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Objective: To investigate the risk factors, underlyingmechanisms, and preventive

strategies associated with hyperprogressive disease (HPD) induced

by immunotherapy.

Methods: We analyzed the clinical data of a patient who developed HPD

following palliative gastrectomy and received a combination therapy of

Sintilimab, S-1 (tegafur, gimeracil, and oteracil potassium), and Oxaliplatin

(SOX). Additionally, a literature review on tumor immunotherapy was

conducted to further explore the risk factors and mechanisms of HPD.

Results: In this case, the development of HPD was associated with a high

postoperative tumor burden, elevated PD-1 expression, and aberrant activation of

signaling pathways mediated by EGFR, MET, and FGFR1 amplifications. In addition, a

TP53 p.F270V mutation led to inactivation of tumor suppressor function.

Conclusion: Although immune checkpoint inhibitors (ICIs) have demonstrated

significant efficacy in cancer treatment, HPD induced by ICIs can drastically

shorten patients’ OS, warranting cautious use in populations with high-risk

factors. Effective prevention of HPD involves screening for risk factors,

monitoring predictive biomarkers such as circulating-free DNA (cfDNA) via liquid

biopsy, and identifying high-risk populations through gene mutation analysis.
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Background

Gastric cancer (GC) is the fourth leading cause of cancer-related

death globally, with approximately one million new cases diagnosed

annually (1). In China, the incidence and mortality of GC rank second

and third, respectively, accounting for approximately 45% of all new

GC cases globally (1). Nearly 30% of patients are diagnosed at stage IV,

thereby losing the opportunity for curative surgery. Due to limited

treatment options, the 5-year survival rate remains below 10% (2).

In recent years, ICIs have demonstrated superior efficacy compared

to conventional therapies in the first-line treatment of advanced GC

and have revolutionized its treatment paradigm. However, advanced

GC remains a significant threat to human health (3–5).

Immunotherapy involves the use of ICIs to activate the immune

system and counteract tumor-induced immunosuppression within

the tumor microenvironment (TME), thereby enabling immune cells

to eliminate cancer cells. In 2011, ipilimumab became the first ICI

approved by the FDA, targeting CTLA-4 andmarking the advent of the

immunotherapy era (6). Subsequently, two PD-1 inhibitors—

pembrolizumab and Nivolumab—were also approved for clinical use.

In its 2013 annual report, Science recognized immunotherapy as one of

the ten most significant scientific breakthroughs (7).

Multiple ICIs have been approved for the treatment of solid

tumors. Immunotherapy has emerged as a promising strategy for

treating refractory and recurrent tumors, with numerous clinical

studies demonstrating the robust anti-tumor activity of ICIs across

a wide range of tumor types (8, 9). The 2021 guidelines from the

Chinese Society of Clinical Oncology (CSCO) recommend the use

of Sintilimab in advanced GC patients with HER-2 negative

expression (10).

Unfortunately, in 2016, Chubachi and Yasuda first reported HPD

in a patient with lung adenocarcinoma treated with anti-PD-1

monotherapy (11). Subsequent studies have shown that HPD can

occur across various tumor types, with reported incidence rate 4%-

29% (12–14). Among 62 advanced GC patients treated with

Nivolumab, 13 developed HPD (15). In another study, the

incidence of HPD in advanced GC patients treated with

Nivolumab was approximately 10% (16). However, the risk factors

and underlying mechanisms of HPD remain poorly understood.
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In this study, we present a case of HPD in a patient with high PD-1

expression who underwent palliative gastrectomy following treatment

with Sintilimab. This report summarizes potential risk factors and

underlying mechanisms of HPD, integrating relevant literature to offer

insights for the future application of immunotherapy.
Case review

The patient, a 56-year-old male, was previously in good health with

no history of genetic diseases or family history of malignant tumors. He

was admitted to the hospital due to intermittent upper abdominal pain,

nausea and postprandial vomiting for 5 months. In addition, he had

experiencedmelena and fatigue for twomonths, and lost 6 kilograms in

weight. Physical examination: vital signs were stable, with tenderness in

the upper abdomen and an Cooperative Oncology Group (ECOG)

score of 1. Gastroscopy revealed an extensive ulcer that extended from

the cardia to the fundus, body, and angle of the stomach. Enhanced

abdominal CT scan (Figure 3A, June 6th, 2021) showed lesions in the

fundus and body. Tumor markers showed that CEA (496.51 ng/ml)

was significantly elevated, while CA-125 (32.4 U/ml) and CA19-9 (1.28

U/ml) were moderately elevated (Figure 1, 3 June 2021). Despite

symptomatic treatment, bleeding remained uncontrollable leading to

palliative gastrectomy with D2 lymph node dissection on June 10th,

2021 (Figure 4A). Postoperative examination revealed ulcerative poorly

differentiated adenocarcinoma (Figure 4B) with negative expression of

HER-2 (Figure 4C) and high expression of PD-L1 (Figure 2), staged

as pT4N3bM1.

As the patient underwent palliative gastrectomy with a high

postoperative tumor burden, pre-chemotherapy tumor markers

showed elevated levels of carcinoembryonic antigen (CEA, 540.60

ng/mL) (Figure 1A, July 6, 2021) and cancer antigen 125 (CA125,

50.4 U/mL) (Figure 1B, July 6, 2021), while cancer antigen 19-9

(CA19-9, 6.89 U/mL) (Figure 1C, July 6, 2021) remained within the

normal range. According to the 2021 CSCO gastric cancer

guidelines (10) and the ORIENT-16 study (3), the patient

received first-line therapy with Sintilimab in combination with

the SOX regimen (Sintilimab: 0.2 g, ivgtt, day 1, q3w; Oxaliplatin:

130 mg/m², ivgtt, day 1, q3w; S-1: 60 mg, po, bid, d1–14) (Table 2).
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FIGURE 1

Changes in tumor marker levels. Time points: 0 = preoperative level; 1–5 = pre-chemotherapy levels for cycles 1 to 5, respectively. (A) Changes in
CEA; (B) Changes in CA-125; (C) Changes in CA 19-9.
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Tumor markers were re-evaluated before the second treatment

cycle: CEA was 507.54 ng/mL, CA125 was 12.4 U/mL, and CA19–9

was 2.35 U/mL (Figure 1, July 28, 2021). However, following two

cycles of therapy, the patient developed pain in the upper abdomen,

lower back, and lumbosacral region. Tumor markers assessed prior

to the third treatment cycle showed a significant increase in CEA to

1,631.73 ng/mL, while CA125 and CA19–9 were 17.3 U/mL and

4.24 U/mL, respectively (Figure 1, August 22, 2021). A repeat

abdominal CT scan revealed new multiple liver metastases and

lymphadenopathy in the hepatic fissure, hepatoduodenal ligament,

abdominal aorta, and inferior vena cava regions. Additionally,

cancer thrombosis was observed in the left portal vein, with

newly detected metastases in the right psoas muscle, the T11 and

L3 vertebrae, and the pelvis (Figure 3B, August 21, 2021), which

were not present on the prior scan (Figure 3A, June 6, 2021).

Due to significant disease progression, the first-line SOX

chemotherapy regimen was discontinued, and treatment was

adjusted to second-line therapy with Sintilimab plus nab-

paclitaxel (Sintilimab: 0.2 g, ivgtt, day 1, q3w; Nab-paclitaxel: 160
Frontiers in Oncology 03
mg/m², ivgtt, day 1, q3w) (Table 2), as recommended by the 2021

CSCO gastric cancer guidelines (10). Tumor markers reviewed

prior to the fourth cycle revealed further elevation: CEA 1,953.75

ng/mL, CA125 23.4 U/mL, and CA19-9 3.70 U/mL (Figure 1,

September 14, 2021).

Despite receiving two cycles of the second-line regimen, the

patient’s symptoms worsened. Tumor marker levels further

increased: CEA 2,581.53 ng/mL, CA125 118.6 U/mL, and CA19-9

4.39 U/mL (Figure 1, October 10, 2021). A subsequent CT scan

(Figure 3C, October 13, 2021) showed substantial disease

progression, including enlarged metastatic lymph nodes around

the liver, hepatic fissure, porta hepatis, left kidney, pancreas,

abdominal aorta, and inferior vena cava. There was also localized

invasion of the left hepatic lobe, portal vein trunk, and splenic vein.

New metastatic nodules were observed in the bilateral psoas major,

right gluteus maximus, and left gluteal region. Metastases in the T11

vertebra, L3 vertebra, and pelvic bones had also increased in size

compared to the previous scan (Figure 3B, August 21, 2021). The

patient’s TTF was less than two months.
FIGURE 2

Expression of PD-L1 (A) Positive control; (B) Negative control; (C) Testing result.
FIGURE 3

Abdominal CT imaging findings. (A) Contrast-enhanced abdominal CT on June 6, 2021, prior to surgery, revealed bone metastases (red arrow),
gastric cancer (green arrow), and confluent perigastric lymphadenopathy (blue arrow). (B) After two cycles of chemotherapy, contrast-enhanced CT
on August 28, 2021, showed bone metastases (red arrow); liver metastases and perihepatic lymphadenopathy (pink arrow); confluent lymph nodes at
the hepatic hilum and fissure (yellow arrow); retroperitoneal (green arrow) and perirenal lymphadenopathy (blue arrow); metastases in the psoas
major muscle (purple arrow) and gluteal intermuscular space (black arrow). (C) After four chemotherapy cycles, contrast-enhanced CT on October
13, 2021, revealed bone metastases (red arrow); liver metastases with perihepatic and hepatic fissure lymphadenopathy (blue arrow); intra-abdominal
confluent lymphadenopathy (yellow arrow); retroperitoneal (green arrow) and perirenal (purple arrow) lymphadenopathy; as well as metastases in
the psoas major (orange arrow) and gluteal intermuscular region (black arrow).
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According to RECIST criteria (17), tumor growth rate (TGR),

tumor growth kinetics (TGK) and time to treatment failure (TTF)

(12), the clinical presentation did not indicate natural progression

or pseudoprogression, but rather met the criteria for HPD. Genetic

testing revealed amplifications in EGFR, MET, and FGFR1, along

with an inactivating TP53 mutation (p.F270V) (Table 1).

Although the patient demonstrated good treatment adherence,

his ECOG performance status was 3, precluding the use of more

intensive chemotherapy. Consequently, the treatment strategy was

shifted to third-line palliative therapy with oral apatinib (0.5 g, once

daily) (Table 2) combined with nutritional and supportive care.

Unfortunately, the patient passed away three weeks later.
Frontiers in Oncology 04
Discussion

Clinical predictors and risk factors for HPD

Currently, the risk factors for HPD remain unclear. Several

studies have identified specific risk factors associated with HPD.

Kanjanapan et al. (18) found that HPD occurrence was significantly

associated with female gender (P = 0.01), but showed no

correlation with age, performance status, or tumor type. However,

studies (19, 20) indicated that advanced age (>65 years), female

gender, and the presence of more than two metastatic lesions are

high-risk factors for HPD development. Additionally, Borghaei (21)
FIGURE 4

(A) Resected gastric specimen; (B) postoperative pathologic findings: poorly differentiated adenocarcinoma; (C) negative Her-2 expression (negative
cell membrane, positive cytoplasm, and negative judgment).
TABLE 1 Genetic test results.

Mutation type/gene EGFR MET FGFR-1 TP53

Mutation type amplification amplification amplification P.F270V

Copy number 2.74 32.76 2.60 inactivating mutation
This study established a standardized molecular testing system based on Next-Generation Sequencing (NGS), which was validated through external quality assessment conducted by a College of
American Pathologists (CAP)-certified laboratory and met the ISO15189 quality standards. The specific methods were as follows: Targeted enrichment and library preparation: Key genes such as
EGFR and MET were selectively enriched using probe hybridization capture technology. A standardized workflow was applied to process DNA samples, including fragmentation (200–300 bp),
ligation with Illumina adapters, and hybridization with specific probes. Libraries were purified using magnetic beads and amplified by PCR. Positive and negative controls were included
throughout the workflow to ensure the reliability of the system. High-throughput sequencing: Paired-end sequencing (2×150 bp) was performed on the Illumina NextSeq CN500 platform based
on the Sequencing by Synthesis (SBS) principle. Cyclic sequencing was achieved via reversible termination of fluorescently labeled dNTPs, combined with laser signal detection. Quality
evaluation showed that all samples had a median sequencing depth exceeding 1000×, coverage over 99%, and Q30 scores ≥90%. Sensitivity validation: Systematic validation was performed using
serially diluted reference materials from Horizon HDx™ (Horizon Discovery, UK). Logistic regression analysis determined that the system’s limit of detection (LOD) was 1% mutant allele
frequency at a 95% confidence level, meeting clinical testing requirements. Variant interpretation criteria: Copy Number Variations (CNVs): Determined using a depth- and GC-content-adjusted
algorithm; copy number ≥2.5 was considered positive; Single Nucleotide Variants (SNVs)/Indels: Required an effective coverage depth ≥500× and variant allele frequency ≥1% (e.g., TP53
p.F270V); Structural Variants (SVs): Required ≥500× coverage at the fusion breakpoint, with ≥10 supporting reads and variant frequency ≥1%.
TABLE 2 Timeline of patient care and medication dosing schedule (“/” indicates that the drug was not administered during that treatment cycle).

Date/medication Sintilimab (g) Oxaliplatin (mg) S-1 (bid) (mg) Nab-paclitaxel (mg) Apatinib (bid) (g)

First cycle
2021.07.07

0.2 200 60 / /

Second cycle
2021.07.28

0.2 200 60 / /

Third cycle
2021.08.23

0.2 / / 280 /

Fourth cycle
2021.09.15

0.2 / / 280 /

Fifth cycle
2021.10.10

/ / / / 0.5
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suggested that age ≥75 years is a significant risk factor. Sasaki et al.

(14) identified a positive correlation between absolute neutrophil

count and elevated C-reactive protein levels with the development

of HPD. Another study (22) suggested that elevated lactate

dehydrogenase (LDH) levels above the normal upper limit are

associated with HPD occurrence. A systematic review (23)

revealed a significant association between neutrophil-to-

lymphocyte ratio (NLR) and the risk of HPD. Castello et al. (24)

found that an NLR > 4.125 serves as an independent predictor of

HPD, OS and PFS in patients undergoing immunotherapy. Dovedi

et al. (25) observed that low-dose fractionated radiotherapy may

upregulate PD-L1 expression, partially counteracting the effects of

immunosuppressants and increasing the risk of HPD. Furthermore,

research (26) demonstrated that early liquid biopsy monitoring of

cfDNA is effective for early prediction of HPD. The incidence of

HPD varies among patients with different malignant tumors

treated with PD-1 inhibitors and is associated with certain

clinicopathological features and poor prognosis. Chen et al. (27)

found that tumor markers, particularly CA-19-9, may serve as early

predictors of HPD. However, in our report, the patient’s CA19–9

levels remained within the normal range, whereas CEA showed a

significant and sustained increase, which may represent a risk factor

for predicting HPD. Although several risk factors associated with

HPD have been identified, conclusions across studies are not

entirely consistent. Therefore, these risk factors lack specificity,

and future research is needed to identify independent predictors

of HPD.
Molecular mechanisms of HPD

The molecular mechanisms underlying HPD remain poorly

understood and may involve either single-gene mutations or

concurrent multiple gene mutations. These gene mutations

induce alterations in the TME, leading to HPD development.

MDM2 mutations play a critical role in HPD occurrence. Kato

et al. (12) observed that patients with MDM2 amplification

experienced further amplification during immunotherapy,

resulting in impaired p53 protein function and subsequent

HPD development. Singavi et al. (28) reported an HPD incidence

as high as 66% in patients exhibiting MDM2/MDM4

amplification following ICI therapy. EGFR amplification leads to

autophosphorylation of receptor tyrosine kinases, triggering

downstream signaling pathways that regulate cell proliferation,

differentiation, and survival, and is implicated in the pathogenesis

of various human cancers. Chubachi et al. (11) documented a case

of lung adenocarcinoma harboring an EGFR mutation that

developed HPD following ICI treatment. Singavi et al. (28)

confirmed an HPD incidence of 50% among patients with EGFR

amplification. Kato et al. (12) found that among ten patients with

EGFR mutations, eight exhibited treatment failure within two

months, and two developed HPD. A study (29) first identified

MET copy number as a key factor influencing the response of lung

cancer patients to ICIs, with higher MET copy numbers correlating

with poorer prognosis. Combined treatment with MET inhibitors
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and PD-1 inhibitors can enhance anti-tumor immunity and

promote tumor regression. Collectively, these studies indicate that

MET amplification contributes to tumor immune resistance and

progression, with higher MET copy numbers increasing this

likelihood. FGFR signaling is dysregulated in numerous human

cancers and is considered a potential uncontrolled therapeutic

target. Singavi et al. (28) reported that specific genes on human

chromosome 11q13, including CCND1, FGF3, FGF4, and FGF19,

were amplified in 75% of five HPD patients, suggesting a potential

association with HPD. Inhibition of FGFR phosphorylation

suppresses downstream signaling in FGFR-dysregulated tumor

cell lines, demonstrating broad-spectrum anti-tumor activity

across various FGFR-mutated cancers, including gastric, lung,

multiple myeloma, bladder, endometrial, and breast cancers (30).

Study (31) found that increased FGFR-1 expression is associated

with oral tongue squamous cell carcinoma (OTSCC) and correlates

with metastasis and poor outcomes in OTSCC patients. Regulatory

T cell (T-reg) exert negative regulatory effects in tumor

immunotherapy, with immune checkpoints such as CTLA-4 and

PD-1 selectively overexpressed on TME-resident T-reg cells.

Research (32) demonstrated that tumor-infiltrating T-reg cells are

abundant and highly suppressive in most GC patients, exhibiting

PD-1 expression levels far exceeding those of circulating T-reg cells.

Comparative analysis of GC tissue samples before and after ICI

therapy revealed a significant increase in tumor-infiltrating T-reg

cells in HPD patients. Functionally, circulating and tumor-

infiltrating PD-1+ effector T-reg (eT-reg) cells are highly

activated, and PD-1 blockade significantly enhances their

suppressive activity in vitro.
Signaling pathways for HPD

Moreover, activation of certain oncogenic signaling pathways

following immune checkpoint blockade, along with subsequent

activation of cancer-promoting pathways, induces changes in the

TME. This leads to upregulation of PD-1, PD-L1, and CTLA-4

expression, which adversely affects anti-tumor immunity and

represents a key factor in the development of HPD. ICIs, by

blocking the PD-1/PD-L1 pathway, disrupt immune homeostasis

and alter the TME, causing a significant increase in T-reg

and immunosuppressive tumor infiltration, ultimately promoting

tumor immune evasion and accelerated growth. Besides directly

inducing proliferation and activation of T-reg, ICIs can also

upregulate PD-L1 expression, further enhancing T-reg expansion,

thereby suppressing anti-tumor immunity and facilitating

HPD development (33). Boussiotis et al. (34) reported that the

PD-1/PD-L1 axis inhibits PLC-g and RAS activation, subsequently

suppressing Mek/Erk MAPK pathway activity, which paradoxically

promotes tumor cell proliferation and invasion. Although blocking

the PD-1/PD-L1 pathway can reactivate anti-tumor T cells, it also

upregulates PD-1 expression, targeting PTEN-dependent signaling

and enhancing transcription of oncogenic pathways such as PI3K/

AKT and TGF-b, thereby contributing to HPD (35). Xiong et al.

(36) found that tumor suppressor genes such as TSC2 negatively
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regulate signaling pathways controlling cell growth and

proliferation; the pY1611S mutation located within the Rap/

RanGAP domain of TSC2 may lead to functional loss, resulting

in deregulated tumor cell proliferation following ICI treatment.

This is associated with suppression of the TP53 pathway, which

modulates expression of immune targets—including antigen-

presenting cells (APCs), natural killer (NK) cells, and T-reg—in

the tumor microenvironment via downstream TP53 signaling,

while concurrently activating MYC, CCND1, and VEGF

pathways, leading to tumor immune evasion and promotion of

HPD (38). Known as the guardian of the genome, p53 is a tumor

suppressor that regulates cellular functions through diverse

mechanisms including DNA repair, apoptosis, cell cycle arrest,

senescence, metabolism, and autophagy; mutations in p53 lead to

uncontrolled cell proliferation. Studies indicate a link between the

IFN-g–MDM2–p53 axis and HPD development. ICIs induce

upregulation of IFN-g in the TME, activating the JAK-STAT

pathway and enhancing IRF-8 expression, which binds to the

MDM2 promoter to induce MDM2 expression, ultimately

suppressing p53 activity and accelerating tumor progression (37).

MDM2 amplification coexists with multiple gene mutations and

promotes activation of several oncogenic signaling pathways.

Among 3,650 patients with MDM2 amplification, 25.37%

exhibited mutations in PI3K pathway-related genes, while 24.93%

had TP53 mutations. Additionally, 23.64% of patients harbored

MAPK pathway-related mutations along with TP53 mutations at a

frequency of 24.93%. These co-mutations may be associated with

HPD occurrence. MDM2 amplification has been shown to trigger

functional autoimmune responses, thereby promoting the

expansion of functional autologous tumor-specific T cells (39).

One of the genes activated by p53 is MDM2, which induces p53

degradation; however, inhibitory drugs targeting MDM2 can reduce

p53 degradation (39). Kato et al. (12) hypothesized that the

signaling cascade triggered by MDM2 gene amplification

promotes HPD, or that certain genes co-amplified with the

MDM2 amplicon interact to mediate HPD. EGFR amplification

enhances STAT expression, activating the IFN-g-JAK1/2-STAT1-
mediated PD-L1 axis, which upregulates PD-L1 expression and

induces cytotoxic T lymphocyte (CTL) dysfunction, leading to host

immune evasion (40). Okita et al. (41) demonstrated that the PI3K/

AKT and JAK/STAT signaling pathways cooperatively regulate PD-

L1 expression. Furthermore, EGFR mutations may regulate PD-L1

expression through signaling pathways such as MAPK (42), NF-kB
(43), and GSK3b (44), ultimately contributing to HPD. In our

report, it might be the alteration of the signal pathway caused by

gene mutations that changed the TME, resulting in positive

expression of PD-1, thereby causing a vicious cycle and leading

to HPD.
Summary

In summary, the patient in our report harbors an inactivating

TP53 P.F270V mutation, resulting in loss of tumor suppressor
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function and unchecked tumor cell proliferation. Additionally, this

patient exhibits amplification of EGFR, MET, and FGFR-1, with

MET copy number reaching 32.76, which may alter the TME

through activation of multiple signaling pathways, enhancing

tumor cell invasiveness and metastatic potential, likely serving as

the primary cause of HPD in this case.
Limitations

Although we observed HPD associated with Sintilimab, this

retrospective case report cannot comprehensively reflect the

heterogeneity of the disease or general patterns of therapeutic

response. In addition, potential biases may exist in treatment

selection and disease evaluation. Prospective studies with large

cohorts are needed to validate these observations. Moreover,

future studies should incorporate liquid biopsy techniques such as

cfDNA, circulating tumor cells (CTCs), and exosomes. Genetic

profiling of PD-1/PD-L1, EGFR, MET, and other relevant markers

is also essential. In parallel, artificial intelligence (AI)-assisted

decision-making should be applied to optimize comprehensive

disease management.
Conclusion

Although ICIs have demonstrated significant efficacy in cancer

treatment, HPD induced by ICIs can drastically shorten patients’

OS, warranting cautious use in populations with high-risk

factors. Effective prevention of HPD involves screening for risk

factors, monitoring predictive biomarkers such as cfDNA via liquid

biopsy, and identifying high-risk populations through gene

mutation analysis.
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