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Background

Electronic Health Records (EHRs) contain a wealth of information about patients that could be useful toward improving treatment outcomes for breast cancer patients, but remain mostly unexploited. Recent methodological developments in deep learning, however, open the way to developing new methods to leverage this information to improve patient care.





Methods

We propose M-BEHRT, a Multimodal BERT for EHR data based on BEHRT, itself an architecture based on the popular natural language architecture BERT (Bidirectional Encoder Representations from Transformers). M-BEHRT models multimodal patient trajectories as a sequence of medical visits, comprising a variety of information such as clinical features, results from biological lab tests, medical department and procedure, and the content of free-text medical reports. M-BEHRT uses a pretraining task analog to a masked language model to learn a representation of patient trajectories from data that includes patients that are unlabeled due to censoring, and is then fine-tuned to the classification task at hand. A gradient-based attribution method highlights which parts of the input patient trajectory were most relevant for the prediction.





Results

We applied M-BEHRT to a retrospective cohort of about 15–000 breast cancer patients treated with adjuvant chemotherapy, using patient trajectories for up to one year after surgery to predict disease-free survival 3 years after surgery. M-BEHRT achieves an AUC-ROC of 0.77 [0.70-0.84] on a held-out data set, compared to 0.67 [0.58-0.75] for the Nottingham Prognostic Index (NPI) and random forests (p ¡ 0.05). In addition, we identified subsets of patients for which M-BEHRT performs particularly well such as older patients with at least one lymph node affected.





Conclusion

Our work highlights both the potential of EHR data for improving our understanding of breast cancer and the ability of transformer-based architectures to learn from EHR data containing much fewer than the millions of records typically used in currently published studies. The representation of patient trajectories used by M-BEHRT captures their sequential aspect, and opens new research avenues for understanding complex diseases and improving patient care.
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1 Introduction

Breast cancer is by far the most commonly diagnosed cancer among women (almost 2.3 million cases 31 worldwide in 2022) and the leading cause of cancer death worldwide (1).

Among the various treatment options, adjuvant chemotherapy is proposed to patients after first-line surgery to lower the chance that the cancer will return. It is a widely used treatment option, and is offered in many cases, unless the tumor was small, did not show sign of aggressiveness, and no lymph nodes were affected. However, recurrence or death are still possible. Accurately identifying the patients most likely to relapse is therefore important to inform both treatment selection and future research to propose better therapeutic options.

One of the most commonly used prognostic tools for breast cancer is the Nottingham Prognosis Index (NPI), which uses a combination of three clinical features (tumor size, tumor grade, and number of lymph nodes) and was proposed in 1982 (2). Since then, many authors have used statistical and machine learning algorithms to build breast cancer relapse predictors from clinical features; however NPI still seems to be the most robust criterion (3), despite its limitations.

In the quest for improving the future outcome of patients, there has been a growing interest over the years for including information besides clinical features into prognostic tools. These modalities include biological measurements (4), magnetic resonance imaging (5), ultrasound images (6), histopathological images or gene expression data (7). The papers cited show that combining different modalities improves prediction performance.

However, these modalities are not always available for all patients treated. For this reason, other authors have taken advantage of the considerable information present in medical reports that constitute the EHR of patients, using named entity recognition techniques to extract relevant terms from clinical notes (8, 9).

None of these methods account for the dynamic nature of EHR data, in which information is recorded at several points in time. Some early attempts at modeling sequences of medical events have consisted in adapting recurrent neural network architectures and in particular Long-Short Term Memory (LSTM) (10, 11) networks.

Since then, transformer-based models inspired by BERT (Bidirectional Encoder Representations from Transformer) (12), have been established as state-of-the-art for patient trajectories (13–17) as well as clinical text (18–20). Transformers have significantly outperformed previous methods on a large variety of Natural Language Processing tasks and continue to drive advancements in the field. Their superiority is explained by the use of self-supervised pretraining tasks, such as masked language modeling and next sentence prediction, which allows them to learn better representations of the data. These architectures have been successfully transposed to patient trajectories by seeing them as sequences of medical events rather than of words. To the best of our knowledge, however, none of these have considered data combining sequences of medical visits described not only by codes describing diagnoses, procedures or treatments, but also biological measurements, clinical features and free-text medical notes. We have also not found any work of that nature to date addressing cancer-related clinical outcomes, possibly because existing transformer architectures are typically trained on very large cohorts of millions of patients.

In this paper, we present several new transformer architectures for predicting clinical outcomes from multimodal EHR data, which consider patient trajectories as sequences of medical visits represented by both tabular data (clinical features, biological measurements, therapies, nature of the visit) and free-text medical reports. We evaluate our proposed method on the prediction of disease-free survival in breast cancer, on a cohort of several thousands of patients, and show how integrated gradients (21) can be used to interpret the learned model and identify text sequences that yield significantly different Kaplan-Meier curves. We pretrain the models on the equivalent of a masked language model, which can also be trained on records excluded from the classification training set because they were censored.




2 Materials and methods



2.1 Data

In this work, we used data extracted from the EHR system from Institut Curie in Paris (France). All data collected were pseudonymized. Additionally, individuals under 18 years of age, with a history of previous cancer, under guardianship, or unable to provide consent were excluded from this study. Every patient included in the study has completed and signed a research informed consent form. The study was approved by the Breast Cancer Study Group of Institut Curie and was conducted according to institutional and ethical rules concerning research on tissue specimens and patients.

We built a data base of 15–150 unique patients, treated with adjuvant chemotherapy for breast cancer between 2005 and 2012. The data base contains general descriptors of patients (such as age, sex, or weight) as well as information about each visit in their medical record: clinical information such as tumor size or cancer subtype, biological markers (tumor markers, counts of leukocytes and their subtypes) if they were measured, treatment information, and free-text notes. Finally, the patients are annotated with survival and recurrence information.

Free-text notes are unstructured narrative descriptions or notes entered by healthcare professionals. Unlike the structured data, which is organized into predefined fields, free text allows healthcare providers to input progress reports and relevant patient information recorded during patient journey, in a more natural manner. Free text reports from cytopathology or radiology also capture key information from medical images, as captured by experts. Those medical reports comprise free-text clinical notes for consultations, as well as free-text reports of cytopathology, radiology, surgery, and blood tests. All reports are written in French.




2.2 Preprocessing



2.2.1 Tabular data preprocessing

We first describe how we processed the structured or tabular, a.k.a structured, data describing each medical event for each patient.



2.2.1.1 Biological measurements

From biological measurements, we only kept features that have less than 30% of missing values: MONO, LEUK, LYMP, PN and CA 15-3. All numerical values have to be discretized to enable tokenization. We binarized biological measurements into two values: 1 if the value is outside the normal range for the biological measurement, and 2 otherwise. Supplementary Figure S1 in the Supplementary Material shows the distribution of biological measurements; the medical normal range of these biological features can be found in Supplementary Table S1 in the Supplementary Material.

In addition, we also computed the differences Δt = vt − vt−1 between the current visit’s biological value vt and the previous visit’s value vt−1. We then discretized the Δ values by dividing them by ten and rounding. This captures more subtle variations in biological measurements evolution than the mere abnormal/normal values.




2.2.1.2 Clinical information

From the clinical information, we included both longitudinal and non-longitudinal features: age, undergone therapies, and tumor size on the one hand, tumor grade and number of nodes involved at diagnostic as well as breast cancer molecular subtypes (Luminal, TNBC, HER2+/RH-, HER2+/RH+) on the other. Age is computed at each visit and discretized by rounding to the nearest integer. Descriptive statistics of the age, breast cancer subtype, grades, number of lymph nodes involved, tumor size and biological measurements are given in Supplementary Table S1 in the Supplementary Material.

We combined tumor size, tumor grade and the number of lymph nodes involved into the NPI (2), a commonly used, clinically relevant and robust prognostic tool (3). The NPI is computed as NPI = 0.2 × tumor size (cm) + tumor grade + lymph nodes stage, where the lymph nodes stage is computed as 1 (0 nodes), 2 (1 to 3 nodes) or 3 (> 3 nodes). The lower the score, the higher the chance of survival 5 years after surgery. The tumor size is measured at various points in the cancer journey. We kept for this study the clinical tumor size assessed at diagnosis when the tumor is palpable, and the pathological tumor size which is the histological size of the tumor extracted at the surgery. The NPI is recalculated with each new tumor size measurement, hence termed as the dynamic NPI (dNPI). For patients with at least one available feature among the three required for calculating the dNPI, we imputed missing tumor sizes using the mode value among samples of the same clinical or pathological tumor stage (TNM) status. The number of involved lymph nodes is the sum of the number of affected sentinel nodes and axillary nodes. We imputed missing number of nodes to zero and missing tumor grade to G2 (grade 2), based on the most frequent values in our data. The higher the dNPI, the lower the chance of survival.

Following Blamey et al. (22), we categorized dNPI into six prognostic groups (PG): Excellent (EPG) (NPI ≤ 2.4), Good (GPG) (2.4 < NPI ≤ 3.4); Moderate I (MPG I) (3.4 < NPI ≤ 4.4), Moderate II (MPG II) (4.4 < NPI ≤ 5.4), Poor (PPG) (5.4 < NPI ≤ 6.4) and Very Poor (VPPG) (NPI > 6.4).

As tumor grade and number of nodes are combined with the dynamic tumor sizes into the dNPI, the only static feature we consider is breast cancer subtype. Nevertheless, the algorithm we propose can handle any number of static features.

Because M-BEHRT can handle missing values (see Section 2.3.1), we did not impute missing values for longitudinal features. However, for the baselines, we opted to impute the tumor size, number of nodes, grades and cancer subtype by an aberrant value of 999. Using an aberrant value allows the model to explicitly identify and differentiate imputed values from the actual data, by analogy with not locating a token within a sentence when using M-BEHRT.




2.2.1.3 Therapies, department and procedure

Therapies are inferred by considering the occurrence date for the surgery, the start and end dates for hormone-therapy, chemotherapy and anti-HER2 treatment, and the number of doses administered for the radiotherapy. This inference incorporates the therapeutic protocol of Institut Curie (see Supplementary Figure S2 in the Supplementary Material). Subtherapies, also inferred from this protocol, provide additional information about the specific molecules given in the case of chemotherapy or anti-HER2 therapy, radiation types in the case of radiotherapy, and specific surgical procedures including both breast and axillary surgeries. A list of all possible values for the therapies and subtherapies fields is given in Supplementary Table S3 in the Supplementary Material.

Finally, medical visit department and procedure names are available within the headers of free-text reports. We normalized department and procedure names by removing accents, punctuation and special characters. We merged synonyms into a single word: for example, anapath, anatomopathologie and anatomo-cyto-pathologie are merged into anatomo-cyto-pathologie (anatomical cytology in English). To do so, we sifted through the corpus vocabulary, identifying and unifying synonyms and/or differently written terms to enhance coherence of the medical history. We also removed words that appear fewer than 100 times in the whole corpus.




2.2.1.4 Disease-free survival at 3 years

Finally, we defined a binary classification task by labeling each patient with whether they had survived disease-free 3 years after the surgery.

We retained patient history up to one year after first surgery and starting from 6 months before the breast cancer diagnosis. Out of 15–150 patients, we removed 206 patients who relapsed before the index date, as learning would be biased by the presence of information directly pertaining to a known relapse. In order to formulate the learning task as a classification problem, we also removed 6–855 patients for which the date of latest news occurred earlier than 3 years after the first surgery. This is depicted in the flowchart in Figure 1.

[image: Flowchart depicting patient inclusion and exclusion for the pretraining and classification tasks. For the pretraining, AC treated patients from 2005 to 2012 total 15,150, with 12,084 for training and 3,021 for validation. For classification, 14,944 patients remain after removing 206 patients with DFS under 1 year, and after excluding 6,855 censored patients before 3 years, 8,089 patients remain. These are divided into training (6,055), validation (1,514), and test (520) sets.]
Figure 1 | Flowchart of study inclusion and exclusion.

All patients had at least 3 visits in their medical history. This results in 8–089 patients, with 6.2% having a negative disease-free survival (DFS) status. This makes for a heavily imbalanced data set, which will require using appropriate techniques to avoid biasing models in favor of the overrepresented class.

For the evaluation of our models, we held out a test set containing 520 patients, with a proportion of negative samples (6.1%) similar to that of the whole data set. For pre-training tasks requiring no labels (see Section 2.3.2), we used all patients and their full history.





2.2.2 Free-text reports preprocessing

Free-text reports represent unstructured textual descriptions of medical information recorded by medical experts. They can be clinical notes, that is to say, information recorded during patient encounters with clinicians, or reports made by specialists (laboratory biologists, radiologists, histopathologists) to interpret the results of medical exams. The average number of visits, reports, and words per report in our data are given in Supplementary Table S1 in the Supplementary Material.

Unlike tabular data, that is recorded in a standardized way at least within a hospital, medical reports are highly variable, as they allow each healthcare provider to be distinctive in format, style, or terminology. Moreover, the semantic related to the medical field is complex, using abbreviations, acronyms, and medical jargon (23). Therefore, in addition to common NLP preprocessing steps (normalization, removal of noisy entities, adverbs, stopwords and text delimiters), our text preprocessing pipeline includes steps that are specific to medical reports. The full text preprocessing pipeline is described on Supplementary Figure S3 in the Supplementary Material, and we describe in Text S1 in the Supplementary Material the steps that are specific to clinical text.





2.3 Multimodal BEHRT

Information retrieved from EHR are generally time stamped events. In this study, this information is organized as structured or tabular data (for numerical values) collected over time, along with a series of free-text medical reports throughout the patient’s journey. As in Natural Language Processing, EHR can be transformed into sequences of tokens, where each token represents a unit of information from the EHR rather than a linguistic unit. These sequences can then be fed into language models such as transformers (24). This was first proposed by Li et al. (13), who introduced BEHRT (BERT for EHR), an architecture based on that of BERT (Bidirectional Encoder Representations from Transformers) (12) to predict future conditions from a sequence of diagnoses.

Here we propose Multimodal-BEHRT (M-BEHRT), which combines two transformer-based deep learning models of architecture inspired by BEHRT’s: Tabular BEHRT and Text BEHRT. Tabular BEHRT considers that each medical visit is described using structured data: the department in which it took place, the corresponding procedure, as well as clinical and biological measurements available at this time. Like BERT and BEHRT, Tabular BEHRT combines a pre-training task (Masked Language Model) with a downstream task (the classification task), but applies it to a multimodal EHR tabular dataset. Text-BEHRT considers that each medical visit is represented by a free-text medical report. Text BERT uses adapted pretrained embeddings to build a sequence that serve as input for the classification task. M-BEHRT is a meta-model that combines Tabular BEHRT and Text BEHRT through a cross-attention module (25).

In what follows, we first describe how we construct patient trajectories (Section 2.3.1 from multimodal tabular data (Section 2.3.1.1) as well as free-text reports (Section 2.3.1.2). We then describe in Section 2.3.2 the self-supervised approach used for learning embeddings of multimodal patient trajectories, and in Section 2.3.3 the architecture we propose for the binary classification of patient trajectories. Finally, we describe the baselines used to evaluate our models in Section 2.4.



2.3.1 Multimodal sequence construction



2.3.1.1 Patient trajectory representation from structured data

By analogy with Natural Language Processing data, a patient’s history can be seen as a document, where visits serve as sentences, and the events within the visits act as tokens. In our final data, the medical sequence consists of a sequence of visits that are chronogically ordered.

We used dates from the medical reports to construct medical chronological sequences. Each visit is described by the specific department and procedure from which the report originates, which contextualizes additional features, which are incorporated as available.

As illustrated on Figure 2A, each visit is therefore described by at most 17 features: biological measurements that include binary values and deltas of measurements of the 5 biological markers, the medical department where the visit took place, the type of procedure the visit corresponded to, the therapy and sub-therapy administered, the patient’s age, the dNPI and the breast cancer subtype (which is static but repeated at each visit).

[image: Diagram illustrating the M-BEHRT architecture across five panels. Panel A shows one mock patient trajectory obtained from tabular data. Each visit is described by 5 lines of tokens: inputs, modalities, delays, segment and position. Panel B depicts one mock patient trajectory obtained from free-text reports similarly as in Panel A, but here input tokens alternate between CLS and medical reports embeddings which are obtained by summing DrBERT tokens. Panel C details the Tabular BEHRT architecture, featuring pretraining by masked word prediction using a cross-entropy loss, and classification achieved with BCE with logits loss. Panel D presents the Text BEHRT architecture for classification, which also uses BCE with logits loss. Panel E presents the M-BEHRT architecture, which integrates Tabular BEHRT and Text BEHRT with a cross-attention module for prediction.]
Figure 2 | M-BEHRT architecture. (A) representation of patient trajectory using tabular data. (B) representation of patient trajectory using free-text reports. (C) architecture of Tabular BEHRT (learning from patient trajectories represented from tabular data as in Panel A). (D) architecture of Text BEHRT (learning from patient trajectories represented from free-text reports as in Panel B). Panel architecture of M-BEHRT, learning from both representations by combining Tabular BEHRT and Text BEHRT with cross attention.

A separate modality layer indicates what kind of feature each measurement corresponds to. Generally speaking, this could be set to simply indicating the modality (biological, clinical, visit), but here we chose to be specific and encode the feature name. This allows us in particular to deal with missing values, which can simply be skipped as the modality layers provides the information of what feature is at each position. The modality layer allows the algorithm to treat each modality differently.

As in BERT and BEHRT, a sequence of visits starts with the special token CLS, and visits are separated with the special token SEP.

Whereas BEHRT captures temporal information by including the age of the patient in a separate layer, we kept age as other clinical descriptors in the main input layer, but added another special embedding layer that represents the delay between the next visit and the previous. We discretized delays, as in Pang et al. (14), into W0-3 (under 1, 2, 3, or 4 weeks) for delays shorter than 4 weeks, M1-12 (under 1 month up to under 12 months) for delays shorter than a year and LT (long term) for delays longer than a year.

One of the notable constraints in BERT-like models is token capacity: they process tokens in fixed-size sequences of at most 512 tokens. While this size is arbitrary and varies depending on the exact BERT architecture and implementation, it cannot take much larger values, as it is linked to the memory usage of the self-attention mechanism of BERT, which grows quadratically with the number of tokens (each token being attentive to every other token). There is therefore a tradeoff between the number of features/tokens used to describe each visit, and the number of visits that can be considered. This is alleviated by the exclusion of both missing values and biological delta values equal to zero (corresponding to an absence of change in measurement), which is possible as the modality layer informs the architecture as to the kind of feature each token corresponds to. In practice, if the patient trajectory still exceeds 512 tokens, we only consider the first 512 tokens, which represent the initial interactions of the patient with the healthcare system, and inform about initial diagnostic visits and treatment decisions. Indeed, although the last 512 might contain more relevant information, a predictive model that makes use of early information and can detect factors predictive of relapse among these initial events has more clinical value. Supplementary Figure S4 in the Supplementary Materials shows how much information is excluded from patient trajectories due to restricting data to the 512 first tokens.

Figure 2A illustrates this representation of patient trajectories based on tabular data.




2.3.1.2 Patient trajectory representation from free text

In addition, we assume that important information is contained within the text itself of the free-text reports. We therefore build a sequence of free-text reports, ordered chronologically from the date of the diagnosis until the index date (one year after the first surgery). As shown in Supplementary Table S2 in the Supplementary Material, the number of reports per patient and the length of each report are such that these create very long documents (on average 34 reports, averaging 159 words each, for a total of more than 5–000 words per patient history). However, while BERT has proven to be highly effective in capturing contextual relationships and semantic nuances in text, it can only process sequences of at most 512 tokens, due to the memory footprint of the self-attention mechanism.

This constraint again poses challenges when dealing with lengthy documents such as a sequence of medical reports (26). Using transformers to classify long documents is still a topic of open research (27). The most straightforward approach consists in truncating inputs to fit within the allowed number of tokens, typically by using the first, last or middle tokens. However, limiting patient history to 512 tokens may result in major information loss and hence produce incomplete representation of medical reports. Other approaches such as Big Bird (28) or Nystromformer¨ (29) use sparse or low-rank approximations of the self-attention matrices. However, existing pretrained models typically do not handle more than 4–096 tokens, which is still too short for some of the patients in our data set. In addition, they have only been trained on English corpora whereas our medical notes are in French. Nevertheless, our corpus is much too small to train a transformer model from scratch. Finally, many approaches consist in dividing long text into chunks smaller than 512 tokens and combining their embeddings, whether through an additional layer of self-attention in a hierarchical model (30) or by pooling (31). In the absence of a clear consensus on which of these strategies is likely to perform best (27, 31), we chose here to use a simple aggregation strategy. More specifically, we construct the embedding of every report by summing the embeddings of all tokens it contains, and construct sequences not of token embeddings, but of reports embeddings.

We obtain token embeddings from DrBERT (32), a state-of-the-art transformer model, based on the RoBERTa architecture (33) and trained on a French biomedical corpus which contains 7GB of clinical data from multiple sources. We can then train a BERT model on the sequences of reports embeddings. To account for temporality, we add an embedding layer of delays between reports. Finally, we use BERT special tokens: CLS for the start of a medical history and SEP to separate reports from different visits. This representation is illustrated on Figure 2B.





2.3.2 Pretraining task

To improve the embeddings of patient trajectories built from structured data, we follow the example of BEHRT and pre-train a Masked Language Model (MLM) on the representations described in Section 2.3.1.1.

As in Natural Language Processing, the MLM is designed to predict missing or masked tokens within a patient’s history, using the bidirectionaly context provided by the surrounding tokens. Its goal is to learn contextual representation of the medical events in the patient’s history. For this purpose, in this pre-training phase Tabular-BEHRT uses the whole cohort of 15–150 patients and the entire sequence of events for each patient, from the date of diagnosis to the date of death or censorship, with a length average of 506(± 466) tokens. We randomly replaced 15% of the tokens with a special MASK token. We swapped another 2% with another token at random; this adds a limited amount of noise, encouraging the model to learn a more robust and generalizable representation of patient trajectories. As shown on Figure 2C, the MLM part of M-BEHRT is a transformer-based architecture that generates probabilities for each token in the vocabulary, computed using softmax over the model’s output logits, as a multilabel learning task.

We first split the dataset into a training (90%) and a validation set (10%) in order to prevent overfitting. Then, all the embeddings from the training set are randomly initialized and fed to the MLM. We use Bayesian optimization to find the best set of hyperparameters, with precision (proportion of masked tokens correctly predicted) as a criterion. For robustness, we run the model five times with five different random seeds for the sequence masking, and use as final token embeddings for the downstream classification tasks the mean values of standardized embeddings from these five runs.

The pretraining task solely concerns tabular data, to establish effective representations of tabular events within the patient trajectory. For text data, running an MLM on the whole medical corpus would require more computational resources than available.




2.3.3 Binary classification

We now describe the architecture of M-BEHRT, a deep neural network to learn binary classifiers from patient trajectories. M-BEHRT is the combination of two architectures: Tabular BEHRT, which learns from patient trajectories built from structured data; Text BEHRT, which learns from patient trajectories built from free text.

Tabular BEHRT consists in using labeled data to fine-tune for classification the network obtained by pre-training on patient trajectories built from structured data. As shown on Figure 2C, only the last layer is different between pre-training and fine-tuning: here the patient history embeddings are fed to a single feed-forward layer with sigmoid activation.

The architecture of Text BEHRT is illustrated on Figure 2D. It is again a transformer-based model, which uses report embeddings obtained through the aggregation of DrBERT embeddings as described in Section 2.3.1.2. The same sampling strategy as the one depicted in the previous section is used for this task.

Finally M-BEHRT combines information from tabular data and free-text reports by integrating Tabular BEHRT and Text BEHRT using a cross-attention module (25). The cross-attention module extends the capabilities of traditional transformer architectures to handle multiple data modalities in a unified framework. Hence M-BEHRT is expected to harness the complementarity of the information encoded in different modalities to improve predictive power.

As shown on Figure 2E, logits from structured data trajectories and the text trajectories are computed using their respective models. The cross-attention layer calculates attentions with the logits as key, value and query. Logits from Text BERHT used as query interact with logits from Tabular BERHT that represent key and value. Note that we could swap the roles of Text BEHRT and Tabular BEHRT here, using logits from Tabular BEHRT as query and logits from Text BEHRT as key and value, but this led to worse performance in practice. The loss is backpropagated to the cross-attention module. To do so, logits must have same size. Therefore, logits from Text BEHRT are first fed through a single feed-forward layer to obtain an embedding of the same size as logits from Tabular BEHRT.

To alleviate computational burden and following the observation made in other contexts that this does not significantly harm performance ()?, we freeze the Tabular BEHRT and Text BEHRT modules, and only tune the cross-attention module.

Because our training data is heavily imbalanced (6.2% negative examples only), we implemented a class-aware sampling strategy, in which each batch is made to contain the same number of positive and negative samples by sampling with replacement for the minority class. This sampling strategy allows us to train on balanced batches.





2.4 Comparison baselines

To evaluate our models, we developed several comparison baselines. The first is the NPI measured at the date of diagnosis, a tool that is currently used in the clinic to predict prognosis. In addition, we developed baselines using classical machine learning methods: random forests classifiers (RF), logistic regression (LR), and support vector machines (SVM). These machine learning models (RF, LR and SVM) use the same input data as M-BEHRT, but cannot directly use sequential information. For dynamic tabular data (procedure name, department name, binarized biological measurements), sequences of events are transformed into number of occurrences of events. Clinical features (age, therapies, tumor size, tumor grade, breast cancer molecular subtype and number of nodes) are kept static, using their values at the time of diagnosis. Regarding free-text reports, we created a table where each feature of the report embeddings (of 768 dimensions) becomes a column. We imputed missing values with zero (0) for both of the inputs. For M-BEHRT, outputs from tabular data baselines and from text data baselines (specifically their logits) constitute inputs to a secondary model (meta-model) which makes the final prediction.

To address class imbalance, which might bias the model toward the majority class, we used a cost-sensitive learning strategy, in which training samples are assigned a weight inversely proportional to the frequency of their class in the loss function (logistic loss for LR, Gini impurity for RF, and hinge loss for SVM).




2.5 Model selection

For model selection, we split the training data (8–289 patients, excluding the held-out data set of 520 patients) into a training and a validation sets (respectively 90% and 10% of the data). For each method, we use Bayesian optimization (34) to find the optimal set of hyperparameters, using the Average Precision Score (APS) on the validation set as a performance criterion.




2.6 Computational resources

We used Python to code models and analyses pipelines for this study, in particular scikit-learn (35) for the classical machine learning models, hyperopt (34) for Bayesian optimization, spaCy (36) for natural language processing tasks, and PyTorch (37) for the implementations of Tabular BEHRT, Text BEHRT and M-BEHRT, which are built on that of BEHRT (13). The masked language model and DFS classification model were computed on NVIDIA A40-46GB Graphical Processing Units (GPU).

Finally, our code is available at https://github.com/maguettemb/Multimodal-BEHRT.





3 Results



3.1 Patient trajectory embeddings



3.1.1 Tabular patient trajectory embeddings

We first focus on the Masked Language Model (see Section 2.3.2) and evaluate the quality of the patient trajectory embeddings learned during the pre-training phase of Tabular BEHRT.

The optimal hyperparameters we identified for the MLM are 5 hidden layers with 12 attention heads, a hidden size of 144, an intermediate layer size of 133, a training duration of 120 epochs, using Adam optimizer with a learning rate set to 1e-3 and a batch size of 64.

To assess the ability of the MLM to provide meaningful embeddings, we ran the model five times with five different random seeds for the sequence masking. We also computed a baseline by running the MLM on a data set in which tokens have been randomly reordered within each sequence. This approach disrupts the inherent sequential structure of the data, and creates a scenario where the model should not be able to rely on contextual relationships between tokens. Hence, comparing the MLM embeddings on shuffled sequences against those on original sequences offers a benchmark for assessing the impact of contextual information on the model’s predictive capabilities.

One way to evaluate embedding quality is to measure the MLM’s precision (proportion of correctly predicted masked tokens), which we report for both models on the held-out validation set on Supplementary Figure S5 in the Supplementary Material. The MLM is able to predict masked tokens with a precision of 72% on the validation set, a performance that is not significantly different from the one on the training set, highlighting the absence of overfitting. In addition, this precision is significantly higher than the precision of 55% obtained when shuffling the sequences, which shows that the MLM does indeed capture contextual information. We also note that the precision of the MLM of BEHRT reported by Li et al. (13) on sequences of diagnoses is of 66%. While it is difficult to compare this performance to ours due to the different nature of the tasks, it indicates that the MLM provides embeddings of sufficient quality to perform supervised learning in a second stage.

We further evaluate embeddings generated by the MLM by visualizing token embeddings through two-dimensional plotting along the first two components of a t-distributed Stochastic Neighbor Embedding (t-SNE) as shown on Figure 3. This figure shows how the MLM capture semantic relationships between tokens and contextual information. Tokens belong to the same modality (therapies, variation in biological features, breast cancer subtypes) tend to cluster together, with the exception of procedures and departments, which tend to be mixed together. This is however unsurprising, as some procedures and departments are tightly linked; for example, panel F shows that the embedding of the “nuclear medicine” service is quite close to the embeddings of “radiology”, “scanner” and “MRI” procedures, while panel D shows that the embedding of the “radiotherapy” service is quite close to the embeddings of several procedures all relating to the proposal, prescription, initiation, unfolding and ending of treatment by radiotherapy.

[image: Scatter plot showing a t-SNE visualization of token embeddings, colored by categories (departments, procedures, biological features: deltas, biological features: normal range, age, BERT tokens, BC subtypes, therapies, dNPI). Points of the same color tend to cluster together. Panels A-F show zoomed views of each cluster with data points labeled by the actual value of the token, allowing to see in more details examples of tokens that are close together.]
Figure 3 | t-SNE of Tabular BEHRT tokens embeddings as learned by the Masked Language Model. (A–F) zoom in on specific section of the plot. (A) corresponds to a cluster of deltas in biological measurements. (B) shows that age tokens cluster together. (C) shows that therapy token, on the one hand, and breast cancer subtypes, on the other, cluster together. (D, F) show two different clusters of procedures and departments. (E) show that dNPI tokens cluster together, as well as BERT special tokens.




3.1.2 Medical reports embeddings

We first evaluate the quality of the medical reports embeddings obtained by pooling tokens embeddings extracted from DrBERT by visualizing them after their projection into a 2D space using t-SNE. The proximity of reports within this space corresponds to their semantic similarity. As shown in Figure 4, this visualization provides a comprehensive overview of the clustering patterns, demonstrating the potential of DrBERT embeddings in representing French medical text data.

[image: Scatter plot showing a t-SNE visualization of medical reports embeddings, colored by report type (e.g. mammography, ultrasound, scintigraphy, hospitalization, surgery, auscultation, citology, MRI, etc.). Points of the same color tend to cluster together. 4 rectangles numbered A to D are zoomed-in parts of the image, confirming that points of the same color tend to cluster together.]
Figure 4 | t-SNE of Text BEHRT medical reports embeddings. Each panel correspond to a different departments’ reports with similar information, cluster together.

This figure shows clusters of reports written in the same departments. Additionally, it display proximity between clusters that arise from similar departments. The Panel A groups all reports associated with radiology, including “mammography”, “MRI”, “ultrasound”, or “scintigraphy”. The same pattern is observed in Panel D, which contains the “generic” reports as those related to “discharge”, “external care” or “information”, and in Panel B, with clusters relating to cytology (“anatomocytopathology”, “cytology”). Lastly, Panel C displays reports from various departments positioned closely together.





3.2 DFS prediction



3.2.1 Comparison of M-BEHRT with baselines

We report on Figure 5 the ROC curves on the test set of M-BEHRT trained with optimal hyperparameters (see Section 2.5; learning rate of 10−3, batch size of 64, Adam optimizer, 6 epochs of training), as well as of the comparison baselines described in Section 2.4.

[image: ROC curves illustrating the performance of five classification models (M-BEHRT, NPI, random forest, logistic regression and SVM), with confidence intervals shaded. The M-BEHRT curve starts above all others at the lower left corner, and remains above the others for the whole range of false positive rates. The AUC of the 5 methods are given with confidence intervals, showing that M-BEHRT, with an AUC of 0.77 and a confidence interval of 0.70 to 0.84, is above all other methods, for which confidence intervals reach at best 0.76 for NPI and 0.75 for random forests.]
Figure 5 | ROC curves M-BEHRT with the baselines for the prediction of disease-free survival 3 years after surgery, on the test set.

Figure 5 shows that all methods perform significantly better than a random classifier (AUC-ROC of 0.5). Moreover, M-BEHRT outperforms all comparison machine learning models (Table 1).


Table 1 | AUC scores comparison for M-BEHRT and the baselines for the prediction of disease-free survival 3 years after surgery, on the test set.
	Models
	AUC scores



	M-BEHRT
	0.77
[0.70 − 0.84]


	NPI
	0.67
[0.58 − 0.76]


	Random Forests
	0.67
[0.58 − 0.75]


	Logistic Regression
	0.61
[0.52 − 0.71]


	SVM
	0.61
[0.55 − 0.72]





M-BEHRT significantly outperforms the other methods (DeLong test in Supplementary Figure S6 in the Supplementary Material).






3.2.2 Ablation study

To better understand the contribution of each modality to the performance of M-BEHRT, we first compared it to the individual performance of its components Tabular BEHRT and Text BEHRT. Figure 6 reports ROC curves for all three approaches, on the test set. The optimal hyperparameters for Tabular BEHRT were a learning rate of 10−4, a batch size of 16, Adam optimizer, and 5 epochs of training; for Text BEHRT they were a learning rate of 5.10−4, a batch size of 32, Adam optimizer, and 99 epochs of training.

[image: ROC curves illustrating the performance of Tabular BEHRT, Text BEHRT and M-BEHRT, with shaded zones showing confidence intervals. The Tabular BEHRT curve starts above the others in the lower left corner but the M-BEHRT curve quickly catches up with it. The three curves are close to each other, with shaded areas overlapping. The AUC of the 3 methods are given with confidence interval, showing that M-BEHRT, with an AUC of 0.77 and a confidence inteval of 0.70 to 0.84, is slightly better than the two other methods, with AUCs of 0.75 and confidence intervals ranging from 0.66 to 0.83 for Tabular BEHRT and 0.68 to 0.81 for Text BEHRT.]
Figure 6 | ROC curves comparing Tabular BEHRT and Text BEHRT against their combined model MBEHRT for the prediction of disease-free survival 3 years after surgery, on the test set.

Although they use different information, Tabular BEHRT and Text BEHRT achieve similar performance on both tasks, highlighting that Text BEHRT can capture relevant information in unstructured medical reports. The combination of both models through cross-attention slightly improves their respective performance, demonstrating the synergistic effect of integrating the strengths of both Tabular and Text BEHRT into a single unified model.

We also performed an ablation study to better understand the contribution of each tabular modality to the performance of Tabular BEHRT. First, Supplementary Figure S7 in the Supplementary Material shows the ROC curves of Tabular BEHRT with and without pre-training, showing that pre-training does improve the performance of the model. Figure 7 shows the areas under the ROC curves obtained on the test set when removing some of the modalities from Tabular BEHRT. This figures shows that dNPI contributes the most to the performance. However, the addition of the other features, in particular the remaining clinical features (including age and more notably therapies), increases performance substantially. Biological features contribute the least to performance, although they still contain information, as they allow for better-than-random prediction. However, it seems that this information is redundant with that captured by the other features. Performance also drops substantially if information about the nature of the medical visit (department and procedure) is omitted. These observations are consistent across both tasks.

[image: Bar chart showing one line per model. The longest bars are obtained by the full model and by the model excluding biological features, with AUCs of 0.75 and similar error bars ranging from above 0.65 to about 0.83. A comparable performance is obtained for clinical features + dNPI (AUC of 0.74, error bar ranging from above 0.65 to slightly above 0.82). The shortest bar is obtained for the biological features alone, with an AUC of 0.56 and an error bar ranging from below 0.5 to about 0.65.]
Figure 7 | Ablation studies AUC-ROC on the test set for Tabular BEHRT. We present results for the full model (Tabular BEHRT), then using only one of the 4 modalities (dNPI, clinical features, biological features, medical visits), two modalities (dNPI+clinical or biological+visits), then removing one of the 4 modalities. Here “medical records” stands for features extracted extracted from the medical record headers, that is to say, visit department and procedure. Performance scores are presented on the test set.

We also provide in the Supplementary Material a comparison of Tabular BEHRT with baselines that only make use of tabular information (Supplementary Figure S8 in the Supplementary Material) and a comparison of Text BEHRT with baselines that only make use of text information (Supplementary Figure S9 in the Supplementary Material). In both cases, the transformer-based approaches outperformed all comparison partners.




3.2.3 Performance of M-BEHRT per cancer subtype

Figure 8 presents the AUC-ROC of M-BEHRT on the test set, stratified by patient age, tumor grade, molecular subtype, or node status. M-BEHRT is better at predicting DFS at three years on older patients, with at least one affected lymph node. Stratification of results by NPI range is available on Supplementary Figure S10 in the Supplementary Material.

[image: Forest plot showing high AUC scores for HER2+ and TNBC subtypes (with AUC scores of 0.85 and confidence intervals ranging from respectively 0.74 to 0.96 and 0.73 to 0.97), however with very few samples from the negative class (81 vs 5 for HER2+ and 47 vs 6 for TNBC). Aside from those, the best performance are obtained for patients aged at least 50, and Grade II cancers. The worst AUC score, of 0.59 with large error bar, is obtained for Grade I cancers, only 2 of which have negative status.]
Figure 8 | AUC-ROC of M-BEHRT on the test set stratified by patient age, cancer grade, molecular subtype and node status.




3.2.4 Model interpretation

To better understand the predictions of M-BEHRT, we used the CAPTUM (38) implementation of the integrated gradients (IG) method (21) to attribute the predictions of either Tabular BEHRT or Text BEHRT to their input features. This allows us to highlight, for a given input sequence of visits, the elements that contributed to the label.

Overall, Tabular BEHRT mainly uses NPI tokens to correctly identify relapse or death for samples from the poor prognosis groups (VPPG and PPG), or to correctly identify DFS for patients from the good prognosis groups. What is more interesting, however, is to look at the tokens that Tabular BEHRT uses to accurately predict relapse or death for samples from the good and moderate prognosis groups, as they might provide critical insights into the aggressiveness and progression of the disease. They point toward having a high number of multidisciplinary consultation meetings (“RCP” in French), a high number of consultations overall, a second surgical procedure (within one year of the first one), or abnormal values for the CA15–3 and the LYMP biological markers. Moreover, Tabular BEHRT uses well-documented factors in the literature to predict a positive DFS status such as age.

The interpretation of Text BEHRT’s predictions shows that the model mostly relied on the entire sequence of the reports from the diagnosis to the index date to make its prediction, which is represented by the CLS token. We found this pattern in many true positive (correctly identifying death or relapse) samples. Moreover, Text BEHRT relies on reports that show information regarding the characterization of a suspicious tumor, but this is not in and of itself indicative of a future relapse.

Finally, in order to gain a more global understanding of the model, we investigated the most predictive reports for a positive DFS status and for a negative DFS status. We set a threshold regarding the given attribution for each medical report. We collect all the reports with an attribution above this threshold. This yielded 921 reports that are predictive for negative DFS status in the entire corpus, and 1–720 reports that are predictive for positive DFS status. For each reports collection, we determined the 30 most frequent sequences (of 3 to 9 words) for both groups. We then listed the most frequent sequences for the DFS negative group that are not found in the DFS positive group. The resulting sequences of words can be found in Table 2.


Table 2 | Most frequent sequences found in reports with high attribution for DFS- (relapse/death) instances but not for DFS+ instances, in Tabular BEHRT.
	Sequence meaning in English
	Description



	Breast in partial involution with less than 50% glandular tissue
	Adipose involution is a natural process where glandular tissue is gradually replaced by fat tissue, often as a result of aging or hormonal changes. Here, the glandular tissue makes up less than half of the total breast composition. While age is a risk factor for breast cancer, lobular involution is associated with a reduced risk of breast cancer (39, 40).


	Previous treatment with human growth hormone, without risk factors for CJD
transmission
	Treatment with human growth hormone can lead to the transmission of Creutzfeldt-Jakob disease (CJD). This information is a medical administrative criterion checked before surgery.


	With axillary lymphadenectomy
	Until recently, axillary lymph node dissection was standard procedure in the case of involvement of lymph node in breast cancer, one of the main known risk factors for relapse or death (41).


	Palpable mass
	Palpable breast lumps are the most common presentation of breast disease.


	Solu-Medrol, 80mg
	Solu-Medrol is one brand name for methylprednisolone, a corticosteroid used in BC to manage the side effects of taxane-based chemotherapy (42).


	Lovenox 0.4 mL
	Lovenox is one brand name for enoxaparin sodium, a low molecular weight heparin used as anticoagulant medication. It is used to prevent and treat venous thromboembolisms, for which cancer patients are at higher risk (43).







Some of these sequences were obtained by combining overlapping sequences. We then plotted Kaplan-Meier survival curves to compare patients that have reports containing one of these sentences and patients that do not. DFS is the event and the log-rank test is used to compare the populations. We show here two such curves, corresponding to sentences showing the most significant sequences: Figure 9 is for a sequence that translates to “breast in partial involution with less than 50% glandular tissue and Figure 10 is for a sequence that translates to “axillary lymphadenectomy”.

[image: Two Kaplan-Meier survival curves showing survival probability against time in months, one for patients with the phrase “breast in partial involution with less than 50% glandular tissue” in their reports and the other for patients without that phrase in their reports. Both lines decrease over time, with the presence of the phrase corresponding to consistently lower survival probabilities. A p-value of less than 0.0001 indicates a significant difference between the groups. Numbers at risk are displayed below the graph at time intervals: 12477 without the phrase vs 2662 with at 0 months, 4983 without vs 714 with at 50 months, 767 without vs 68 with at 100 months, and 23 without vs 2 with at 150 months.]
Figure 9 | Kaplan-Meier survival plots for the sequence: “sein en involution adipeuse partielle avec contingent glandulaire inferieur a 50”, (breast in partial involution with less than 50% glandular tissue), Present or Absent in patients reports.

[image: Two Kaplan-Meier survival curves showing survival probability against time in months, one for patients with the phrase “axillary lymphadenectomy” in their reports and the other for patients without that phrase in their reports. Both lines decrease over time, with the presence of the phrase corresponding to consistently lower survival probabilities. A p-value of less than 0.0001 indicates a significant difference between the groups. Numbers at risk are displayed below the graph at time intervals: 9901 without the phrase vs 5238 with it at 0 months, 4500 without vs 1197 with at 50 months, 730 without vs 105 with at 100 months, and 21 without vs 4 with at 150 months.]
Figure 10 | Kaplan-Meier survival plots for the sequence: “lymphadenectomie axillaire”, (axillary lymphadenectomy), Present or Absent in patients reports.

For the first example (Figure 9), the survival curves suggest that patients with this feature are most likely to relapse than others. This feature defines a specific state of breast tissue where the glandular tissue is replaced by adipose tissue. This process naturally occurs with aging and after menopause. Therefore, this feature could have an impact on DFS simply because it is related to the patient’s age, which is already a prognostic factor. However, when compared with 2 age groups (see Supplementary Figure S11 in the Supplementary Materials), it added more information on the survival than just > 50 years old and< 50 years old. Young patients with this feature represent the worst prognostic groups.

Although mammary involution is not a commonly used prognostic factor, several studies have showed a link between involution and breast cancer risk (39, 40); the underlying biological process could maybe also explain a heightened risk of relapse in young patients presenting abnormal mammary involution.

The second plot (Figure 10) compared a population with the feature “axillary lymphadenectomy” and a population without. This feature is a mention of removing lymph nodes from the armpits. This information is associated with the potential affection of axillary nodes, which is found to be predictive for BC relapse.






4 Discussion

In this paper, we proposed several novel deep learning architectures inspired by BEHRT to model patient trajectories using multimodal data extracted from EHRs. As the original BEHRT model, Tabular BEHRT considers structured data to describe each medical event. In addition, it considers multiple modalities (biological lab results, clinical information, department and procedure names) simultaneously. By contrast, in Text BEHRT each visit is described via the content of free text medical reports. Finally, M-BEHRT combines both models through cross-attention. Our work is motivated by applications to oncology, and applied to the prediction of disease-free survival for breast cancer patients.



4.1 M-BEHRT achieves state-of-the-art or better prediction of DFS

Using very different information, Tabular BEHRT and Text BEHRT achieve AUCs on a held-out data set of 0.75 [0.66-0.83] and 0.75 [0.68-0.81], respectively, for the prediction of DFS 3 years after surgery. Combining them in M-BEHRT slightly increases predictive power, reaching an AUC of 0.77 [0.70-0.84]. All three architectures outperform classical machine learning methods. M-BEHRT is therefore able to capture the sequential aspect of patient data throughout their medical journey, resulting in improved performance.

To date, most of the multimodal prognosis models for breast cancer use various types of medical images, as well as sometimes genetics data, combined or not with tabular information (biological measurements, clinical features). Moreover, endpoints vary between studies: DFS, but also overall survival or recurrence (sometimes separated between local, regional and distant); which can be measured 3 years after surgery as in the present work, but also at different time points. Finally, different studies use different criteria inclusions. All in all, this makes comparing our performance to other studies challenging. However, we note that M-BEHRT achieves better performance for the prediction of DFS after three years than the recent work of Han et al. (6), which uses ultrasound and mammography images combined with clinical, pathological and radiographic characteristics and reports an AUC of 0.739 on a held-out test set. In addition, the performance of M-BEHRT is in the same ballpark as that of Rabinovici-Cohen et al. (5), which predict recurrence at five years in patients who receive neo-adjuvent chemotherapy (AUC of 0.75 on a held out data set) using clinical features, immunohistochemical markers, and multiparametric magnetic resonance imaging, or Gonzalez-Castro´ et al. (9), which achieve an AUC of 0.81 also for predicting recurrence at five years, but considering all cancer patients and using clinical features, immunohistochemical markers, and descriptors of clinical history such as the number and type of therapies.

In order to further evaluate the ability of M-BEHRT to predict DFS, we also performed the same study, but for the prediction of DFS 5 years after surgery rather than 3. This results in a smaller data set of 5–192 patients. The test set is the same as for DFS 3 years after surgery, but now contains 17.1% of negative samples. All results are available in the Supplementary Materials (Supplementary Table S4 and Supplementary Figure S12 for a description of the data, and Supplementary Figures S13–S19 for the results). Our observations are similar to those made on the prediction of DFS 3 years after surgery, although predicting DFS 3 years after surgery seems much easier than 5 years after surgery (AUC of 0.77 vs 0.69). This is in line with previous observations that earlier events are easier to predict than long-term ones (44).

We stratified the data based on features that are expected to define patients with similar prognoses (age, grade, number of lymph nodes involved, molecular subtype). We found that the prediction ability of M-BEHRT varies depending on subgroups and that the model works better on older patients with more aggressive disease (at least one lymph node involved). In addition, M-BEHRT is better at predicting relapse after 5 years than after 3 years for luminal tumors, suggesting that it correctly identifies predictive factors with long term influence for these tumors that tend to recur later than others (45).

There are however some limitations to the scope of our study. In particular, our findings are restricted to a very specific cohort of patients who received adjuvant chemotherapy. We also have not been able to validate our findings on an external validation group, due to privacy concerns limiting the access to EHR of other centers; it is possible that our models have captured idiosyncrasies of Institut Curie that do not apply to patients from other hospitals. We acknowledge that replicability on different cohorts, although notoriously difficult to ensure, although indispensable for clinical use. There is evidence that training models jointly on multiple cohorts is needed to smooth out hospital-specific patterns (46), another reason why gaining access to additional data from other clinical centers would be very beneficial indeed.

However, our work shows that it is possible to learn from multimodal patient trajectories built from dynamic tabular data and the content of free-text reports written by practicioners at each medical visit, and paves the way for future research in understanding breast cancer prognostic factors.




4.2 M-BEHRT learns on small data sets

An important aspect of our study is that, unlike most work published to date using transformers for EHR data, which use millions of patients for pretraining and tens to hundreds of thousands of patients for fine-tuning (13–15), the datasets we use here are of much smaller sizes: about 15–000 patients for pretraining, and 5–000 to 8–000 patients for fine-tuning. That it is possible to apply such methods to much smaller data sets is very encouraging for future research, as many studies, especially on very specific diseases and endpoints, only have access to a limited number of patients.

However, despite the small sample size, our study has an advantage over those with larger datasets’ studies because our learning data includes only adjuvant-treated breast cancer patients. This specificity has enabled the model to learn more precise embeddings and improve the accuracy of relapse prediction.

Keeping the same pretrained model, we experimented with further reducing the number of patients used for training the classifier. To this end, we created smaller training sets by randomly selecting subsets of the training data, starting from 10 samples, and compared on the test set the performance of Tabular BEHRT and classical machine learning algorithms trained on these small training sets. Our results, shown on Supplementary Figure S20 in the Supplementary Material, show that Tabular BEHRT clearly outperforms the classical machine learning algorithms, especially random forests, in the few-shot learning setting (when training set sizes are very small), achieving better-than-random performance with as little as 10 training samples and outperforming NPI with a few hundred training samples. We attribute this performance to the ability of the pretraining phase to learn meaningful representations of patient trajectories.




4.3 M-BEHRT leverages the complementary nature of different modalities

In order to better understand the contribution of the different modalities to the performance of Tabular BEHRT, we conducted an ablation study. The results show that, with the exception of the biological features, excluding one modality or more substantially reduces model performance. This indicates that Tabular BEHRT has the ability to leverage the complementary nature of the different modalities. In addition, clinical features (dNPI, age, molecular subtype and therapy) contribute the most to performance. This observation is consistent with previous studies on breast cancer relapse prediction (47, 48).

Although others have found the results of routine laboratory tests to be very informative for predicting breast cancer endpoints (4, 47), our study did not see strong added value of including biological markers on DFS prediction. This is particularly surprising regarding cancer antigen CA 15-3, which has been found in several studies to correlate to poor prognosis (49, 50) and recurrence (47, 51). In addition, Kim et al. (47) found that an increase in leukocyte count (LEUK) has a protective effect against breast cancer recurrence and that an elevated neutrophil count (PN) is associated with recurrence, although another study (4) did not find a significant association between DFS and variables describing leukocyte counts and counts or percentages of leukocyte subtypes. However, these features not entirely uninformative, as restricting Tabular BEHRT to the biological features modality still yields better-than-random performance (AUC of 0.56 for T1 and 0.61 for T2). One possible explanation is that the information contained in the biological features is also captured by the other modalities, as their evolution might be consistent with cancer severity or subtype, or the choice of therapy. Our study is also limited in the number of available laboratory variables, as markers that were found informative in previous studies, such as hemoglobin, total protein, serum glucose, alkaline phosphatase, or international normalized ratio (4, 47) were not available (or not for enough patients) in our data.

Perhaps surprisingly, we do not see the same drastic increase in performance between Tabular BEHRT and M-BEHRT as others have observed in multimodal prediction of breast cancer prognosis when augmenting clinical data with imaging data (5, 6), although Text BEHRT leverages medical reports from radiologists or cytopathologists, which are based on medical images. Although this could be due to the aforementioned limitations of Text BEHRT, this could also be because Tabular BEHRT already achieves much better performance than models based solely on static clinical data.




4.4 M-BEHRT model interpretation points to possible prognostic factors

The interpretation of M-BEHRT models through the integrated gradients method highlighted that Tabular BEHRT relies on well-documented prognostic features such as the age or the NPI (2, 52) to predict DFS status. Additionally, the model uses features that indicate a more aggressive breast cancer (number of multidisciplinary meetings, number of consultations, or a second surgical procedure), which cannot be necessarily be considered as causes of cancer relapse but suggest a more difficult-to-treat cancer.

Regarding Text BEHRT, the model seems to rely mainly on reports that contain symptoms-related information or reports from imagery. When they occur before the first surgery, these information are to be expected, as we are studying a cohort of patients treated for breast cancer. However, if they occur after the first surgery, these features can indicate further investigations that are warranted by the difficulty to treat the primary tumor.

Let us note however that while deep learning model interpretation is still somewhat limited, it has the potential to offer a much more comprehensive interpretation of the roles played by different elements in the data, given how rich the data is. Moreover, the features that are highlighted as strongly contributing toward one label or the other are only doing so in conjunction with other features, which might be different from patient to patient. Moreover, the embedding pooling method that we have used to derive reports embeddings from their contents does not help with interpretability, as it does not allow to pinpoint specific parts of a medical report. Nevertheless, several potentially interesting text features (such as high mammary involution or axillary dissection) have been highlighted for their contribution to M-BEHRT predictions. Even though it is not yet clear how these features can be used as prognostic factors and incorporated in a model usable in the clinic, survival curves show that they are indeed informative of DFS even taken on their own.




4.5 Challenges of learning from long sequences of rich events

In our approach, there is a tradeoff between the number of visits that can be considered and the amount of information that can be used to describe each visit, because the underlying BERT architecture is limited to processing 512 tokens. This number is arbitrary, but constrained by the memory usage of the self-attention mechanism. We have found this number to be sufficient for the DFS prediction tasks at hand and the available features and modalities. However, this might be too small for other applications, in which case one might want to use approaches that approximate the self-attention matrices so as to reduce their memory footprint, such as Big Bird (28) or Nyströmformer (29). Another avenue worth exploring in the future would be to use novel architectures such as deep state-space models (53) or recursive neural networks with linear recurrent units (54), which overcome this limitation of transformers and account for long contexts. Note however that this would not allow to use embeddings learned on French clinical text, as we are not aware of any long-context model that has been pre-trained on such data. In the present study, M-BEHRT outperforms both NPI and classical ML baselines, suggesting its ability to capture the structure of EHR data.

To the best of our knowledge, ours is the first study to use entire free text medical reports (in a language other than English) for breast cancer prognosis. There are several limitations to our approach. First, we used token embeddings learned on French clinical text that are not specific to breast cancer; it is possible that pretraining on breast cancer clinical text could improve the performance of our model. However, this requires considerable resources, both in terms of amount of clinical records available and computing power. Second, we build medical records embedding by simply pooling all token embeddings of a record, which is likely not be optimal for capturing the information contained in a report. Several authors have proposed using convolutional neural networks (CNN) or bidirectional long-short term memory architectures (Bi-LSTM) on top of token embeddings (26, 55, 56), which typically helps capturing the structure of text documents and could be an interesting future direction to explore for this research. Despite these shortcomings, our results demonstrate the ability of Text BEHRT to capture relevant information, as it performs on par with Tabular BEHRT.

Finally, M-BEHRT uses a cross-attention module to perform the multimodal fusion between Tabular BEHRT and Text BEHRT. This approach allows the contextual integration of information from both transformers, i.e., that each model can attend information from the other model, and thus enable a better exploitation of the complementarity between inputs. However, this requires that both tabular data and text data embeddings have the same size, and forced us to reduce the dimensionality of the embedding of sequences of reports from 768 (as provided by DrBERT) to 144 through a linear layer. This may result in an additional reduction of available information. However, this still results in a slight improvement of overall performance.




4.6 Conclusion

Overall, our study highlights the potential to predict DFS using solely longitudinal sequence of medical visits and evolution of clinical information and biological measurements. To the best of our knowledge, this is the first study predicting breast cancer endpoints from sequences of EHR data, whether considering solely multimodal dynamic tabular data, solely the contents of free-text reports, or combining both. Our results underscore the usefulness of such data for future research on prognosis modeling, and outline the importance of integrating medical information collected over time to gain previously unknown insights into the understanding of breast cancer evolution.
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