusion model of

the combined radiomics features with the clinical data, with an

AUC of 0.943 in the training group and an AUC of 0.923 in the

testing group. Benedetti-Panici et al. (10) showed that subclinical

paracervical spread occurs in approximately 30%–60% of early-

stage cervical cancers and that pelvic lymph node metastasis is

always associated with paracervical infiltration. In early-stage

cervical cancer, 37% of parauterine invasion was through direct
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invasion, 59% through lymph node metastasis, and 52% of cases

through LVSI. For patients with locally advanced cervical cancer

with a risk of recurrence, neoadjuvant chemotherapy followed by

surgery cannot be considered a quasi-treatment (24), and the

identification of risk factors prior to treatment is important for

the development of the treatment plan. Furthermore, it was found

that lymphatic metastasis in cervical cancer does not exist as a

biological behavior alone and is subject to the imaging of a variety of

clinicopathological features including the degree of differentiation

of the tumor, the depth of interstitial infiltration, and the

paraventricular infiltration (25). The outcomes of radical surgery

and radiotherapy are comparable for patients with early-stage

cervical cancer, but the combination of surgery and adjuvant

radiotherapy increases the incidence of treatment-related adverse

events. For example, patients receiving adjuvant therapy after

radical hysterectomy have a higher incidence of urinary

complications, such as ureteral stenosis, and vascular and

lymphatic complications, such as lower limb edema. Therefore, it

is recommended to accurately assess the risk status of recurrence of

in operable cervical cancer preoperatively and to convert patients

who may require adjuvant therapy after surgery to radiotherapy

(26). In this study, three prediction models for preoperative

prediction of the recurrence risk status of operable cervical cancer

were constructed by machine learning methods, and it was found

that the fusion model had the best prediction performance, which
TABLE 5 Predictive efficacy of different models in training and testing groups.

Cohort Model Accuracy AUC 95% CI Sensitivity Specificity Precision

Training Clinic_Sig 0.633 0.710 0.602–0.819 0.641 0.625 0.625

Training Rad_Sig 0.747 0.892 0.826–0.958 0.590 0.900 0.852

Training Nomogram 0.823 0.906 0.842–0.970 0.769 0.875 0.857

Testing Clinic_Sig 0.600 0.620 0.366–0.874 0.600 0.600 0.600

Testing Rad_Sig 0.800 0.860 0.677–1.000 0.700 0.900 0.875

Testing Nomogram 0.900 0.880 0.690–1.000 0.900 0.900 0.900
AUC, area under the curve.
FIGURE 6

ROC curves for clinical, radiomics, and fusion models in the training group (left) and testing group (right). ROC, receiver operating characteristic.
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can be used to assist the clinic to more accurately stratify patients’

recurrence risk preoperatively, which can help to further guide the

individualized treatment.
Limitations and future research directions

Although this study made some important findings in predicting

the risk of recurrence of early-stage cervical cancer, there are still some

limitations. First, this study lacked an independent testing group. An

independent testing set should be completely isolated from the feature

selection, model selection, and model construction processes to more

reliably assess the generalization ability of the model. The lack of an

independent testing group may result in a model that performs well on

training data but has insufficient predictive power on new data. In

addition, the construction and validation of the model in this study

were based on single-center, small-sample data, and the results may be
Frontiers in Oncology 10
overfitting; multicenter, large-sample data are needed to validate and

optimize the model in the future to improve the clinical generalizability

of the model. Future studies should expand the sample size to include

multicenter data and use rigorous external validation methods to

ensure model robustness and applicability. Nonetheless, this study

provides valuable exploratory data and preliminary evidence that

provides direction for further research. Researchers should continue

to explore and validate predictive models for the risk of recurrence in

early-stage cervical cancer, with the aim of providing a more reliable

and effective tool in clinical practice.

Although radiomics has shown great potential for prognostic

prediction in cervical cancer, it still faces some implementation

challenges in practical clinical applications. The performance of

radiomics models relies heavily on the quality and consistency of

imaging data. However, imaging data from different healthcare

organizations and different devices often differ, which may lead to

compromised predictive performance of the models. Standardization
FIGURE 7

Calibration curves for clinical, radiomics, and fusion models in the training group (left) and testing group (right).
FIGURE 8

Decision curves for clinical, radiomics, and fusion models in the training group (left) and testing group (right).
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and harmonization of imaging data remain a pressing issue today. Data

sharing across organizations is often challenging due to privacy

protection and data security issues. Validation studies involving

multiple centers are essential in order to enhance the generalization

ability of models. However, sharing data across institutions requires

overcoming multiple legal, ethical, and technological barriers. The

widespread use of radiomics technology requires that clinical staff have

a technical background in understanding and interpreting model results,

which may require additional training and education. Therefore, the

acceptance of this emerging technology by physicians and radiologists

and how effectively it can be integrated into the clinical decision-making

process are factors that must be considered in future implementations.

With the continuous development and improvement of the technology,

it is expected that these barriers will be gradually resolved to provide

more solid support for the precision treatment of cervical cancer.
Conclusion

In this study, an individualized prediction model stratified by risk

factors for recurrence of operable cervical cancer was constructed based

on the radiomics features of preoperative bp-MRI images, and the

clinical–radiomics fusion model showed the best efficacy in terms of

predictive value. MRI radiomics presents an important contribution to

the preoperative prediction of early-stage cervical cancer recurrence risk

status that can be used preoperatively and is expected to provide a more

intuitive aid to clinical decision-making. However, as this study is a

single-center study with a small sample size, the lack of an independent

testing set and multicenter data may affect the generalizability and

stability of the results. Therefore, the findings of this study should be

considered preliminary exploratory results, and further large-scale,

multicenter studies are needed to validate and extend these findings.
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