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GINS1 is correlated with a poor prognosis in numerous cancers including liver

hepatocellular carcinoma (LIHC). Here, efforts have been made to explore the

function and underlying mechanism in LIHC through bioinformatics analysis. The

mRNA and protein expression data of GINS1 were downloaded from The Cancer

Genome Atlas (TCGA) database, the Clinical Proteomic Tumor Analysis

Consortium (CPTAC), the University of Alabama at Birmingham CANcer Data

Analysis Portal (UALCAN), and the Human Protein Atlas (HPA) database.

Moreover, the protein expression of GINS1 was further substantiated by

immunohistochemistry staining from 116 clinical samples. Subsequently, the

diagnostic and prognostic role of GINS1 in LIHC patients were determined

using receiver operating characteristic (ROC) analysis and the Kaplan-Meier

plotter (KM-plotter) database. GeneMANIA and STRING databases were

respectively used to construct gene and protein-protein interaction (PPI)

networks of GINS1. Enrichment analyses were conducted to investigate the

functions of GINS1. To assess the genetic alterations, methylation, and

prognostic value, cBioPortal, and MethSurv databases were utilized.

Additionally, Tumor Immune Estimation Resource (TIMER), Tumor-Immune

System Interaction Database (TISIDB), and Gene Expression Profiling Interactive

Analysis (GEPIA) were used to explore the correlation with tumor immune.

Differential expression analyses validated the upregulation of GINS1 in LIHC.

Furthermore, the prognostic and diagnostic values of GINS1 were substantiated

by the ROC curve, Kaplan-Meier plotters, and forest plots. Further enrichment,

methylation, and tumor immunemicroenvironment analyses showed an intimate

connection with GINS1. In conclusion, GINS1 which is correlated with

methylation and immune escape may predict the prognosis of LIHC.
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1 Introduction

Liver cancer, the sixth most common cancer, has already become

the third leading cause of cancer death worldwide (1). Except for the

hepatitis virus, risk factors for liver cancer also include alcohol,

smoking, obesity, and diabetes (2, 3). Strikingly, more than 1 million

patients will die of liver cancer in 2030 (4), and the metastasis or

recurrence rate of liver cancer in 5 years is reportedmore than 70% (5).

In the past decades, comprehensive diagnosis,monitoring, prevention,

and treatment techniqueshave been employed toprevent and suppress

this disease efficaciously (6). Notably, molecular targeted therapy has

recently been investigated as a breakthrough in liver cancer treatment

(7, 8).Therefore, a better comprehensionof themolecularmechanisms

in liver hepatocellular carcinoma (LIHC) is an essential prerequisite for

the development of potential therapeutic strategies.

Interestingly, the tumor microenvironment is a dynamic system

and is significantly related to poor prognosis in LIHC patients (9).

Besides, tumor progression, invasion, metastasis, and recurrence are

profoundly affected by the immune microenvironment of liver cancer

(9, 10). Consequently, it is feasible to understand the mechanisms and

promote the development of immunotherapy by studying the role of

immune-related genes and the immune microenvironment.

GINS1 (PSF1), the constituent of eukaryotic DNA replication

machinery, participates in regulating DNA replication (11). Within

replisome progression complexes, the GINS tetrameric complex

maintains the interaction with the MCM2-7 complex and CDC45

(12, 13). Meanwhile, the GINS tetrameric complex is required for cell

growthand chromosomalDNAreplication (12, 13). It iswidelyknown

that thesemultiple complexes (CDC45/MCM2-7/GINS) recruit DNA

polymerases to regulate the initiation and progression phases of DNA

replication (14–16).With high expression in stem cells and progenitor

cells related to high proliferation potential, GINS1 promotes tumor

growth (17). Reportedly, dysregulation of GINS1 has been

demonstrated in association with an ominous prognosis and the

progression of cancers (18). Nonetheless, the innate role of GINS1 in

LIHC requires further elucidation.

Abnormal DNAmethylation in tumors can occur before or after a

cell mutation, which regulates gene expression in tumors by recruiting

proteins involved in gene suppression or inhibiting the binding of

transcription factors to DNA (19, 20). Additionally, it is reported that

GINS1 deficiency underlined chronic neutropenia and NK cell

deficiency (21). However, the relationship between GINS1,

methylation and immune escape is not been fully known yet.

In this study, multiple public databases were employed to

validate GINS1 as a novel prognostic biomarker that was

correlated with methylation and immune escape in LIHC.
2 Materials and methods

2.1 TCGA datasets

The TCGA datasets of GINS1 from UCSC Xena (https://

tcga.xenahubs.net) were utilized to analyze the expression of

GINS1 in 33 types of human cancer. The correlation was
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evaluated between the expression level of GINS1 and the

expression of m6A-related genes (22) in LIHC. In addition, the

datasets from TCGA were employed to ascertain the correlation

with immune checkpoints in LIHC. The p-value<0.05 was

considered statistically significant.
2.2 Protein expression analysis of GINS1

Theprotein expression ofGINS1withLIHCdatasetswas obtained

from the CPTAC database (https://proteomics.cancer.gov/data-

portal) by using UALCAN (http://ualcan.path.uab.edu). Analysis

of protein expression of GINS1 in normal liver tissues and LIHC

tissues was conducted with HPA (https://www.proteinatlas.org).

Paired samples were collected from 116 patients with pathologically

diagnosed LIHC from the First Affiliated Hospital of Jinan

University (JNUH) for immunohistochemical staining. The

protocol was performed according to the guidelines outlined in

the Declaration of Helsinki and approved by the Ethics Committee

and Institutional Review Board.
2.3 Survival and prognostic analysis

Survival and prognostic analysis was conducted using KM-

plotter (http://kmplot.com/analysis). The correlations between

GINS1 expression and the overall survival (OS), progression-free

survival (PFS), disease specific survival (DSS), and relapse-free

survival (RFS) in LIHC were analyzed with associated patient

samples separated into two groups by median expression. The

hazard ratio (HR) with 95% confidence intervals and log-rank p-

value were also contained.
2.4 Gene-gene interaction, PPI networks,
and enrichment analysis

GeneMANIA (http://www.genemania.org) (23) and STRING

(https://string-preview.org) were applied to construct gene-gene

interaction and PPI networks of GINS1. The GO analysis is a

powerful bioinformatics tool to explore on functions of genes in 3

categories, including biological processes (BPs), cellular

components (CCs), and molecular functions (MFs). Besides, the

top 300 genes most positively and negatively associated with GINS1

from the TCGA database were selected for GO term enrichment

and KEGG pathway analyses to investigate the functions of GINS1

in LIHC. GO enrichment and KEGG pathway analyses of co-expression

geneswere performedby theEnrichGOandEnrichKEGGfunction in the

R package “ClusterProfiler” and visualized by the package “ggplot2”, with

the enrichment value set top < 0.05.
2.5 Genetic alterations and methylation
analysis of GINS1

The cBioPortal (https://www.cbioportal.org) was employed to

identify the genetic alterations of GINS1 in 8 datasets, including
frontiersin.org
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Peking University, Cancer Cell 2019; INSERM, Cancer Cell 2014;

MSK, Clin Cancer Res 2018; INSERM, Nat Genet 2015; MSK, PLOS

One 2018; AMC, Hepatology 2014; RIKEN, Nat Genet 2012;

TCGA, Firehose Legacy. KM plots for survival outcomes

including OS and DFS of GINS1 alterations were contained, and

the log-rank test was performed. In addition, MethSurv (https://

biit.cs.ut.ee/methsurv), a web portal providing univariable and

multivariable survival analysis based on methylation biomarkers

using TCGA datasets, was conducted to analyze the methylation

sites of GINS1 and evaluated the predictive value of corresponding

methylation. The HR with 95% confidence intervals of the overall

surv iva l was computed and p<0 .05 was cons idered

statically significant.
2.6 TIMER database analysis

TIMER (http://timer.cistrome.org) database was used for the

analysis of the correlation between the expression of GINS1 and

immune infiltration. Consequently, the correlation was investigated

between the expression of GINS1 and 6 tumor-infiltrating immune

cells including B cells, CD8+ T cells, CD4+ T cells, macrophages,

neutrophils, and dendritic cells (DCs). In addition, the next step

focused on the correlation with particular immune infiltrating cell

subset markers, including markers of CD8+ T cells, T cells (general),

B cells, monocytes, tumor-associated macrophages (TAMs), M1

macrophages, M2 macrophages, neutrophils, natural killer cells

(NKs), dendritic cells, T-helper 1 (Th1) cells, T-helper 2 (Th2) cells,

follicular helper T (Tfh) cells, T-helper 17 (Th17) cells, Tregs, and

exhausted T cells (24–26). Scatter plots were generated to demonstrate

the relationships with the particular gene expression, and Spearman’s

correlation and statistical significance were estimated.
2.7 TISIDB database analysis

The expression of GINS1 and 28 types of tumor-infiltrating

lymphocytes (TILs) across human cancers were identified using the

TISIDB (http://cis.hku.hk/TISIDB) database (27). In addition,

TISIDB was utilized for analysis of the correlation between the

abundance of TILs and the expression of GINS1, and Spearman’s

test was conducted.
2.8 GEPIA analysis

GEPIA (http://gepia.cancer-pku.cn) is a web portal for cancer and

normal gene-expression profiling and interactive analyses based on

TCGA and the Genotype-Tissue Expression (GTEx) datasets. It was

employed to assess the link with particular markers associated with

immune cell infiltration of tumors, including markers of Monocyte,

TAMs, M1 macrophages, and M2 macrophages. The Spearman’s

test was conducted to determine the correlation coefficient, and

statistical significance was estimated.
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2.9 Statistical analysis

The statistical analysis calculated by the online database in this

study was mentioned above. ROC curve was performed to identify

the cutoff value of GINS1 using the R software package “pROC”.

The heat maps of the correlations between GINS1 and the top 50

positively or negatively associated genes were generated by the R

software package “heatmap”. The p-value < 0.05 or log-rank p-value

< 0.05 was considered as statistically significant.
3 Results

3.1 Differential expression of GINS1 in LIHC

The mRNA expression of GINS1 was investigated across 33 types

of different tumors relative to normal tissues with the TCGA database.

Compared with normal tissues, the expression of GINS1 was

significantly upregulated in tumors including bladder urothelial

carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical

squamous cell carcinoma (CESC), cholangiocarcinoma (CHOL),

colon adenocarcinoma (COAD), esophageal carcinoma (ESCA),

glioblastoma (GBM), head and neck squamous cell carcinoma

(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal

papillary cell carcinoma(KIRP), liver hepatocellular carcinoma

(LIHC), lung adenocarcinoma (LUAD), lung squamous cell

carcinoma (LUSC), rectum adenocarcinoma (READ), stomach

adenocarcinoma (STAD), thyroid carcinoma (THCA) and uterine

corpus endometrial carcinoma (UCEC), but was significantly down-

regulated in kidney chromophobe (KICH) (Figure 1A). Both paired

and unpaired sample analyses revealed that the mRNA expression of

GINS1 was significantly higher in LIHC tissues than in the adjacent

normal tissues (p < 0.001) (Figures 1B, C). To explore the protein

expression of GINS1, the data in CPTAC using UALCAN were

investigated, and no significant difference could be found in normal

tissues (n = 165, p = 0.114) (Figure 1D). In addition,

immunohistochemical staining in the HPA database and clinical

LIHC samples both confirmed that the protein level of GINS1 in

LIHC tissues was higher than that in normal tissues (Figures 1E, F).

These results substantiatedupregulatedmRNAandprotein expression

of GINS1 in LIHC tissues.
3.2 Correlation between GINS1 expression
and clinicopathological parameters of
LIHC patients

The Mann-Whitney U-test was performed to determine the

correlation between the expression of GINS1 and clinicopathological

parameters of LIHC patients. Results revealed that the expression of

GINS1 was significantly elevated in patients with higher T

classification (p = 0.007) and younger age (p = 0.020) (Table 1).

However, other clinicopathological parameters including N and M

classification showed no statistically significant association (Table 1).
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FIGURE 1

The analysis of GINS1 expression. (A) Expression pattern of GINS1 in pan-cancer perspective by TCGA database. (B) Expression of GINS1 in 50 LIHC
and matched-adjacent normal paired samples. (C) Expression of GINS1 in 374 LIHC and 50 normal unpaired samples. (D) The protein expression
level of GINS1 were analyzed based on CPTAC using UALCAN. (E) The protein levels of GINS1 in normal liver tissues and liver cancer tissues
(Antibody HPA051185) from the HPA database. (D) Immunohistochemical staining of GINS1 in clinical LIHC samples. ** means p<0.01; *** means
p<0.001; ns means no significance.
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3.3 The diagnostic and prognostic value of
GINS1 in LIHC

ROCcurve analysiswas conducted to ascertain the value ofGINS1

in distinguishing LIHC samples from normal samples. Result

uncovered that the value of AUC was 0.950 (95% CI: 0.924-0.976)

(Figure 2A). This result divulged that GINS1 could be considered a

potential biomarker for distinguishing LIHC tissues from normal

tissues. Consequently, the correlation with prognosis in LIHC

patients was assessed by using the KM-plotter. It was divulged that

higher expression of GINS1 in LIHC patients was significantly

correlated with poorer OS, PFS, DSS, and RFS (all p < 0.001)

(Figures 2B-E). To better understand the prognostic value of GINS1

expression, further effort was made for the correlation with prognosis

in LIHC patients based on clinicopathological parameters in the KM-

plotter database. In LIHC patients, higher expression of GINS1 was

associatedwithpoorerOS in Stage 1 + 2, Grade 1-3, T 1-2,males,white

people, Asians, no alcohol consumption, and no hepatitis virus, and

poorer PFS in Stage 1 + 2, Grade 2-3, T 1, white people, Asians, no

vascular invasion, and nohepatitis virus (Figure 2F). Coherently, these

results implied thatGINS1couldbeapromisingbiomarker todiagnose

LIHC and predict the prognosis of LIHC.
3.4 Gene-gene interaction, PPI networks,
and enrichment analysis of GINS1 in LIHC

GeneMania and STRINGdatabases were applied to construct gene-

gene interaction and PPI networks of GINS1, respectively. As shown in

Figure 3A, the 20 most frequently altered genes were closely associated

with GINS1, including GINS4, GINS2, and GINS3. Functional analysis

revealed that these genes were significantly related to DNA replication

(Figure 3A). Moreover, the PPI networks for GINS1 showed 55 edges

and 11 nodes, including MCM5, GINS2, and MCM4 (Figure 3B). The

co-expression genes in the PPI networks of GINS1 were explored via

data mining from the TCGA database. Subsequently, the top 50 genes

that were positively and negatively correlatedwith GINS1 in LIHCwere

discovered (Figures 3C, D). GO enrichment, and KEGG pathway

analyses were performed using the top 300 positive related genes. The

top 20 significant terms of BPs,MFs, andCCs enrichment analyseswere

presented (Figures 3E–G). In terms of BPs, MFs, and CCs, GINS1 was

enriched in the initiation and progression of DNA replication, DNA

unwinding and replication, and chromosomal replication processes.

Moreover, the top14KEGGpathways forGINS1 and related geneswere

presented (Figure 3H). Among these pathways, many DNA replication

and cell cycle-related pathways were highly associated with GINS1.

Based on the above results, GINS1 was conjectured that it played a

certain role in the progression of LIHC and could be a potential

therapeutic target of LIHC.
3.5 Genetic alteration and methylation
analysis of GINS1 in LIHC

The genetic alteration frequency of GINS1 in LIHC was analyzed

using a total of 1245 patients with LIHC from 8 datasets. Firstly, the
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percentage of GINS1 genetic alteration in LIHCwas 0.2% (Figure 4A).

Besides, the incidence rate of mutation was 1.16% (2/173), while the

incidence rate of amplification was 0.27% (1/377) (Figure 4B).

Meanwhile, the analysis of the KM-plotter found no statistically

significant difference between the genetic alteration of GINS1 and

OS or PFS, which was probably the result of the insufficient samples

(Figures 4C, D). In addition, MethSurv was employed to evaluate the

DNA methylation sites of GINS1 and the prognostic value of

corresponding CpG methylation. 12 methylations of CpG sites were

observed, and cg19063768 had the highest DNA methylation

(Figure 4E). High methylation of cg07062412 was associated with a

worse OS in LIHC, while high methylation of cg02802871,

cg17542545, cg24001719, ch.20.546216F was associated with a better

OS (all p < 0.05) (Table 2). Next, TCGA datasets were utilized to

estimate the correlation with 20 m6A-related genes in LIHC. Results

exposed positive correlation of the expression of GINS1with 17m6A-

related genes in LIHC, including METTL3 (r = 0.544), YTHDC1 (r =

0.457), YTHDC2 (r= 0.271), RBM15 (r= 0.431), RBM15B (r= 0.617),

IGF2BP1 (r = 0.442), IGF2BP2 (r = 0.489), IGF2BP3 (r = 0.536),

VIRMA(r=0.395),WTAP (r=0.491),YTHDF1 (r=0.663),YTHDF2

(r= 0.408), YTHDF3 (r= 0.136), HNRNPA2B1 (r= 0.675),HNRNPC

(r = 0.614), RBMX (r = 0.684), and ALKBH5 (r = 0.154) (all p < 0.05)

(Figure 4F). The highest correlation coefficient of 7m6A-related genes

was also demonstrated as scatter plots (Figure 4G). Notably, 424 LIHC

sampleswere divided into two groups bymedian expression ofGINS1,

and higher expression of 18 m6A-related genes was observed in the

high GINS1 expression group compared with the low GINS1

expression group (Figure 4H). Collectively, these results

demonstrated that GINS1 was closely related to genetic alteration

andmethylationwhich could cause tumor proliferation andmigration

in LIHC.
TABLE 1 Clinical characteristics of the patients (TCGA).

Characteristic
Total

Low
GINS1

High
GINS1 P

N=374 N=187 N=187

T stage, n (%) 0.007

T1 283 107 (28.8%) 76 (20.5%)

T2 95 41 (11.1%) 54 (14.6%)

T3 80 30 (8.1%) 50 (13.5%)

T4 13 6 (1.6%) 7 (1.9%)

N stage, n (%) 0.624

N0 254 121 (46.9%) 133 (51.6%)

N1 4 1 (0.4%) 3 (1.2%)

M stage, n (%) 0.361

M0 268 130 (47.8%) 138 (50.7%)

M1 4 3 (1.1%) 1 (0.4%)

Age, median (IQR) 123 64 (54, 70) 59 (51, 67.75) 0.020
frontier
Statistical significance (P < 0.05) is shown in bold.
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3.6 Correlation between GINS1 expression
and immune cell infiltration

Correlation between GINS1 expression and 6 types of tumor-

infiltrating immune cells was analyzed using TIMER database. Results

showed that the expression ofGINS1was correlatedwith tumor purity
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(r = 0.179), B cell (r = 0.479), CD8+ T cell (r = 0.335), CD4+ T cell (r =

0.344),macrophage (r=0.46), neutrophil (r=0.373), dendritic cell (r=

0.480) (all p < 0.05) (Figure 5A). Relations between the expression of

GINS1 and 28 types of TILs across human cancers in TISIDBdatabase

were shown inFigure 5B. Results suggested significant correlationwith

abundance ofmonocyte cell (r= -0.369), activatedCD4 cell (r=0.591),
FIGURE 2

ROC and Kaplan-Meier curves evaluating the prognostic value of GINS1. (A) ROC curve of GINS1 in LIHC patients. (B–E) Kaplan-Meier analysis of OS,
PFS, DSS, and RFS. (F) Forest plots of the correlation between GINS1 expression and clinicopathological parameters in LIHC patients. OS, overall
survival; PFS, progression-free survival; DSS, disease specific survival; RFS, relapse-free survival.
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eosinophil cell (r = -0.344), immature dendritic cell (r = -0.257),

plasmacytoid dendritic cell (r =-0.282), effector mem-CD8 cell

(r = -0.237), type 1 T helper cell (r = -0.264), type 2 T helper cell (r =

0.311) (all p < 0.05) (Figure 5C). The above results indicated that

GINS1 played a specific role in immune infiltration in LIHC.
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3.7 Correlation between GINS1 expression
and immune markers expression

Further exploration was concentrated on the correlation

between the expression of GINS1 and immune marker sets of
FIGURE 3

Gene-Gene, PPI network, and functional enrichment analysis of GINS1. (A) The gene-gene interaction network of GINS1 by GeneMania. (B) The PPI
network of GINS1 by STRING. (C) Heat maps show the top 50 genes positively correlated with GINS1 in LIHC. (D) Heat maps show the top 50 genes
negatively correlated with GINS1 in LIHC. (E–G) Top 20 enrichment terms in BP, MF, and CC categories in LIHC. (H) Top 14 KEGG enrichment
pathways in LIHC. BP, biological processe; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
frontiersin.org
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various immune cells of LIHC in the TIMER and GEPIA databases.

Immune marker genes of different immune cells were procured for

the correlation analysis with adjustments based on tumor purity

(Table 3). In particular, the expression of GINS1 was significantly
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correlated with B cell markers (CD19, CD79A), CD8+ T markers

(CD8A, CD8B), T cell markers (CD3D, CD3E, CD2), monocyte

markers (CD86, CD115), TAM markers (CCL2, CD68, IL10), M1

macrophage markers (IRF5, COX2) and M2 macrophage markers
FIGURE 4

Genetic alteration and methylation analysis of GINS1 in LIHC. (A) Genetic alteration of GINS1 in LIHC. (B) Summary of GINS1 genetic alteration in
LIHC from seven datasets. (C, D) Kaplan-Meier plots of OS and DFS in patients with or without genetic alteration of GINS1 in LIHC. (E) Visualization
of the CpG methylation sites of GINS1 in LIHC. (F) The correlation between GINS1 expression and m6A-related genes in LIHC based on TGCA
datasets. (G) The scatter plots of the correlation between GINS1 and the 7 m6A-related genes with the highest correlation coefficient. (H) The
differential expression of m6A-related genes in the high and low GINS1 expression groups in LIHC. ** means p<0.01; *** means p<0.001; ns means
no significance.
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(CD163,VSIG4,MS4A4A) inLIHC(allp<0.0001) (Figures 6A–G). In

addition, the relationship with these immune markers in LIHC was

further investigated using the GEPIA database to confirm the similar

association with immunemarkers of CD8+ T cell, T cell, monocytes, B

cell, TAM, M1 macrophage, and M2 macrophages (Table 4).
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Surprisingly, the above results substantiated that GINS1 might be

capable of regulating the polarization of macrophages in LIHC.

Upregulated GINS1 was also associated with increased DC markers,

which indicated a closed relationship between GINS1 and tumor DC

penetration. Moreover, there was a significant correlation between

GINS1 and markers of Treg and exhausted T cells, implying that

GINS1 might play an important role in immune escape in LIHC.
3.8 Correlation between GINS1 expression
and immune checkpoints

To further evaluate the association between GINS1 and immune

escape, the TCGA datasets were utilized to explore the correlation

between GINS1 and immune checkpoint genes including PDCD1

(PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, CTLA4, and

HAVCR2 (TIM3). Heatmap and scatter plots demonstrated

significant positive correlations with immune checkpoints above

(Figures 7A–G), which indicated the unignorable effect of immune

escape in GINS1-mediated carcinogenesis of LIHC.
4 Discussion

GINS1 is a member of the GINS complex (28) and has been

divulged as a component of the eukaryotic DNA replication
TABLE 2 Effect of hypermethylation level on prognosis in LIHC.

CpG HR (95%CI) P-value

Body-Island-cg00994924 1.048 (0.739-1.488) 0.79

TSS200- Island- cg02802871 0.607 (0.428-0.861) 0.0051

TSS1500- N_Shore-cg06449863 1.493 (0.951-2.344) 0.082

1stExon;5'UTR- Island-cg07062412 1.666 (1.082-2.564) 0.02

TSS1500- N_Shore-cg07797805 1.222 (0.86-1.738) 0.26

TSS200- Island-cg08726071 1.204 (0.798-1.815) 0.38

1stExon;5'UTR- Island-cg12180051 1.325 (0.94-1.866) 0.11

Body- S_Shore-cg17542545 0.659 (0.457-0.951) 0.026

Body- S_Shelf-cg19063768 0.736 (0.519-1.043) 0.084

TSS200- Island-cg24001719 0.532 (0.371-0.763) 0.0006

TSS200- N_Shore-cg25588969 0.867 (0.608-1.237) 0.43

Body- Open_Sea- ch.20.546216F 0.464 (0.305-0.706) 0.00034
Statistical significance (P < 0.05) is shown in bold.
FIGURE 5

Correlation between GINS1 expression and immune cell infiltration in LIHC. (A) The correlation between GINS1 expression and tumor-infiltrating
immune cells from TIMER database. (B) The correlation between GINS1 expression and 28 types of TILs across human cancers from TISIDB
database. (C) The correlation between GINS1 expression and the abundance of TILs in LIHC.
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TABLE 3 Correlation analysis between GINS1 and related genes and markers of immune cells in TIMER.

Description Gene markers

LIHC

None Purity

Cor P-value Cor P-value

CD8+ T cell
CD8A 0.192 ** 0.315 ***

CD8B 0.183 ** 0.298 ***

T cell (general)

CD3D 0.263 *** 0.393 ***

CD3E 0.184 ** 0.351 ***

CD2 0.199 ** 0.356 ***

B cell
CD19 0.273 *** 0.356 ***

CD79A 0.163 * 0.289 ***

Monocyte
CD86 0.316 *** 0.485 ***

CD115 (CSF1R) 0.156 * 0.308 ***

TAM

CCL2 0.102 0.050 0.222 ***

CD68 0.229 *** 0.332 ***

IL10 0.234 *** 0.357 ***

M1 Macrophage

INOS (NOS2) 0.037 0.478 0.044 0.415

IRF5 0.423 *** 0.423 ***

COX2 (PTGS2) 0.107 0.040 0.242 ***

M2 Macrophage

CD163 0.090 0.082 0.211 ***

VSIG4 0.104 0.045 0.225 ***

MS4A4A 0.087 0.092 0.225 ***

Neutrophils

CD66b (CEACAM8) 0.090 0.083 0.123 0.022

CD11b (ITGAM) 0.331 *** 0.436 ***

CCR7 0.095 0.069 0.245 ***

Natural killer cell

KIR2DL1 -0.004 0.944 -0.022 0.678

KIR2DL3 0.178 ** 0.226 ***

KIR2DL4 0.199 ** 0.235 ***

KIR3DL1 0.009 0.0858 0.027 0.611

KIR3DL2 0.089 0.088 0.137 0.011

KIR3DL3 0.037 0.473 0.041 0.447

KIR2DS4 0.057 0.273 0.049 0.363

Dendritic cell

HLA-DPB1 0.170 * 0.296 ***

HLA-DQB1 0.149 * 0.264 ***

HLA-DRA 0.187 ** 0.319 ***

HLA-DPA1 0.160 * 0.297 ***

BCDA-1 (CD1C) 0.134 * 0.235 ***

BDCA-4 (NRP1) 0.257 *** 0.288 ***

CD11c (ITGAX) 0.352 *** 0.494 ***

(Continued)
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machinery (11). The oncogenic role of GINS1 in human cancers has

been mentioned in many recent studies (28, 29). Moreover,

dysregulation of GINS1 has been demonstrated in association with a

poorprognosis and theprogressionofmalignant tumors (18, 30). Prior

studies discovered that GINS1 could be a target of anlotinib which

suppressed the proliferation of synovial sarcoma cells (31). Other trials

substantiated that GINS1 might be a target of sorafenib which

significantly prolonged the PSF and induced durable responses

among patients with progressive, refractory, or symptomatic

desmoid tumors (28, 32). However, the role of GINS1 in LIHC has

not been fully comprehended. Here, GINS1 was found aberrantly

expressed in diverse cancers based on pan-cancer analysis. Our study

also confirmed that GINS1 was significantly upregulated in LIHC.

HighmRNAexpressionofGINS1was foundpositively correlatedwith

a high T stage and younger age. These findings indicated that GINS1

might be a potential biomarker to identify LIHC with poor clinical

outcomes. To elucidate the clinical diagnostic value ofGINS1 in LIHC,
Frontiers in Oncology 11
ROC curve analysis was conducted. The results showed that GINS1

hada significantly highAUCvalue,with90.0% in sensitivity and91.7%

in specificity. According to the findings above, GINS1 was concluded

as a promising diagnostic biomarker to distinguish LIHC fromnormal

liver tissues.

The RAS/RAF/MAPK signaling pathway has been reported to be

involved inGINS1-mediated tumor progression (28, 33), and could be

regulatedbymicroRNA-340 to suppress the tumorigenic phenotype in

melanoma (34). In breast cancer, black rice anthocyanins could

suppress metastasis by targeting the RAS/RAF/MAPK pathway (35).

In this study, the co-expression analysis showed that the expression of

GINS1 was significantly correlated with GINS4, GINS2, GINS3, and

MCM2-8. Meanwhile, GO enrichment and KEGG pathway analyses

discovered that many pathways related to DNA replication and cell

cycle were highly associated with GINS1, including cell cycle, DNA

replication, and cellular senescence. The above results substantiated

that GINS1 played a certain role in the progression of LIHC and could
TABLE 3 Continued

Description Gene markers

LIHC

None Purity

Cor P-value Cor P-value

Th1

T-bet (TBX21) 0.085 0.102 0.201 **

STAT4 0.271 *** 0.346 ***

STAT1 0.397 *** 0.457 ***

IFN-g (IFNG) 0.263 *** 0.352 ***

TNF-a (TNF) 0.284 *** 0.422 ***

Th2

GATA3 0.207 *** 0.356 ***

STAT6 0.116 0.025 0.106 0.049

STAT5A 0.312 *** 0.375 ***

IL13 0.129 0.013 0.136 0.011

Tfh
BCL6 0.180 ** 0.184 **

IL21 0.143 * 0.190 **

Th17
STAT3 0.147 * 0.193 **

IL17A 0.090 0.083 0.107 0.046

Treg

FOXP3 0.219 *** 0.306 ***

CCR8 0.401 *** 0.509 ***

STAT5B 0.329 *** 0.315 ***

TGFb (TGFB1) 0.268 *** 0.371 ***

T cell exhaustion

PD-1 (PDCD1) 0.306 *** 0.416 ***

CTLA4 0.323 *** 0.448 ***

LAG3 0.305 *** 0.358 ***

TIM-3 (HAVCR2) 0.315 *** 0.487 ***

GZMB 0.073 0.163 0.150 *
LIHC, Liver Hepatocellular Carcinoma; TAM, tumor-correlated macrophage; Tfh, follicular helper T cell; Th, T helper cell; Treg, regulatory T cell; Cor, R value of Spearman’s correlation; None,
correlation without adjustment; Purity, correlation adjusted by purity.
*P < 0.01; **P < 0.001; ***P < 0.0001.
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be a potential therapeutic target of LIHC. However, this needs to be

verified by in-depth experiments in the future.

It is widely known that gene mutation is closely related to tumor

progression andpoorprognosis. In the present study, the percentageof

GINS1 genetic alteration in LIHC was only 0.2%, and there was no

statistically significant difference between the genetic alteration of

GINS1 and OS or PFS. Such results might be the result of

insufficient sample size. Aberrant DNA methylation in tumors can

occurbeforeor after cellularmutation, and aberrantDNAmethylation

regulates gene expression in tumors by recruiting proteins involved in
Frontiers in Oncology 12
gene repression or by inhibiting the binding of transcription factors to

DNA(19, 20).Therefore, the relationshipwas investigatedbetween the

DNAmethylation levels of GINS1 and the prognosis of LIHCpatients.

High methylation of cg07062412 was associated with a worse OS in

LIHC, however, high methylation of the other 4 CpG was associated

with a better OS, which indicated that the DNA methylation level of

GINS1 was associated with the prognosis of patients. M6A

methylation, which is known as the most important and abundant

formof internalmodifications in eukaryotic cells, plays a pivotal role in

promoting tumor proliferation, migration, and invasion (36). Qi et al.

discovered that high expression of m6A-related genes was associated

with poor OS of LIHC, except for ZC3H13 (37). Chen et al. found that

WTAP was related to m6A modification, contributing to the

development of LIHC through the HuR-ETS1-p21/p27 axis (38).

The key m6A-related genes METTL3 and METTL14 were reported

to be active components of the m6A methyltransferase complex and

correlated with tumor proliferation, differentiation, tumorigenesis,

invasion, and metastasis (39, 40). In this study, efforts were made to

investigate whether GINS1 expression was associated with m6A

modification in LIHC. Expression levels of METTL3, RBM15,

RBM15B, VIRMA, WTAP, YTHDC1, YTHDC2, IGF2BP1,

IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1,

HNRNPC, RBMX, FTO and ALKBH5 increased in the high GINS1

expression group. Thus, we speculated that the GINS1 expression was

closely related tom6Amodificationwhich promoted the proliferation,

migration, and metastasis of LIHC.

The correlation with tumor immune microenvironment in LIHC

has not been fully investigated yet. Analysis from the TIMER database

unveiled that the expression of GINS1 in LIHC was correlated with

several tumor-infiltrating immune cells including B cell, CD8+ T cell,

CD4+ T cell, macrophage, neutrophil, and dendritic cell. These results

substantiated that GINS1 played a specific role in immune infiltration

in LIHC, which could be a potential target for immunotherapy. The

next exploration focused on the correlation with immune marker sets

of various immune cells of LIHC. Results showed significant
FIGURE 6

Correlation Between expression of GINS1 and immune markers including (A–G) B cell markers (CD19, CD79A), CD8+ T markers (CD8A, CD8B), T
cell markers (CD3D, CD3E, CD2), monocyte markers (CD86, CD115), TAM markers (CCL2, CD68, IL10), M1 macrophage markers (IRF5, COX2) and
M2 macrophage markers (CD163, VSIG4, MS4A4A) in LIHC.
TABLE 4 Correlation analysis between GINS1 and related genes and
markers of monocyte, TAM and macrophages in GEPIA.

Description
Gene
markers

LIHC

Tumor Normal

R P R P

Monocyte
CD86 0.3 *** 0.2 0.160

CD115 (CSF1R) 0.2 *** 0.25 0.083

TAM

CCL2 0.069 0.190 0.066 0.650

CD68 0.22 *** 0.19 0.190

IL10 0.13 0.015 0.25 0.078

M1 Macrophage

INOS (NOS2) 0.00018 1 0.63 ***

IRF5 0.39 *** 0.11 0.46

COX2 (PTGS2) 0.013 0.810 0.025 0.86

M2 Macrophage

CD163 0.15 * 0.081 0.58

VSIG4 0.19 ** 0.089 0.54

MS4A4A 0.13 * 0.18 0.22
LIHC, Liver Hepatocellular Carcinoma; TAM, tumor-correlated macrophage; Tumor,
correlation analysis in tumor tissue of TCGA; Normal, correlation analysis in normal tissue
of TCGA.
*P < 0.01; **P < 0.001; ***P < 0.0001.
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correlations with markers of B cell, CD8+ T, T cell, monocyte, TAM,

M1macrophage andM2macrophage. Moreover, upregulated GINS1

was also associated with increased DCmarkers. These results revealed

that GINS1 might be capable of regulating the polarization of

macrophages and tumor DC penetration. There was a significant

correlationwithmarkers of Treg and exhausted T cell, and correlation

analysis showed significant positive correlations with PDCD1 (PD-1),

CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, CTLA4, andHAVCR2

(TIM3), indicating the unignorable effect of immune escape inGINS1-

mediated carcinogenesis of LIHC.

Admittedly, although the current study includes the verification

of immunohistochemical staining experiments, it is only a

preliminary exploration in the early stage, and there is a

temporary lack of more in-depth experimental verification.

However, these research results can preliminarily clarify the

feasibility of the research, and are very cost-effective, and provide

a theoretical basis for subsequent in-depth research. In the future,

we can further verify the relationships between GINS1, methylation

and immune microenvironment through relevant experiments, and

explore its detailed mechanisms.
5 Conclusion

In conclusion, the expression of GINS1 was significantly

upregulated in LIHC. The ROC curve, KM-plotter, and forest

plot showed the prognostic and diagnostic value of GINS1.

Further enrichment, methylation, and tumor immune

microenvironment analyses showed an intimate connection

with GINS1.
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