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Since the introduction of chimeric antigen receptor (CAR) T-cell therapy, it has

elicited an immense response in both targeted and residual cancers. Its clinical

efficacy is often accompanied by a group of side effects that may become serious

because of factors such as tumor burden, the extent of lymphodepletion, and the

type of co-stimulus. It is also crucial to know the common toxicities associated

with CAR T-cell therapy, including cytokine release syndrome (CRS), immune

effector cell-associated neurotoxicity syndrome (ICANS), cardiotoxicity,

metabolic disorders, pulmonary toxicity, macrophage activation syndrome

(MAS), prolonged cytopenia, coagulation disorders, and potential off-target

effects on various organs. If not well managed, these can be fatal. However,

knowledge about molecular pathways, calcineurin inhibitors, IL-6 receptor

antagonists, steroids, suppression of nitric oxide synthase, various therapeutic

approaches, and other recent advances have been developed to mitigate the

fatal results of various short-term and chronic adverse events related to CAR T-

cell therapy. This study provides a comprehensive perspective on contemporary

management strategies and presumed causative processes of CAR T-cell-related

adverse effects, albeit with several limitations. When CAR T-cell complications,

costs, and challenges of toxicity management are properly considered, the CAR

T-cell therapy of the future will include a number of toxicity-escaping options.
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1 Introduction

A novel approach called chimeric antigen receptor (CAR) T-cell immunotherapy

amplifies T cells to combat cancerous cells. This potent immunotherapy targets cancer cells

through accurate tracking with minimum risk to the healthy cells of the human body (1). In

this approach, the chimeric antigen receptor (CAR) gene is fused into the genomic

structure of the host cell by a viral vector, such as a retrovirus or lentivirus (Figure 1).

This fusion of the CAR gene develops sustained transgenic expression. Chimeric antigen
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receptors have the potential to detect, stimulate, and activate

various receptor chains through the replication of genuine T cell

receptors of a complex nature. CAR T cells can persist in the host

circulatory system for a long duration and act as long-lasting

memory cells. When cancer cells regenerate, they detect and

eradicate them from the circulatory system (2).

Novel CAR T-cell therapy is widely considered a successful

treatment against various blood and solid tumor malignancies.

Despite that, its universal adoption is challenging due to adverse

events (Figure 2) limiting the impressive early responses in clinical

trials (3). In terms of the toxic effects (Figure 2) of this therapy, CAR

T cells have particular toxicity due to their innate biological makeup

(4). This study highlights the critical problems and toxicities

resulting from CAR T-cell therapy and their revealed mechanisms

are discussed to advance this approach or innovations in the

domain of cancer treatment.
1.1 Cytokine release syndrome

The outstanding effectiveness of CAR T cells, however, has been

associated with considerable potentially fatal toxicities, the most

frequent of which is cytokine release syndrome (CRS) (5). CRS

(Table 1) is caused by generalized immunological activation and is

associated with significant increases in inflammatory cytokines such

as granulocyte-macrophage colony-stimulating factor (GM-CSF),
Frontiers in Oncology 02
interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-a),
and interleukin-6 (IL-6) (Figure 3). CRS is quite common, with a

rate ranging from 60% to 93%, but grades 3 and 4 have rates as low

as 13% to 14% (9). These increase the immune response via a

cytokine chain that includes other immune cells. The subsequent

cytokine storm causes elevated vascular permeability, activation of

endothelial cells, and multiorgan dysfunction, which appears as

hypotension, edema, neurotoxicity, and organ dysfunction

(Figure 3). To manage CRS, medications such as tocilizumab

target important cytokines, primarily IL-6, to diminish the

inflammatory process and improve symptoms (6).

According to clinical trials, CRS initially causes fever in the

patients following CAR T-cell treatment, and the fever duration is

CRS grade-dependent (Table 1). Following the CAR T-cell therapy,

patients with grade three or four CRS have a fever within 25 hours,

while patients with a CRS grade lower than three experience a fever

after 12 days (10, 11). Furthermore, the patients exhibit insufficient

oxygen levels, low blood pressure, elevated heart rate, and various

neurological abnormalities including language difficulties, impaired

handwriting, and reduced focus abilities (12, 13). The levels of IFN-g,
interleukin-2 receptor subunit alpha (IL2Ra), and soluble IL-6 serum

indicators were found to determine the severity of CRS through a

significant rise in severe CRS cases compared to those without the

same severity (14). Severe CRS exhibits symptoms such as leakage of

blood vessels, heart issues, impaired kidney function, accumulation of

fluid in the lungs (pulmonary edema), abnormalities in blood clotting
FIGURE 1

Preparation of CAR T cells. The process starts with leukapheresis, the process by which the peripheral blood is taken from the patient and T cells are
isolated. T-cell enrichment and activation take place in the laboratory which enables the selection of T cells and stimulation. T cells are transduced
with a lentiviral vector containing the gene of the chimeric antigen receptor (CAR) so that the T cell can identify and bind to specific cancer cells. In
CAR T cells, there is a process of expansion where the cells divide and multiply in order to reach the necessary amount for administration. Finally,
the genetically engineered CAR T cells are reintroduced into the patient’s body to locate and kill cancer cells.
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(coagulopathy), and hepatic failure (15). Park et al. (16) found severe

CRS in 41% of patients with high disease stress, while only 5% of

individuals with low disease stress exhibited CRS.

Early clinical studies using cluster of differentiation 19 (CD19)

CAR T cells revealed considerably significant toxicities compared to

the symptoms experienced in conjunction with further cellular

therapies, demonstrating substantially widespread stimulation of

the immune system (Table 2). The severity of CRS can vary

significantly, with some patients experiencing mild symptoms

while others develop life-threatening conditions (7).

New developments (48) in managing CRS in the past few years

include knowledge about the molecular pathways and the evolution

of the approach to their management, which is significant in the

context of CAR T-cell therapy. This is mainly orchestrated through

the activation of cytokines such as IL-6 and IL-1 from the immune

cells, especially the macrophages and the monocytes. These

cytokines cause the dangerous inflammatory reactions that define

CRS: developed fever, hypotension, and organ damage. Existing

approaches (4, 49) are focused on reducing the off-target effects

without any impact on the effectiveness of CAR T-cell therapy.

Calcineurin inhibitors are still strong cornerstones in the treatment

of CRS and tocilizumab, an IL-6 receptor antagonist, still plays a big
Frontiers in Oncology 03
role in its management. Inflammation decreases and patients’

conditions improve due to the use of this treatment, though it is

more useful in patients with mild to moderate CRS. However, IL-1

is likely to have a critical role in both CRS and its neurotoxic assets,

which is referred to as cytokine release syndrome-associated
FIGURE 2

Association between primary systems and adverse events (immune-related complications, organ-specific toxicities, and systemic issues) initiated by
CAR T-cell therapy.
TABLE 1 Cytokine release syndrome.

Pathogenesis T cells are activated when they recognize a tumor antigen

Timing Symptoms might not appear until few days and even weeks
following therapy, determined by the rate at which T cells
activate (6, 7)

CRS
Grading

Grade 1: Fever ≥ 38°C; Nausea; Flu-like symptoms
Grade 2: Fever ≥ 38°C; Hypoxia requiring low-flow nasal
cannula; Hypotension not requiring vasopressors
Grade 3: Fever ≥ 38°C; Hypoxia requiring high flow or face
mask; Hypotension requiring one vasopressor with or without
vasopressin
Grade 4: Fever ≥ 38°C; Hypoxia requiring positive airway
pressure; Hypotension requiring multiple vasopressors (8)

Mediator IL-6 is a crucial mediator

Management Inhibiting the IL-6 pathway or using corticosteroids can
alleviate symptoms
frontiersin.org
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FIGURE 3

CRS mechanisms. When engaging the tumor cells, CAR T cells become activated via the interaction between antigens and CARs that leads to the
production of inflammatory cytokines such as TNF-a and interferon-gamma (IFN-g). This cytokine release in turn activates the CD40-CD40L
signaling pathway, reacting more prospectively to immune activation. When secreting granulocyte-macrophage colony-stimulating factor (GM-CSF),
CAR T cells activate myeloid cells, and subsequently IL-1, IL-6, and interleukin-1 receptor antagonist (IL-1RA) are hence secreted. These cytokines
act upon the endothelium and result in enhanced permeability of blood vessels. Furthermore, the release of Von Willebrand factor (vWF),
angiotensin 2 (Ang-2), and IL-6 promotes endothelial activation responsible for tumor growth and immune response.
TABLE 2 Fatality percentage for major issues induced by CAR T-cell therapy.

Major issues Prevalence Observed patients Fatality References

CRS Oklahoma City, USA 1 After 12h Afzal et al. (9)

Pittsburgh, Pennsylvania 1 After 2 months Marker et al. (6)

USA 1 After 9 days Pemmaraju et al. (17)

Paris, France 48 22.92% Belin et al. (18)

Hannover, Germany 15 No Möhn et al. (19)

Victoria, Australia 53 No Sales et al. (20)

France 238 4.8% Le Cacheux et al. (21)

Washington, Pennsylvania 43 7% Gazeau et al. (22)

Rennes, France 190 No Mauget et al. (23)

California, USA 26 3.84% Nie et al. (24)

California, USA 359 39% Locke et al. (7)

USA 148 3% Jacobson et al. (25)

USA 269 0.37% Abramson et al. (26)

USA 57 5.26% Shah et al. (27)

(Continued)
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encephalopathy syndrome (CRES). However, another anti-

interleukin-6 receptor (IL-6R) molecule, anakinra, an IL-1

receptor antagonist, appears useful in CRS prevention and other

neurotoxicities that may not be treated by tocilizumab. Moreover,

experiments with animal models identified that the suppression of

nitric oxide synthase (NOS), which is enhanced during severe CRS,

may eliminate life-threatening hypotonia and other toxic side

effects. This has paved the way for the administration of nitric

oxide synthase inhibitors as supplementary treatment, in order to

enhance the patient prognosis in complicated cases. There are also

changes in prophylactic treatment. Steroids and IL-6 blocking for

prevention were thought to be counterproductive because they

would suppress the anti-tumor effects of CAR T cells, however,

this has recently been shown not to be the case when using anti-IL-1

or anti-IL-6 treatment. This has influenced the changes in clinical

practice whereby tocilizumab or anakinra are administered early in
Frontiers in Oncology 05
an attempt to decrease CRS-associated morbidity and mortality

with no negative impact on cancer treatment.
1.2 Immune effector cell-associated
neurotoxicity syndrome

Another common side effect of CAR T-cell therapy is immune

effector cell-associated neurotoxicity syndrome (ICANS). It was

once named CRES, chimeric antigen receptor T-cell-related

encephalopathy, or neurotoxicity alone (12). When cluster of

differentiation 28 (CD28) is used as a costimulatory domain in

CAR constructs, high-grade ICANS is often also present, affecting

up to 45% of treated patients (50). CAR T cells striking cluster of

differentiation 22 (CD22), B cell maturation antigen (BCMA), and

other hematological antigens have been shown to cause
TABLE 2 Continued

Major issues Prevalence Observed patients Fatality References

ICANS Paris, France 48 22.92% Belin et al. (18)

Hannover, Germany 15 No Möhn et al. (19)

Victoria, Australia 53 No Sales et al. (20)

France 238 4.8% Le Cacheux et al. (21)

Washington, Pennsylvania 43 7% Gazeau et al. (22)

California, USA 1 No Nie et al. (24)

New York 3 No Santomasso et al. (28)

Rennes, France 190 No Mauget et al. (23)

Maryland, USA 79 No Shalabi et al. (29)

Xuzhou, China 60 No Wang et al. (30)

TLS Chicago, USA 1,595 12% Obeidat et al. (31)

Chicago, USA 8,779 32.3% Moturi et al. (32)

USA 9,034 32% Gangani et al. (33)

Mexico, USA 138 30.4% Rios-Olais et al. (34)

Arkansas, USA 1,808 19.7% Roy et al. (35)

Inglewood, Canada 930 14% Adla Jala et al. (36)

Shaanxi, China 480 17% Feng et al. (37)

Phoenix, Arizona 246 65.78% Kelkar and Wang (38)

Beijing, China 164 43.29% Wang et al. (39)

Istanbul, Turkey 107 12.38% Bozkurt et al. (40)

Karachi, Pakistan 400 36% Ahmed et al. (41)

USA 141 2.1% Cairo et al. (42)

MAS Minnesota, USA 5 2 died Monteagudo et al. (43)

Geneva, Switzerland 1,080 13.7% Amikishiyev et al. (44)

B-Cell Aplasia Spain 23 3 died Molinos-Quintana et al. (45)

Stanford, Canada 41 2.44% Baird et al. (46)

London, United Kingdom 151 4% Gabelli et al. (47)
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neurotoxicity, in addition to CD19. The same neurotoxic outcomes

have been documented concerning alternative immune effector cell

(IEC) therapies, including blinatumomab (51). ICANS often causes

impairment of concentration and disorientation. Expressive aphasia

and alterations in handwriting are regarded as very specific and

initial manifestations of ICANS. It usually leads to lowered

consciousness and disorientation, leading to coma, convulsions,

motor/muscular weakness, and cerebral edema. CD19-associated

CAR T-cell therapy with 4-1BB or CD28 constructs has resulted in

severe neurotoxicity owing to cerebral edema (3% incidence). All

fatal cerebral edema cases were linked to CRS, and severe CRS was

linked to severe ICANS (3).

ICANS can manifest as a range of neurological symptoms,

including confusion, delirium, seizures, and cerebral edema. The

onset and severity of ICANS can vary (Table 2), with some patients

experiencing mild cognitive changes while others suffer from severe

and potentially fatal cerebral edema (18). Histopathological findings

in cases of fatal ICANS often reveal neuronal death, neuronal and

perivascular edema, and intraparenchymal hemorrhagic

extravasations (21). According to Le Cacheux et al. (21), ICANS

can be managed through supportive care and corticosteroids.

Regular neurological assessments and advanced neuroimaging are

important for the early detection and management of ICANS. In

some cases, antiepileptic medications can also be utilized to manage

seizures and other severe neurological symptoms that appear

following CAR T-cell therapy.

Current investigations regarding ICANS resulting from CAR T-

cell therapy exhibited a lower incidence, however, clinical studies

reported intermediate to catastrophic ICANS in 30% to 60% of

individuals (20, 25). In the study by Belin et al. (18), the mortality

rate resulting from ICANS was modest. Nevertheless, the early

detection of moderate to severe illness is imperative since patients

frequently require extended hospitalization. Despite the variability,

prompt detection is important to extend hospitalization due to the

severity of the illness associated with moderate to severe ICANS.

The low mortality rate (0% to 1.4%) of ICANS indicates the

importance of appropriate and prompt treatment to avoid

unfortunate results (20).

Clinicians completely understand the management of ICANS,

including patients who have undergone chimeric antigen receptor

CAR T-cell therapy in recent years. However, the management of

ICANS is sometimes done in conjunction with the management of

CRS (52) because they affect patients simultaneously. The first line

of treatment for ICANS is the use of corticosteroids, specifically

dexamethasone, once neurological signs are observed. For the

scenarios that do not show an improvement with the first cycle of

steroids, the administration of methylprednisolone in an increased

dosage may be recommended. Recent studies (53) have discussed

the use of an IL-1 blockade by anakinra in the treatment of steroid-

unresponsive ICANS. Anakinra, an IL-1 receptor antagonist that

treats neurotoxicity, has been effective in treating those patients

who do not benefit from conventional management. This

therapeutic approach is especially useful in severe or persistent

ICANS where inflammation processes should be stopped as soon as

possible to avoid devastating outcomes for the patient. Other

adjunctive therapies such as antiepileptic drugs (AEDs) and
Frontiers in Oncology 06
constant supervision, especially in the Intensive Care Unit, are

important in the management of severe cases. However,

investigations are being conducted into measures to prevent the

development of ICANS. These include pretreatment with agents

such as anakinra or newly developed treatments that selectively

address the inflammatory processes more efficiently.
1.3 Tumor lysis syndrome

Tumor lysis syndrome (TLS) is induced by anticancer therapies

for tumor cell lysis that develop metabolic content constellations

that are dispersed into the bloodstream. Such constellated metabolic

content can result in medical conditions such as hyperkalemia,

hyperphosphatemia, and hyperuricemia (54, 55). Since TLS is

induced by denatured cellular components, its development is

directly proportional to the tumor cell proliferation speed or size

of the tumor burden (56). Moreover, high levels of lactate

dehydrogenase (LDH) with fever are also reported in the

development of TLS in some patients (57).

TLS is a CAR T-cell therapy-induced complication that can lead

to renal failure, arrhythmias, and fatality (Table 2) due to the

destruction of cancerous cells by direct CAR T-cell therapy or

lymphodepleting chemotherapy (3, 58). Patients treated with CAR

T-cell therapy without lymphodepletion chemotherapy have also

been reported to have TLS (59). Hence, in cases of high tumor

burden according to TLS, prophylaxis as per standard medical

guidelines and the use of hypouricemic agents (febuxostat,

rasburicase, and allopurinol) should be employed before

administering CAR T-cell therapy or initiating lymphodepleting

therapy (3).

New developments in TLS treatment emphasize the prediction

of TLS and prompt treatment to avoid complications. TLS is

considered a potentially fatal condition and is most commonly

associated with hematological malignancies such as acute

lymphoblastic leukemia (ALL) and high-grade lymphoma. For

high-risk patients, other preventive treatments (60) such as

adequate hydration and administration of drugs that reduce

serum uric acid levels, are critical. Xanthine oxidase inhibitors are

described and remain an effective first-line strategy to protect the

patient against hyperuricemia by blocking the synthesis of uric acid.

Another drug in the category of xanthine oxidase inhibitors is

febuxostat but it is rarely used because of its high cost and its side

effects that are perilous in patients with cardiovascular conditions.

A recombinant urate oxidase, rasburicase, assumes a central role in

the management of developed TLS by reducing uric acid to the

more soluble allantoin. This agent lowers the uric acid level much

faster than any other agent and is therefore commonly

recommended for patients with high-risk disease or preexisting

hyperuricemia. Published literature (61) shows newer approaches to

preventive and curative measures depending on the features of risk

such as tumor load, impaired kidney function, or malignancy type.

Additionally, the monitoring of urine output and managing

electrolyte disturbances such as hyperkalemia is very important in

managing TLS. Agents such as phosphate binders and sodium

zirconium cyclosilicate have been used to address problems such
frontiersin.org
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as hyperphosphatemia and hyperkalemia, respectively. Despite

improvements in pharmacological options for modification of

outcome, the concept of managing TLS has remained primarily

preventive rather than curative through monitoring and

early intervention.
1.4 Macrophage activation syndrome

Autoimmunity-associated hemophagocytic lymphohistiocytosis

(HLH) is referred to as macrophage activation syndrome (MAS) (3,

62). MAS is a menacing problem that arises from the excessive

proliferation and hyperactivation of T lymphocytes and macrophages

(Figure 4) (55). Patients receiving CAR T-cell therapy also experience

the symptoms of HLH/MAS (50, 63) due to its parallel criteria with

grade 3 CRS. HLH/MAS associated with CAR T-cell therapy has been

managed with CRS treatment including tocilizumab and

corticosteroids (64, 65). According to Maude et al. (66), it was

ambiguous whether MAS/HLH is a specific toxic entity or appears

as a result of CRS hyperinflammation. HLH/MAS diagnostic criteria

associated with CAR T-cell therapy were defined by the elimination

of HLH/MAS from the terms of CRS following the ASTCT grading

guidelines (3, 12). The proposed treatment, including etoposide and

methotrexate or intrathecal cytarabine for refractory HLH/MAS, is

still controversial. Administration of anti-IL-1 with anakinra has also

been proposed for HLH/MAS treatment but has not been approved

for the management or treatment of HLH/MAS (3, 14, 66).
Frontiers in Oncology 07
1.5 B-cell aplasia

B-cell aplasia and hypogammaglobulinemia are anticipated

issues after CD19-directed CAR T-cell therapy because of the off-

tumor-on-target effect of CD19-associated CAR T cells on natural B

cells. CAR T-cells with 4-1BB as a secondary pathway lead to

chronic B-cell aplasia up to 5 years after treatment by CAR T-cells

for ALL (67, 68). Thus, the persistence of CAR T-cells can be

predicted through B cell levels as pharmacodynamic biomarkers.

Remission duration has a potential role in B-cell recovery for ALL

(68–70). However, during perpetual remission after CAR T-cell

therapy, recovery of B cells in lymphoma can manifest (71, 72).

Severe infections are associated with hypogammaglobulinemia

developed from B-cell aplasia (67). During B-cell aplasia, empiric

immunoglobulin (Ig) replacement in pediatric patients is executed

on a standard basis (68, 73). Different approaches to Ig replacement

and CD19-negative memory plasma cells (that secrete antibodies)

that increase basic humoral immunities have been described to treat

B-cell aplasia and hypogammaglobulinemia in adults due to CAR

T-cell therapy (74, 75).
1.6 Anaphylaxis

The non-human elements of most CAR constructs pose a risk to

clinical efficacy and could lead to allergic responses. CAR T-cell

infusion followed by anaphylaxis has been published but allergic

responses are rare after frequent CAR T-cell therapies (76). However,
FIGURE 4

Macrophage activation syndrome mechanism. Hematopoietic cells in the bone marrow interact with monocytes, which enter the bloodstream
before settling in tissues where they develop into macrophages. The first responders to injury are the tissue macrophages that upon activation
secrete a number of proinflammatory cytokines, such as IL-1a, interleukin-1 beta (IL-1b), IL-6, and TNF-a.
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CAR T-cell therapy with tisacel and axicel has been reported to lead

to the production of preexisting anti-murine antibodies against

CD19-directed CARs in patients (69). Although CD-19 antibodies

associated with rising titers against CARs have been revealed, the

expansion, efficacy, and persistence post-infusion of CAR T-cells are

genuine. Fully human generated CARs to minimize immunogenicity

have still not been reported (72, 77).

New developments in anaphylaxis and immunogenicity

management (78, 79) in the current population underline the

need for early detection, individual therapeutic approaches, and

novel methods of monitoring. The management of anaphylaxis (80)

has progressively shifted more toward the search for biomarkers,

primarily serum tryptase, that facilitate speedy diagnosis and risk

assessment. We, therefore, recommend the use of additional

tryptase levels immediately after the onset of anaphylactic

reactions to inform emergency management. Immunogenicity,

especially in biological products and monoclonal antibodies,

remains an issue thanks to the development of antidrug

antibodies (ADAs). These ADAs can decrease the therapeutic

effectiveness of the active substance and cause hypersensitivity

reactions up to anaphylaxis. Some of the new approaches that are

seen at the developmental stage relate to computational and in vitro

modeling of immunogenic risk early in drug development.

Immunogenicity is traditionally a highly litigious issue and

derisking immunogenicity through methods such as T-cell

epitope mapping and high-end in silico algorithms is now getting

deployed more and more for late preclinical and early clinical

validation (81). Furthermore, factors that can be related to the

individual patient, for instance, the patient’s heredity and previous

treatment with related biologics, are included in the risk evaluation

tools used to identify possible immunogenic reactions. Some

strategies aimed at determining immunogenicity include using

fully humanized or engineered antibodies so as to avoid immune

identification. Further, in clinical management, it is common to

prescribe antihistamines and corticosteroids before the procedure

in patients who are sensitive to latex. It is crucial to enhance patient

prognosis in therapeutic endeavors and to continue research on the

molecular base of ADA formation and hypersensitivity reactions.
1.7 Graft-versus-host disease

CAR T-cell therapy has the potential to bind T cells to protein,

carbohydrate structures, and glycolipids and contributes to the

persistence and expansion of T-cells. It can be active in both CD8

+ and CD4+ cells and there is a low chance of graft-versus-host

disease (GVHD) and autoimmunity (82). GVHD, with adverse

effects on the vital organs of recipients of CAR T-cell therapy, is an

immune response and can be mitigated by immunosuppressive

medication (83). GVHD has not been considered a threatening

issue in patients posttransplant since this therapy was not accepted

for the treatment of ALL in the early days (55). However, only one

report of chronic GVHD with drastic skin GVHD 3 months after

the CAR T-cell therapy has been published. Subsequently,

corticosteroids were administered for the management of the

incidence of GVHD (84).
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1.8 Acute myelofibrosis

The investigations of Lai et al. (85) revealed acute myelofibrosis

(AMF) as a serious threat that appeared by CD-19-associated CAR

T-cell treatment, beyond the neurotoxicity and CRS. After receiving

CD19 CAR T-cell therapy, 1 out of 17 patients diagnosed with B-

cell acute lymphoblastic leukemia (B-ALL) exhibited AMF

following grade IV CRS. Despite achieving complete remission

(CR) from B-ALL, a 36-year-old male patient with grade IV CRS

and Philadelphia chromosome-negative B-ALL eventually had a

fatal relapse through worsening of bone marrow fibrosis. It was also

concluded by primary myelofibrosis (PMF) mutations such as

JAK2, MPL, and CALR that pre-existing genetic predisposition

was not the reason for AMF. A CRS-induced cytokine milieu with

IL-6 among other profibrogenic and inflammatory cytokines was

the cause of AMF development (85). This was in line with the

cytokine expression and inflammatory response involved

in myelofibrosis.

The treatment of AMF has been recently improved (86) with an

emphasis on combination therapy and new drugs. Ruxolitinib is

and still remains an essential part of the management of this disease

as it has been proven to be very effective in managing symptoms

such as splenomegaly. Recent studies (87), however, show that an

increasing number of studies have pointed towards the superiority

of combining JAK inhibitors with non-JAK agents in the spleen

with symptom control and reasonable tolerability. Further, the

newer agents that have emerged, fedratinib, pacritinib, and

momelotinib, have brought more options to the table particularly

in managing patients with anemia and thrombocytopenia. Of these,

momelotinib has emerged as potentially clinically effective in

treating anemic AMF patients and improves their symptoms and

transfusion dependence compared with conventional therapies.

Currently, clinical studies are still being conducted to further

understand other combinations and doses that are safe and

effective for the patients with managed side effects.
1.9 Cytopenia

Cytopenia, including neutropenia, anemia, and thrombocytopenia,

is a common chronic side effect of CAR T-cell treatment that adversely

impacts the immune systems of patients (88). Alarmingly, prolonged

cytopenia for 3 months or above has been observed following CAR T-

cell infusion, and 15% of patients were diagnosed with B-cell

lymphoma (89). Patients are also affected by cytopenia in continuous

absolution with no confirmation of myelodysplastic syndrome.

However, the actual mechanisms behind these prolonged cytopenias

have not yet been reported (90).

In some reports of CAR T-cell therapy, cytopenia was common

after 4 to 39 months of CAR-T cell infusions but they characterized

cytopenia as myelodysplastic syndrome (MDS) (91, 92). Such

confusion raises the importance of ruling out the mechanisms of

MDS or CAR-T therapy as the sources of cytopenia (93). Later, it

was confirmed by Strati et al. (91) through statistical MDS diagnosis

that cytopenia at day 30 after CAR T-cell infusion was not
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associated with myelodysplastic syndrome. Meanwhile, it was

reported by Jain et al. (94) that inflammation factors were

significantly associated with hematopoietic recovery at 1 month

and this imbalanced the observations about cytopenia.

After CAR T-cell therapies, grade 3 cytopenia is frequently

reported. Febrile neutropenia of grade 3 was recorded in 17% and

31% of the patients examined within the JULIET trials and ZUMA-

114, respectively (95, 96). Almost 30% of patients following CD19-

specific CAR T-cell therapy with tisacel or axical exhibited prolonged

severe cytopenia in a biphasic pattern beyond 30 days after

administration (71, 97). Nevertheless, the etiology of late cytopenia

is not fully described with the lymphodepleting chemotherapy being

considered to be associated with early cytopenia (97, 98). Whereas, in

severe CRS, prior hematopoietic cell transplantation (HCT), and

frequent prior chemotherapies are attributed as the cause of late

cytopenia (11, 96, 97). Patients with limited hematopoietic capacity

who underwent a prior HCT showed a disturbance in their

chemokine milieu following CAR T-cell therapy, and CAR-specific

immunobiology has been described as a fundamental issue (11, 97).

Platelet and erythrocyte replacement have been used in the treatment

of thrombocytopenia and anemia. Similarly, patients with prolonged

neutropenia should be treated with granulocyte colony-stimulating

factor (G-CSF) (8, 99). However, according to previous studies, it

might enhance the severity or incidence of CRS due to a lack of

immune cell activation. However, CAR T-cell therapy can be useful as

initial care in patients (99, 100). Anecdotally, the transfusion of

allogeneic or autologous stem cells resolved the persistence of

cytopenia after CAR T-cell therapy (96, 101).
1.10 Coagulation disorders

During the administration of CAR T-cell therapy, coagulation

disorders, particularly hematological malignancies, have been

observed in 51%-56.6% of patients within 6 to 20 days after the

infusion (30, 102). Increased fibrinogen degradation products,

decreased fibrinogen, increased D-dimer, thrombocytopenia, and

prolonged prothrombin time are initiated by CAR T-cell therapy-

associated coagulation disorders. Since the appearance of

disseminated intravascular coagulation (DIC) is associated with

severe coagulation disorders, only a few cases have been published

regarding CAR T-cell therapy-associated DIC incidence (Figure 5).

Various reports indicated an incidence of DIC of approximately 7%

to 28.3% in patients following CAR T-cell infusion (30). In addition,

the grade of CRS positively impacts the coagulation disorder’s

severity (30, 103). Patients with severe CRS have also been

reported to have a higher incidence of DIC and coagulation

disorders (102).

Conventional approaches for the treatment of patients with

coagulation disorders are generally used for standard care and most

of the patients are observed to recover without intervention (30). The

development of DIC and the levels of multiple cytokines are decreased

or eventually inhibited by the management of CRS (103, 104).

Effective and timely treatment and interventions are essential once

DIC symptoms appear in patients. New developments (105) in care

and control strategies for coagulation syndrome are based on the
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targeted intervention model. The early use of fibrinogen concentrates

and antifibrinolytic agents has also demonstrated benefits in the

treating of trauma (TR)-induced coagulopathy. Current attitudes

toward the use of anticoagulants, especially in critically ill patients

(106), are more focused on the choice between thrombotic and

bleeding events; more novel antithrombotic agents and reversal

approaches are needed. Coagulation disorders can be avoided with

the help of normothermic management, correction of acidosis in the

body, and normalization of calcium levels for the thickening of fibrin

strands that support coagulation.
1.11 Other cascade complications

The expression of tumor antigens, which is targeted in CAR T-

cell treatment, is essential for effective targeted therapy. Such

antigens, known as tumor-specific antigens (TSAs), should be

visible to CARs on tumors. CAR T-cell therapy mainly targets

tumor-associated antigens (TAAs) since TSAs are few during

treatment (103). Tumor cells and normal cells indicating the

target antigens are identified and killed by infused CAR T cells.

This mechanism to kill the malignant cells appearing on normal

cells is a known tissue-on-target effect that sometimes leads to

serious complications and mortality. CAR T cells targeting ERBB2

(HER-2/neu) were developed by Morgan et al. (107) for the

treatment of cancer patients with ERBB2 overexpression. Their

team infused this treatment in one patient with liver and lung-

propagated colon cancer and recorded respiratory distress within 15

minutes of infusion and pulmonary infiltration after chest x-ray

analysis. The patient died within 5 days despite aggressive

treatment. Later, according to the researchers’ hypothesis, after

infusion, CAR-T cells penetrated the lungs and targeted lung

epithelial cells exhibiting low ERBB2 expression. This process

resulted in CRS by inducing the release of a large number of

cytokines. To reduce off-target effects, the utilization of TSAs to

induce the respective CAR T cells is a potent approach but it is

expensive and challenging to find new TSAs (103). Thus, studies are

needed for the optimization of CAR T cells through the structure of

the CARs by using novel techniques, particularly inhibitory CARs

(iCARs) and synNotch receptors (103, 108).
1.11.1 Cardiovascular toxicity
Initially, cardiovascular toxicity following CAR T-cell therapy

was observed in children suffering from ALL. In more than 5% of

patients, pulmonary edema, hypotension, and fluid overload were

observed, which are grade 3 cardiovascular toxicities, during the

ELIANA trials (109). Additionally, retrospective analyses revealed

cardiomyopathy causing left ventricular systolic disorder. In some

cases, CAR T cells reversed such toxicities within weeks to months

in most children (110). Two studies showed that CAR-T cell

infusion resulted in acute cardiac tamponade and pericardial

effusion through CRS (111, 112). These two cases were managed

by eliminating CRS using dexamethasone and tocilizumab and one

mortality was noted (112). Another clinical study of B-cell

lymphoblastic lymphoma detected cardiac tamponade 5 months
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after developing grade 2 CRS (113). The studies of Tao et al. (114)

reported acute cardiovascular events in a 76-year-old patient with

diffuse large B-cell lymphoma (DLBCL) during CAR T-cell

infusion. Following autologous CAR-T therapy, a patient

receiving CD-19 CAR T-cell therapy exhibited CRS-associated

coronary vasospasm. Moreover, a few studies revealed that 13.3%

of individuals with cardiovascular toxicity were associated with

CAR T-cell therapy (115, 116).

Approved CAR T-cell constructs have been reported in two

retrospective analyses. After CAR T-cell therapy, it was observed in

17% of patients that cardiovascular events usually occurred for 1

month (117). In parallel, among 60 consecutive adult patients of

LBCL treated either with tisagenlecleucel or axicabtagene ciloleucel

after CAR T-cell infusion, 32 patients exhibited 48 cardiovascular

adverse events within 1 year (118). Fluid retention, atrial fibrillation,

and hypotension have also been observed with cardiovascular

toxicities in a pediatric population. Notably, patients with CRS

normally have cardiovascular events, which confirms the CRS

association with cardiovascular damage (109, 117).

1.11.2 Pulmonary toxicity
Pulmonary complications are common in immunotherapies,

such as checkpoint inhibitor therapies. In recipients of CAR T-cell

therapy, pulmonary toxicities in most of the cases have been
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revealed to date. However, patients with severe CRS exhibit

frequent pulmonary toxicities (118) with particular symptoms

including pneumomediastinum, hypoxia, allergic rhinitis, pleural

effusion, and pulmonary embolism (109, 118). However, in some

patients who received a CAR T-cell infusion, no comprehensive

analysis has been seen for lung toxicity, and there are no

comprehensive long-term evaluation reports for the transfer

capacity of lungs after CAR T-cell therapy.

Haas et al. (119) treated two cases with solid tumors with CAR-

T therapy targeting mesothelin (MSLN) and observed severe

pulmonary toxicities. Within 48 hours of the CAR T-cell infusion,

symptoms consistent with CRS and hypoxemia were seen and grade

5 respiratory failure was revealed in one patient. CAR T-cell

accumulation, acute lung injury, and extensive T-cell infiltration

in the lungs were also observed in the autopsy findings. Further

evaluation showed low levels of MSLN in the benign pulmonary

epithelial cells of lungs in fibrotic or inflammatory conditions. This

observation revealed that lung pneumocytes contribute to dose-

limited toxicity rather than pleural cells (115).

1.11.3 Neurological toxicities
CAR T-cell therapy leading to toxicities that jeopardize the

nervous system has captured the attention of numerous researchers

seeking to develop this immunotherapy as a safe treatment. Severe IL-
FIGURE 5

Mechanisms for CAR T-cell-therapy-related coagulation disorder. CAR T cells, upon identifying and binding to the BCMA-expressing tumor cells,
secrete granzyme B to cause the death of the tumor cells. This interaction also initiates cytokine secretion by monocytes/macrophages including IL-
1 and IL-6. IL-6 stimulates increased cytokine activity and inflammation and also activates endothelium and platelets. The expression of P-selectin
on platelets and endothelial cells contributes to coagulation. Furthermore, activated endothelial cells through Factor Xa (FXa) and protease-activated
receptors (PAR) are involved in the coagulation of CAR T cells and strengthen the inflammatory process.
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6, IFN-g, and TNF-a levels at the beginning of the CAR T-cell therapy

can result in neurotoxicity development with grade 3 or above (55, 84).

According to univariate logistic analysis, the concentration of IL-6 is

also a cause of grade 3 or higher neurotoxicity development (84).

However, many reports demonstrated anti-cytokine therapies

consisting of tocilizumab to prevent toxic neurological effects but

resulted in no correlation between the neurotoxicity occurrence and

CRS severity (55). Migration of cerebrospinal fluid (CSF) in the

respective patients was determined as the main cause of the

correlation between the administration of CAR T-cell therapy and

the development of neurotoxicity due to their migration (70).

Tremors, encephalopathy, headaches, hallucinations, confusion, and

seizures are some neurological complications that influence the

efficacy of CAR T-cell treatment (55, 70, 120). In a study by Turtle

et al. (84), the total escape of the neurological issue over time was

significant except for one fatality report.
1.11.4 Genotoxicity
CAR T-cells are manufactured by the transduction of

lymphocytes and viral vectors are utilized for the transduction

process. Such viral particles are the cause of insertional

mutagenesis (IM). When retroviral and lentiviral vectors transduce

hematopoietic stem cells, IM is seen, but to date, no genotoxicity has

been reported in differentiated cells through gene transfer (3, 121).

Similarly, patients treated with manipulated T cells did not indicate

any transformational event associated with retroviruses (122).

However, in a patient with ALL receiving CAR T-cell therapy, the

transduction of a leukemic B cell resulted in developing leukemia,

relapse, and prompt death (123). After CAR T-cell therapy, non-

melanoma skin cancer, bladder cancer, and myelodysplastic

syndrome are reported secondary malignancies, but in some cases,

the development of these malignancies is considered to be associated

with previous therapies (93, 95). Overall, a longer observation period

of almost 15 years will be required for CAR T-cell therapy toxicity
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data collection and evaluation, and the authorization of commercially

available constructs (3).

1.11.5 Musculoskeletal complications
CART-cell therapy is associated withmusculoskeletal complications

such as myositis and is characterized by muscle inflammation. CAR T-

cell infusion also elevates creatine phosphokinase (CPK) levels which

cause both weakness and muscle pain. Following CAR T-cell therapy,

myalgias associated with CRS is a common clinically adverse event that

influences the muscular system (55, 120).

1.11.6 Metabolic complications
After CAR T-cell therapy metabolic toxicities have been

recorded as a frequent complication in 60 patients by Wudhikarn

et al. (118). Hypophosphatemia, hypocalcemia, and hypokalemia

were common electrolyte abnormalities observed after CAR T-cell

Infusion. Hypoglycemia and hyperglycemia have also been reported

frequently [Penack and Koenecke, (109)]. However, such

complications are not persistent and can be managed.

1.11.7 Pancreatic complications
Complications observed in the pancreas after CAR T-cell

therapy should be considered. However, there are few published

reports on such toxicities in the literature. Pancreatic complications

have been described due to the development of pancreatitis in five

patients after the administration of CAR T-cell therapy (120).

1.11.8 Nephrotoxicity
Clinical syndromes causing acute kidney injury (AKI) are

characterized by low renal excretions caused by sepsis and the

aggregation of nitrogen-based metabolic products (55). This

toxicity has rarely been reported due to CAR T-cell adverse

events and has been found in stage 2 to 3 syndromes with renal

electrolyte imbalances and other renal toxicities (59, 120).
TABLE 3 Summary of CAR-T cell therapy, traditional treatment methods, associated challenges, and overcoming strategies.

Aspects CAR-T cell therapy Traditional treatment methods Studies

Advantages Long-term efficacy in some hematological malignancies (e.g.,
leukemia, lymphoma), and high specificity and
personalized approach.

Standardized protocols for treatment, broad
applicability, and immediate results in some cases

Irizarry Gatell et al. (127)
Qureshi et al. (128)

Disadvantages High cost of production, risk of severe CRS and neurotoxicity,
tumor relapse and antigen escape, and limited availability
and access

Lack of specificity, systemic toxicity, and
resistance and relapse in advanced stages

An et al. (129)
Brudno and Kochenderfer (4)

Challenges Cytokine release syndrome (CRS), CAR-T cell persistence and
manufacturing difficulties, neurotoxicity, and tumor antigen
escape (tumor heterogeneity)

Radiation therapy, Chemotherapy (e.g., cytotoxic
drugs), and Conventional immunotherapy (e.g.,
monoclonal antibodies)

An et al. (129)
Irizarry Gatell et al. (127)

Overcoming
strategies

Improvements in CAR-T design to increase efficacy and reduce
side effects (e.g., armored CARs).
Targeting tumor microenvironment to enhance CAR-T
persistence.
Use of “off the shelf” CAR-T cells.
CAR-T cell engineering improvements (e.g., co-
stimulatory domains).

Combination with immunotherapies to boost
efficacy.
Improved screening and monitoring for side
effects.
Dual targeting and checkpoint inhibition.
Enhanced targeting to reduce antigen escape.

An et al. (129)
Brudno and Kochenderfer (4)
Irizarry Gatell et al. (127)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1494986
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Umair et al. 10.3389/fonc.2025.1494986
1.12 How to avoid cascade complications

Avoiding cascade complications is important in cardiovascular

and pulmonary conditions, especially in subjects with comorbid

conditions where early evaluation and management are important.

Screening with echo, electrocardiography (ECG), and pulmonary

function tests (PFTs) is useful for identifying at-risk subjects in the

population.Where the patient has had prior heart failure, reduced left

ventricular ejection fraction (LVEF), or chronic obstructive

pulmonary disease (COPD), caution is needed during therapy, and

prior preventive actions are recommended (124). Steroid-induced

side effects are common in CAR T-cell therapy such as

musculoskeletal complications involving osteonecrosis and adrenal

suppression. The management process includes reducing the steroid

dose where possible and providing supportive care that includes

physiotherapy and pain control (125). For genotoxicity and related

effects, frequent blood count and genetic tests should be conducted

while for treatment of the genotoxicity, the treatment depends on the

severity of the effect and the type of genotoxicity. The possible side

effects of corticosteroids, including hyperglycemia, are controlled by

periodic modulation of corticosteroid doses and administration of

insulin if required. Pancreatic side effects, though rare, need

immediate intervention through the use of enzyme supplements

(126) and frequent blood sugar level checks. Molecular pathways,

including cytokine release syndrome, also cause nephrotic

complications and are addressed in terms of fluid and electrolyte

disorders. A summary containing information on the problems

related to CAR-T cell therapy, conventional therapy, the pros and

cons of the conventional approach, and approaches to address the

challenges is presented in Table 3.
2 Conclusion and future prospects

Treatment for several blood-related malignancies and their

associated off-target complications has been improved by CAR T-

cell therapy and achieved remarkable success, especially in relapsed or

refractory patients when prior therapies failed. Although CAR T-cell

therapy has established a remarkable image as a promising cytotoxic

therapeutic, according to our extensive data and historical review, it

also induces severe toxicities such as CRS, ICANS, TLS, HLH, B-cell

aplasia, GHVD, anaphylaxis, cytopenia, and coagulation disorders,

and some off-target complications such as cardiovascular,

musculoskeletal, pulmonary, metabolic, and pancreatic toxicities.

These unavoidable toxicities are significant hurdles that patients

encounter, which must be recognized early and sorted out swiftly.

The implementation of standardized grading systems such as those

offered by the American Society for Transplantation and Cellular

Therapy (ASTCT); conventional approaches; corticosteroids; fully

human generated CARs; etoposide, methotrexate, or intrathecal

cytarabine; the use of hypouricemic agents; and the inhibitory CAR

(iCAR) and synNotch receptor methods has been critical in improving

clinical management of CAR T-cell-therapy-associated toxicities. As

we learn more about the underlying mechanisms of CAR T-cell

therapy-associated toxicities so will the strategies to mitigate these

risks develop, leading to harmless and highly efficacious CAR T-cell
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treatments. Further research and progress regarding early detection,

precise risk stratification, and personalized interventions for these

toxicities are essential to broaden the lifesaving performance of CAR

T-cell therapy to a wider pool of patients while limiting toxicity.

Despite the current limitations of CAR-T cell therapy,

innovative approaches and streamlined research promise to

enhance its efficacy and safety. Initially, these limitations can be

tackled through careful dosing plans and innovative approaches

after a clear understanding of the mechanisms underpinning them.

Neurotoxicity, CRS, and cancer recurrence rates can be managed by

incorporating off switches, CARs, tandem CARs, and their

constructs. Gene editing innovations and artificial intelligence

integration are predicted to revolutionize CAR T-cell therapy

through manufacturing processes and optimizing target

identification. CAR-T efficacy is expected to be boosted through

the combination of therapies with immune checkpoint inhibitors

and other agents that exhibit synergistic effects. Despite these

innovations, its global adoption is restricted by limited availability

and high cost. However, its accessibility can be widened by reducing

manufacturing costs. Additionally, continuous monitoring, rapid

detection, and accurate intervention with supportive care and

prophylactic strategies are crucial for managing CAR T cell-

associated toxicities. Overall, the future of CAR-T cell therapy has

the capability of managing various toxicities provided that the costs

and limitations of toxicity management are effectively addressed.
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