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Background: Electronic Health Records (EHRs) contain a wealth of information

about patients that could be useful toward improving treatment outcomes for

breast cancer patients, but remain mostly unexploited. Recent methodological

developments in deep learning, however, open the way to developing new

methods to leverage this information to improve patient care.

Methods: We propose M-BEHRT, a Multimodal BERT for EHR data based on

BEHRT, itself an architecture based on the popular natural language architecture

BERT (Bidirectional Encoder Representations from Transformers). M-BEHRT

models multimodal patient trajectories as a sequence of medical visits,

comprising a variety of information such as clinical features, results from

biological lab tests, medical department and procedure, and the content of

free-text medical reports. M-BEHRT uses a pretraining task analog to a masked

language model to learn a representation of patient trajectories from data that

includes patients that are unlabeled due to censoring, and is then fine-tuned to

the classification task at hand. A gradient-based attribution method highlights

which parts of the input patient trajectory were most relevant for the prediction.

Results: We applied M-BEHRT to a retrospective cohort of about 15–000 breast

cancer patients treated with adjuvant chemotherapy, using patient trajectories

for up to one year after surgery to predict disease-free survival 3 years after

surgery. M-BEHRT achieves an AUC-ROC of 0.77 [0.70-0.84] on a held-out data

set, compared to 0.67 [0.58-0.75] for the Nottingham Prognostic Index (NPI) and

random forests (p ¡ 0.05). In addition, we identified subsets of patients for which

M-BEHRT performs particularly well such as older patients with at least one

lymph node affected.
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Conclusion: Our work highlights both the potential of EHR data for improving

our understanding of breast cancer and the ability of transformer-based

architectures to learn from EHR data containing much fewer than the millions

of records typically used in currently published studies. The representation of

patient trajectories used by M-BEHRT captures their sequential aspect, and

opens new research avenues for understanding complex diseases and

improving patient care.
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1 Introduction

Breast cancer is by far the most commonly diagnosed cancer

among women (almost 2.3 million cases 31 worldwide in 2022) and

the leading cause of cancer death worldwide (1).

Among the various treatment options, adjuvant chemotherapy is

proposed to patients after first-line surgery to lower the chance that the

cancer will return. It is a widely used treatment option, and is offered in

many cases, unless the tumor was small, did not show sign of

aggressiveness, and no lymph nodes were affected. However,

recurrence or death are still possible. Accurately identifying the

patients most likely to relapse is therefore important to inform both

treatment selection and future research to propose better

therapeutic options.

One of the most commonly used prognostic tools for breast

cancer is the Nottingham Prognosis Index (NPI), which uses a

combination of three clinical features (tumor size, tumor grade, and

number of lymph nodes) and was proposed in 1982 (2). Since then,

many authors have used statistical and machine learning algorithms

to build breast cancer relapse predictors from clinical features;

however NPI still seems to be the most robust criterion (3),

despite its limitations.

In the quest for improving the future outcome of patients, there

has been a growing interest over the years for including information

besides clinical features into prognostic tools. These modalities

include biological measurements (4), magnetic resonance imaging

(5), ultrasound images (6), histopathological images or gene

expression data (7). The papers cited show that combining

different modalities improves prediction performance.

However, these modalities are not always available for all patients

treated. For this reason, other authors have taken advantage of the

considerable information present in medical reports that constitute

the EHR of patients, using named entity recognition techniques to

extract relevant terms from clinical notes (8, 9).

None of these methods account for the dynamic nature of EHR

data, in which information is recorded at several points in time.

Some early attempts at modeling sequences of medical events have

consisted in adapting recurrent neural network architectures and in

particular Long-Short Term Memory (LSTM) (10, 11) networks.
02
Since then, transformer-based models inspired by BERT

(Bidirectional Encoder Representations from Transformer) (12), have

been established as state-of-the-art for patient trajectories (13–17) as well

as clinical text (18–20). Transformers have significantly outperformed

previous methods on a large variety of Natural Language Processing

tasks and continue to drive advancements in the field. Their superiority

is explained by the use of self-supervised pretraining tasks, such as

masked language modeling and next sentence prediction, which allows

them to learn better representations of the data. These architectures have

been successfully transposed to patient trajectories by seeing them as

sequences of medical events rather than of words. To the best of our

knowledge, however, none of these have considered data combining

sequences of medical visits described not only by codes describing

diagnoses, procedures or treatments, but also biological measurements,

clinical features and free-text medical notes.We have also not found any

work of that nature to date addressing cancer-related clinical outcomes,

possibly because existing transformer architectures are typically trained

on very large cohorts of millions of patients.

In this paper, we present several new transformer architectures

for predicting clinical outcomes from multimodal EHR data, which

consider patient trajectories as sequences of medical visits

represented by both tabular data (clinical features, biological

measurements, therapies, nature of the visit) and free-text medical

reports. We evaluate our proposed method on the prediction of

disease-free survival in breast cancer, on a cohort of several

thousands of patients, and show how integrated gradients (21)

can be used to interpret the learned model and identify text

sequences that yield significantly different Kaplan-Meier curves.

We pretrain the models on the equivalent of a masked language

model, which can also be trained on records excluded from the

classification training set because they were censored.
2 Materials and methods

2.1 Data

In this work, we used data extracted from the EHR system from

Institut Curie in Paris (France). All data collected were
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pseudonymized. Additionally, individuals under 18 years of age,

with a history of previous cancer, under guardianship, or unable to

provide consent were excluded from this study. Every patient

included in the study has completed and signed a research

informed consent form. The study was approved by the Breast

Cancer Study Group of Institut Curie and was conducted according

to institutional and ethical rules concerning research on tissue

specimens and patients.

We built a data base of 15–150 unique patients, treated with

adjuvant chemotherapy for breast cancer between 2005 and 2012.

The data base contains general descriptors of patients (such as age,

sex, or weight) as well as information about each visit in their

medical record: clinical information such as tumor size or cancer

subtype, biological markers (tumor markers, counts of leukocytes

and their subtypes) if they were measured, treatment information,

and free-text notes. Finally, the patients are annotated with survival

and recurrence information.

Free-text notes are unstructured narrative descriptions or notes

entered by healthcare professionals. Unlike the structured data,

which is organized into predefined fields, free text allows healthcare

providers to input progress reports and relevant patient

information recorded during patient journey, in a more natural

manner. Free text reports from cytopathology or radiology also

capture key information from medical images, as captured by

experts. Those medical reports comprise free-text clinical notes

for consultations, as well as free-text reports of cytopathology,

radiology, surgery, and blood tests. All reports are written

in French.
2.2 Preprocessing

2.2.1 Tabular data preprocessing
We first describe how we processed the structured or tabular,

a.k.a structured, data describing each medical event for each patient.

2.2.1.1 Biological measurements

From biological measurements, we only kept features that have

less than 30% of missing values: MONO, LEUK, LYMP, PN and CA

15-3. All numerical values have to be discretized to enable

tokenization. We binarized biological measurements into two

values: 1 if the value is outside the normal range for the biological

measurement, and 2 otherwise. Supplementary Figure S1 in the

Supplementary Material shows the distribution of biological

measurements; the medical normal range of these biological

features can be found in Supplementary Table S1 in the

Supplementary Material.

In addition, we also computed the differences Dt = vt − vt−1
between the current visit’s biological value vt and the previous visit’s

value vt−1. We then discretized the D values by dividing them by ten

and rounding. This captures more subtle variations in biological

measurements evolution than the mere abnormal/normal values.
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2.2.1.2 Clinical information

From the clinical information, we included both longitudinal

and non-longitudinal features: age, undergone therapies, and tumor

size on the one hand, tumor grade and number of nodes involved at

diagnostic as well as breast cancer molecular subtypes (Luminal,

TNBC, HER2+/RH-, HER2+/RH+) on the other. Age is computed

at each visit and discretized by rounding to the nearest integer.

Descriptive statistics of the age, breast cancer subtype, grades,

number of lymph nodes involved, tumor size and biological

measurements are given in Supplementary Table S1 in the

Supplementary Material.

We combined tumor size, tumor grade and the number of

lymph nodes involved into the NPI (2), a commonly used, clinically

relevant and robust prognostic tool (3). The NPI is computed as

NPI = 0.2 × tumor size (cm) + tumor grade + lymph nodes stage,

where the lymph nodes stage is computed as 1 (0 nodes), 2 (1 to 3

nodes) or 3 (> 3 nodes). The lower the score, the higher the chance

of survival 5 years after surgery. The tumor size is measured at

various points in the cancer journey. We kept for this study the

clinical tumor size assessed at diagnosis when the tumor is palpable,

and the pathological tumor size which is the histological size of the

tumor extracted at the surgery. The NPI is recalculated with each

new tumor size measurement, hence termed as the dynamic NPI

(dNPI). For patients with at least one available feature among the

three required for calculating the dNPI, we imputed missing tumor

sizes using the mode value among samples of the same clinical or

pathological tumor stage (TNM) status. The number of involved

lymph nodes is the sum of the number of affected sentinel nodes

and axillary nodes. We imputed missing number of nodes to zero

and missing tumor grade to G2 (grade 2), based on the most

frequent values in our data. The higher the dNPI, the lower the

chance of survival.

Following Blamey et al. (22), we categorized dNPI into six

prognostic groups (PG): Excellent (EPG) (NPI ≤ 2.4), Good (GPG)

(2.4 < NPI ≤ 3.4); Moderate I (MPG I) (3.4 < NPI ≤ 4.4), Moderate

II (MPG II) (4.4 < NPI ≤ 5.4), Poor (PPG) (5.4 < NPI ≤ 6.4) and

Very Poor (VPPG) (NPI > 6.4).

As tumor grade and number of nodes are combined with the

dynamic tumor sizes into the dNPI, the only static feature we

consider is breast cancer subtype. Nevertheless, the algorithm we

propose can handle any number of static features.

Because M-BEHRT can handle missing values (see Section

2.3.1), we did not impute missing values for longitudinal features.

However, for the baselines, we opted to impute the tumor size,

number of nodes, grades and cancer subtype by an aberrant value of

999. Using an aberrant value allows the model to explicitly identify

and differentiate imputed values from the actual data, by analogy

with not locating a token within a sentence when using M-BEHRT.

2.2.1.3 Therapies, department and procedure

Therapies are inferred by considering the occurrence date for

the surgery, the start and end dates for hormone-therapy,
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chemotherapy and anti-HER2 treatment, and the number of doses

administered for the radiotherapy. This inference incorporates the

therapeutic protocol of Institut Curie (see Supplementary Figure S2

in the Supplementary Material). Subtherapies, also inferred from

this protocol, provide additional information about the specific

molecules given in the case of chemotherapy or anti-HER2 therapy,

radiation types in the case of radiotherapy, and specific surgical

procedures including both breast and axillary surgeries. A list of all

possible values for the therapies and subtherapies fields is given in

Supplementary Table S3 in the Supplementary Material.

Finally, medical visit department and procedure names are

available within the headers of free-text reports. We normalized

department and procedure names by removing accents,

punctuation and special characters. We merged synonyms into a

single word: for example, anapath, anatomopathologie and

anatomo-cyto-pathologie are merged into anatomo-cyto-pathologie

(anatomical cytology in English). To do so, we sifted through the

corpus vocabulary, identifying and unifying synonyms and/or

differently written terms to enhance coherence of the medical

history. We also removed words that appear fewer than 100 times

in the whole corpus.
Frontiers in Oncology 04
2.2.1.4 Disease-free survival at 3 years

Finally, we defined a binary classification task by labeling each

patient with whether they had survived disease-free 3 years after

the surgery.

We retained patient history up to one year after first surgery and

starting from 6 months before the breast cancer diagnosis. Out of

15–150 patients, we removed 206 patients who relapsed before the

index date, as learning would be biased by the presence of

information directly pertaining to a known relapse. In order to

formulate the learning task as a classification problem, we also

removed 6–855 patients for which the date of latest news occurred

earlier than 3 years after the first surgery. This is depicted in the

flowchart in Figure 1.

All patients had at least 3 visits in their medical history. This

results in 8–089 patients, with 6.2% having a negative disease-free

survival (DFS) status. This makes for a heavily imbalanced data set,

which will require using appropriate techniques to avoid biasing

models in favor of the overrepresented class.

For the evaluation of our models, we held out a test set

containing 520 patients, with a proportion of negative samples

(6.1%) similar to that of the whole data set. For pre-training tasks
FIGURE 1

Flowchart of study inclusion and exclusion.
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requiring no labels (see Section 2.3.2), we used all patients and their

full history.

2.2.2 Free-text reports preprocessing
Free-text reports represent unstructured textual descriptions of

medical information recorded by medical experts. They can be

clinical notes, that is to say, information recorded during patient

encounters with clinicians, or reports made by specialists

(laboratory biologists, radiologists, histopathologists) to interpret

the results of medical exams. The average number of visits, reports,

and words per report in our data are given in Supplementary Table

S1 in the Supplementary Material.

Unlike tabular data, that is recorded in a standardized way at

least within a hospital, medical reports are highly variable, as they

allow each healthcare provider to be distinctive in format, style, or

terminology. Moreover, the semantic related to the medical field is

complex, using abbreviations, acronyms, and medical jargon (23).

Therefore, in addition to common NLP preprocessing steps

(normalization, removal of noisy entities, adverbs, stopwords and

text delimiters), our text preprocessing pipeline includes steps that

are specific to medical reports. The full text preprocessing pipeline

is described on Supplementary Figure S3 in the Supplementary

Material, and we describe in Text S1 in the Supplementary Material

the steps that are specific to clinical text.
2.3 Multimodal BEHRT

Information retrieved from EHR are generally time stamped

events. In this study, this information is organized as structured or

tabular data (for numerical values) collected over time, along with a

series of free-text medical reports throughout the patient’s journey.

As in Natural Language Processing, EHR can be transformed into

sequences of tokens, where each token represents a unit of

information from the EHR rather than a linguistic unit. These

sequences can then be fed into language models such as

transformers (24). This was first proposed by Li et al. (13), who

introduced BEHRT (BERT for EHR), an architecture based on that

of BERT (Bidirectional Encoder Representations from

Transformers) (12) to predict future conditions from a sequence

of diagnoses.

Here we propose Multimodal-BEHRT (M-BEHRT), which

combines two transformer-based deep learning models of

architecture inspired by BEHRT’s: Tabular BEHRT and Text

BEHRT. Tabular BEHRT considers that each medical visit is

described using structured data: the department in which it took

place, the corresponding procedure, as well as clinical and biological

measurements available at this time. Like BERT and BEHRT,

Tabular BEHRT combines a pre-training task (Masked Language

Model) with a downstream task (the classification task), but applies

it to a multimodal EHR tabular dataset. Text-BEHRT considers that

each medical visit is represented by a free-text medical report. Text

BERT uses adapted pretrained embeddings to build a sequence that

serve as input for the classification task. M-BEHRT is a meta-model
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that combines Tabular BEHRT and Text BEHRT through a cross-

attention module (25).

In what follows, we first describe how we construct patient

trajectories (Section 2.3.1 from multimodal tabular data (Section

2.3.1.1) as well as free-text reports (Section 2.3.1.2). We then

describe in Section 2.3.2 the self-supervised approach used for

learning embeddings of multimodal patient trajectories, and in

Section 2.3.3 the architecture we propose for the binary

classification of patient trajectories. Finally, we describe the

baselines used to evaluate our models in Section 2.4.

2.3.1 Multimodal sequence construction
2.3.1.1 Patient trajectory representation from structured
data

By analogy with Natural Language Processing data, a patient’s

history can be seen as a document, where visits serve as sentences,

and the events within the visits act as tokens. In our final data, the

medical sequence consists of a sequence of visits that are

chronogically ordered.

We used dates from the medical reports to construct medical

chronological sequences. Each visit is described by the specific

department and procedure from which the report originates,

which contextualizes additional features, which are incorporated

as available.

As illustrated on Figure 2A, each visit is therefore described by

at most 17 features: biological measurements that include binary

values and deltas of measurements of the 5 biological markers, the

medical department where the visit took place, the type of

procedure the visit corresponded to, the therapy and sub-therapy

administered, the patient’s age, the dNPI and the breast cancer

subtype (which is static but repeated at each visit).

A separate modality layer indicates what kind of feature each

measurement corresponds to. Generally speaking, this could be set

to simply indicating the modality (biological, clinical, visit), but here

we chose to be specific and encode the feature name. This allows us

in particular to deal with missing values, which can simply be

skipped as the modality layers provides the information of what

feature is at each position. The modality layer allows the algorithm

to treat each modality differently.

As in BERT and BEHRT, a sequence of visits starts with the

special token CLS, and visits are separated with the special

token SEP.

Whereas BEHRT captures temporal information by including

the age of the patient in a separate layer, we kept age as other clinical

descriptors in the main input layer, but added another special

embedding layer that represents the delay between the next visit and

the previous. We discretized delays, as in Pang et al. (14), into W0-3

(under 1, 2, 3, or 4 weeks) for delays shorter than 4 weeks, M1-12

(under 1 month up to under 12 months) for delays shorter than a

year and LT (long term) for delays longer than a year.

One of the notable constraints in BERT-like models is token

capacity: they process tokens in fixed-size sequences of at most 512

tokens. While this size is arbitrary and varies depending on the

exact BERT architecture and implementation, it cannot take much
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larger values, as it is linked to the memory usage of the self-attention

mechanism of BERT, which grows quadratically with the number of

tokens (each token being attentive to every other token). There is

therefore a tradeoff between the number of features/tokens used to

describe each visit, and the number of visits that can be considered.

This is alleviated by the exclusion of both missing values and

biological delta values equal to zero (corresponding to an absence

of change in measurement), which is possible as the modality layer

informs the architecture as to the kind of feature each token

corresponds to. In practice, if the patient trajectory still exceeds

512 tokens, we only consider the first 512 tokens, which represent

the initial interactions of the patient with the healthcare system, and

inform about initial diagnostic visits and treatment decisions.

Indeed, although the last 512 might contain more relevant

information, a predictive model that makes use of early
Frontiers in Oncology 06
information and can detect factors predictive of relapse among

these initial events has more clinical value. Supplementary Figure S4

in the Supplementary Materials shows how much information is

excluded from patient trajectories due to restricting data to the 512

first tokens.

Figure 2A illustrates this representation of patient trajectories

based on tabular data.

2.3.1.2 Patient trajectory representation from free text

In addition, we assume that important information is contained

within the text itself of the free-text reports. We therefore build a

sequence of free-text reports, ordered chronologically from the date

of the diagnosis until the index date (one year after the first surgery).

As shown in Supplementary Table S2 in the Supplementary

Material, the number of reports per patient and the length of
FIGURE 2

M-BEHRT architecture. (A) representation of patient trajectory using tabular data. (B) representation of patient trajectory using free-text reports.
(C) architecture of Tabular BEHRT (learning from patient trajectories represented from tabular data as in Panel A). (D) architecture of Text BEHRT
(learning from patient trajectories represented from free-text reports as in Panel B). Panel architecture of M-BEHRT, learning from both
representations by combining Tabular BEHRT and Text BEHRT with cross attention.
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each report are such that these create very long documents (on

average 34 reports, averaging 159 words each, for a total of more

than 5–000 words per patient history). However, while BERT has

proven to be highly effective in capturing contextual relationships

and semantic nuances in text, it can only process sequences of at

most 512 tokens, due to the memory footprint of the self-

attention mechanism.

This constraint again poses challenges when dealing with

lengthy documents such as a sequence of medical reports (26).

Using transformers to classify long documents is still a topic of open

research (27). The most straightforward approach consists in

truncating inputs to fit within the allowed number of tokens,

typically by using the first, last or middle tokens. However,

limiting patient history to 512 tokens may result in major

information loss and hence produce incomplete representation of

medical reports. Other approaches such as Big Bird (28) or

Nystromformer¨ (29) use sparse or low-rank approximations of

the self-attention matrices. However, existing pretrained models

typically do not handle more than 4–096 tokens, which is still too

short for some of the patients in our data set. In addition, they have

only been trained on English corpora whereas our medical notes are

in French. Nevertheless, our corpus is much too small to train a

transformer model from scratch. Finally, many approaches consist

in dividing long text into chunks smaller than 512 tokens and

combining their embeddings, whether through an additional layer

of self-attention in a hierarchical model (30) or by pooling (31). In

the absence of a clear consensus on which of these strategies is likely

to perform best (27, 31), we chose here to use a simple aggregation

strategy. More specifically, we construct the embedding of every

report by summing the embeddings of all tokens it contains, and

construct sequences not of token embeddings, but of

reports embeddings.

We obtain token embeddings from DrBERT (32), a state-of-

the-art transformer model, based on the RoBERTa architecture (33)

and trained on a French biomedical corpus which contains 7GB of

clinical data from multiple sources. We can then train a BERT

model on the sequences of reports embeddings. To account for

temporality, we add an embedding layer of delays between reports.

Finally, we use BERT special tokens: CLS for the start of a medical

history and SEP to separate reports from different visits. This

representation is illustrated on Figure 2B.

2.3.2 Pretraining task
To improve the embeddings of patient trajectories built from

structured data, we follow the example of BEHRT and pre-train a

Masked Language Model (MLM) on the representations described

in Section 2.3.1.1.

As in Natural Language Processing, the MLM is designed to

predict missing or masked tokens within a patient’s history, using

the bidirectionaly context provided by the surrounding tokens. Its

goal is to learn contextual representation of the medical events in

the patient’s history. For this purpose, in this pre-training phase

Tabular-BEHRT uses the whole cohort of 15–150 patients and the

entire sequence of events for each patient, from the date of diagnosis

to the date of death or censorship, with a length average of 506(±
Frontiers in Oncology 07
466) tokens. We randomly replaced 15% of the tokens with a special

MASK token. We swapped another 2% with another token at

random; this adds a limited amount of noise, encouraging the

model to learn a more robust and generalizable representation of

patient trajectories. As shown on Figure 2C, the MLM part of M-

BEHRT is a transformer-based architecture that generates

probabilities for each token in the vocabulary, computed using

softmax over the model’s output logits, as a multilabel learning task.

We first split the dataset into a training (90%) and a validation

set (10%) in order to prevent overfitting. Then, all the embeddings

from the training set are randomly initialized and fed to the MLM.

We use Bayesian optimization to find the best set of

hyperparameters, with precision (proportion of masked tokens

correctly predicted) as a criterion. For robustness, we run the

model five times with five different random seeds for the

sequence masking, and use as final token embeddings for the

downstream classification tasks the mean values of standardized

embeddings from these five runs.

The pretraining task solely concerns tabular data, to establish

effective representations of tabular events within the patient

trajectory. For text data, running an MLM on the whole medical

corpus would require more computational resources than available.

2.3.3 Binary classification
We now describe the architecture of M-BEHRT, a deep neural

network to learn binary classifiers from patient trajectories. M-

BEHRT is the combination of two architectures: Tabular BEHRT,

which learns from patient trajectories built from structured data;

Text BEHRT, which learns from patient trajectories built from

free text.

Tabular BEHRT consists in using labeled data to fine-tune for

classification the network obtained by pre-training on patient

trajectories built from structured data. As shown on Figure 2C,

only the last layer is different between pre-training and fine-tuning:

here the patient history embeddings are fed to a single feed-forward

layer with sigmoid activation.

The architecture of Text BEHRT is illustrated on Figure 2D. It is

again a transformer-based model, which uses report embeddings

obtained through the aggregation of DrBERT embeddings as

described in Section 2.3.1.2. The same sampling strategy as the

one depicted in the previous section is used for this task.

Finally M-BEHRT combines information from tabular data and

free-text reports by integrating Tabular BEHRT and Text BEHRT

using a cross-attention module (25). The cross-attention module

extends the capabilities of traditional transformer architectures to

handle multiple data modalities in a unified framework. Hence M-

BEHRT is expected to harness the complementarity of the

information encoded in different modalities to improve

predictive power.

As shown on Figure 2E, logits from structured data trajectories

and the text trajectories are computed using their respective models.

The cross-attention layer calculates attentions with the logits as key,

value and query. Logits from Text BERHT used as query interact

with logits from Tabular BERHT that represent key and value. Note

that we could swap the roles of Text BEHRT and Tabular BEHRT
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here, using logits from Tabular BEHRT as query and logits from

Text BEHRT as key and value, but this led to worse performance in

practice. The loss is backpropagated to the cross-attention module.

To do so, logits must have same size. Therefore, logits from Text

BEHRT are first fed through a single feed-forward layer to obtain an

embedding of the same size as logits from Tabular BEHRT.

To alleviate computational burden and following the

observation made in other contexts that this does not significantly

harm performance ()?, we freeze the Tabular BEHRT and Text

BEHRT modules, and only tune the cross-attention module.

Because our training data is heavily imbalanced (6.2% negative

examples only), we implemented a class-aware sampling strategy, in

which each batch is made to contain the same number of positive

and negative samples by sampling with replacement for the

minority class. This sampling strategy allows us to train on

balanced batches.
2.4 Comparison baselines

To evaluate our models, we developed several comparison

baselines. The first is the NPI measured at the date of diagnosis, a

tool that is currently used in the clinic to predict prognosis. In

addition, we developed baselines using classical machine learning

methods: random forests classifiers (RF), logistic regression (LR),

and support vector machines (SVM). These machine learning

models (RF, LR and SVM) use the same input data as M-BEHRT,

but cannot directly use sequential information. For dynamic tabular

data (procedure name, department name, binarized biological

measurements), sequences of events are transformed into number

of occurrences of events. Clinical features (age, therapies, tumor

size, tumor grade, breast cancer molecular subtype and number of

nodes) are kept static, using their values at the time of diagnosis.

Regarding free-text reports, we created a table where each feature of

the report embeddings (of 768 dimensions) becomes a column. We

imputed missing values with zero (0) for both of the inputs. For M-

BEHRT, outputs from tabular data baselines and from text data

baselines (specifically their logits) constitute inputs to a secondary

model (meta-model) which makes the final prediction.

To address class imbalance, which might bias the model toward

the majority class, we used a cost-sensitive learning strategy, in

which training samples are assigned a weight inversely proportional

to the frequency of their class in the loss function (logistic loss for

LR, Gini impurity for RF, and hinge loss for SVM).
2.5 Model selection

For model selection, we split the training data (8–289 patients,

excluding the held-out data set of 520 patients) into a training and a

validation sets (respectively 90% and 10% of the data). For each

method, we use Bayesian optimization (34) to find the optimal set of

hyperparameters, using the Average Precision Score (APS) on the

validation set as a performance criterion.
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2.6 Computational resources

We used Python to code models and analyses pipelines for this

study, in particular scikit-learn (35) for the classical machine

learning models, hyperopt (34) for Bayesian optimization, spaCy

(36) for natural language processing tasks, and PyTorch (37) for the

implementations of Tabular BEHRT, Text BEHRT and M-BEHRT,

which are built on that of BEHRT (13). The masked language model

and DFS classification model were computed on NVIDIA A40-

46GB Graphical Processing Units (GPU).

Finally, our code is available at https://github.com/maguettemb/

Multimodal-BEHRT.
3 Results

3.1 Patient trajectory embeddings

3.1.1 Tabular patient trajectory embeddings
We first focus on the Masked Language Model (see Section

2.3.2) and evaluate the quality of the patient trajectory embeddings

learned during the pre-training phase of Tabular BEHRT.

The optimal hyperparameters we identified for the MLM are 5

hidden layers with 12 attention heads, a hidden size of 144, an

intermediate layer size of 133, a training duration of 120 epochs,

using Adam optimizer with a learning rate set to 1e-3 and a batch

size of 64.

To assess the ability of the MLM to provide meaningful

embeddings, we ran the model five times with five different

random seeds for the sequence masking. We also computed a

baseline by running the MLM on a data set in which tokens have

been randomly reordered within each sequence. This approach

disrupts the inherent sequential structure of the data, and creates a

scenario where the model should not be able to rely on contextual

relationships between tokens. Hence, comparing the MLM

embeddings on shuffled sequences against those on original

sequences offers a benchmark for assessing the impact of

contextual information on the model’s predictive capabilities.

One way to evaluate embedding quality is to measure the

MLM’s precision (proportion of correctly predicted masked

tokens), which we report for both models on the held-out

validation set on Supplementary Figure S5 in the Supplementary

Material. The MLM is able to predict masked tokens with a

precision of 72% on the validation set, a performance that is not

significantly different from the one on the training set, highlighting

the absence of overfitting. In addition, this precision is significantly

higher than the precision of 55% obtained when shuffling the

sequences, which shows that the MLM does indeed capture

contextual information. We also note that the precision of the

MLM of BEHRT reported by Li et al. (13) on sequences of diagnoses

is of 66%. While it is difficult to compare this performance to ours

due to the different nature of the tasks, it indicates that the MLM

provides embeddings of sufficient quality to perform supervised

learning in a second stage.
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We further evaluate embeddings generated by the MLM by

visualizing token embeddings through two-dimensional plotting

along the first two components of a t-distributed Stochastic

Neighbor Embedding (t-SNE) as shown on Figure 3. This figure

shows how the MLM capture semantic relationships between

tokens and contextual information. Tokens belong to the same

modality (therapies, variation in biological features, breast cancer

subtypes) tend to cluster together, with the exception of procedures

and departments, which tend to be mixed together. This is however

unsurprising, as some procedures and departments are tightly

linked; for example, panel F shows that the embedding of the
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“nuclear medicine” service is quite close to the embeddings of

“radiology”, “scanner” and “MRI” procedures, while panel D shows

that the embedding of the “radiotherapy” service is quite close to the

embeddings of several procedures all relating to the proposal,

prescription, initiation, unfolding and ending of treatment

by radiotherapy.

3.1.2 Medical reports embeddings
We first evaluate the quality of the medical reports embeddings

obtained by pooling tokens embeddings extracted from DrBERT by

visualizing them after their projection into a 2D space using t-SNE.
FIGURE 3

t-SNE of Tabular BEHRT tokens embeddings as learned by the Masked Language Model. (A–F) zoom in on specific section of the plot. (A)
corresponds to a cluster of deltas in biological measurements. (B) shows that age tokens cluster together. (C) shows that therapy token, on the one
hand, and breast cancer subtypes, on the other, cluster together. (D, F) show two different clusters of procedures and departments. (E) show that
dNPI tokens cluster together, as well as BERT special tokens.
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The proximity of reports within this space corresponds to their

semantic similarity. As shown in Figure 4, this visualization

provides a comprehensive overview of the clustering patterns,

demonstrating the potential of DrBERT embeddings in

representing French medical text data.

This figure shows clusters of reports written in the same

departments. Additionally, it display proximity between clusters

that arise from similar departments. The Panel A groups all reports

associated with radiology, including “mammography”, “MRI”,

“ultrasound”, or “scintigraphy”. The same pattern is observed in

Panel D, which contains the “generic” reports as those related to

“discharge”, “external care” or “information”, and in Panel B, with
Frontiers in Oncology 10
clusters relating to cytology (“anatomocytopathology”, “cytology”).

Lastly, Panel C displays reports from various departments

positioned closely together.
3.2 DFS prediction

3.2.1 Comparison of M-BEHRT with baselines
We report on Figure 5 the ROC curves on the test set of M-BEHRT

trained with optimal hyperparameters (see Section 2.5; learning rate of

10−3, batch size of 64, Adam optimizer, 6 epochs of training), as well as

of the comparison baselines described in Section 2.4.
FIGURE 4

t-SNE of Text BEHRT medical reports embeddings. Each panel correspond to a different departments’ reports with similar information, cluster
together.
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Figure 5 shows that all methods perform significantly better

than a random classifier (AUC-ROC of 0.5). Moreover, M-BEHRT

outperforms all comparison machine learning models (Table 1).

3.2.2 Ablation study
To better understand the contribution of each modality to the

performance of M-BEHRT, we first compared it to the individual

performance of its components Tabular BEHRT and Text BEHRT.

Figure 6 reports ROC curves for all three approaches, on the test set.

The optimal hyperparameters for Tabular BEHRT were a learning

rate of 10−4, a batch size of 16, Adam optimizer, and 5 epochs of
Frontiers in Oncology 11
training; for Text BEHRT they were a learning rate of 5.10−4, a batch

size of 32, Adam optimizer, and 99 epochs of training.

Although they use different information, Tabular BEHRT and

Text BEHRT achieve similar performance on both tasks,

highlighting that Text BEHRT can capture relevant information

in unstructured medical reports. The combination of both models

through cross-attention slightly improves their respective

performance, demonstrating the synergistic effect of integrating

the strengths of both Tabular and Text BEHRT into a single

unified model.

We also performed an ablation study to better understand the

contribution of each tabular modality to the performance of

Tabular BEHRT. First, Supplementary Figure S7 in the

Supplementary Material shows the ROC curves of Tabular

BEHRT with and without pre-training, showing that pre-training

does improve the performance of the model. Figure 7 shows the

areas under the ROC curves obtained on the test set when removing

some of the modalities from Tabular BEHRT. This figures shows

that dNPI contributes the most to the performance. However, the

addition of the other features, in particular the remaining clinical

features (including age and more notably therapies), increases

performance substantially. Biological features contribute the least

to performance, although they still contain information, as they

allow for better-than-random prediction. However, it seems that

this information is redundant with that captured by the other

features. Performance also drops substantially if information

about the nature of the medical visit (department and procedure)

is omitted. These observations are consistent across both tasks.
FIGURE 5

ROC curves M-BEHRT with the baselines for the prediction of disease-free survival 3 years after surgery, on the test set.
TABLE 1 AUC scores comparison for M-BEHRT and the baselines for the
prediction of disease-free survival 3 years after surgery, on the test set.

Models AUC scores

M-BEHRT
0.77

[0.70 − 0.84]

NPI
0.67

[0.58 − 0.76]

Random Forests
0.67

[0.58 − 0.75]

Logistic Regression
0.61

[0.52 − 0.71]

SVM
0.61

[0.55 − 0.72]
M-BEHRT significantly outperforms the other methods (DeLong test in Supplementary
Figure S6 in the Supplementary Material).
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We also provide in the Supplementary Material a comparison of

Tabular BEHRT with baselines that only make use of tabular

information (Supplementary Figure S8 in the Supplementary

Material) and a comparison of Text BEHRT with baselines that

only make use of text information (Supplementary Figure S9 in the

Supplementary Material). In both cases, the transformer-based

approaches outperformed all comparison partners.

3.2.3 Performance of M-BEHRT per cancer
subtype

Figure 8 presents the AUC-ROC of M-BEHRT on the test set,

stratified by patient age, tumor grade, molecular subtype, or node

status. M-BEHRT is better at predicting DFS at three years on older

patients, with at least one affected lymph node. Stratification of

results by NPI range is available on Supplementary Figure S10 in the

Supplementary Material.

3.2.4 Model interpretation
To better understand the predictions of M-BEHRT, we used the

CAPTUM (38) implementation of the integrated gradients (IG)

method (21) to attribute the predictions of either Tabular BEHRT

or Text BEHRT to their input features. This allows us to highlight,

for a given input sequence of visits, the elements that contributed to

the label.

Overall, Tabular BEHRT mainly uses NPI tokens to correctly

identify relapse or death for samples from the poor prognosis

groups (VPPG and PPG), or to correctly identify DFS for patients
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from the good prognosis groups. What is more interesting,

however, is to look at the tokens that Tabular BEHRT uses to

accurately predict relapse or death for samples from the good and

moderate prognosis groups, as they might provide critical insights

into the aggressiveness and progression of the disease. They point

toward having a high number of multidisciplinary consultation

meetings (“RCP” in French), a high number of consultations

overall, a second surgical procedure (within one year of the first

one), or abnormal values for the CA15–3 and the LYMP biological

markers. Moreover, Tabular BEHRT uses well-documented factors

in the literature to predict a positive DFS status such as age.

The interpretation of Text BEHRT’s predictions shows that the

model mostly relied on the entire sequence of the reports from the

diagnosis to the index date to make its prediction, which is

represented by the CLS token. We found this pattern in many

true positive (correctly identifying death or relapse) samples.

Moreover, Text BEHRT relies on reports that show information

regarding the characterization of a suspicious tumor, but this is not

in and of itself indicative of a future relapse.

Finally, in order to gain a more global understanding of the

model, we investigated the most predictive reports for a positive

DFS status and for a negative DFS status. We set a threshold

regarding the given attribution for each medical report. We collect

all the reports with an attribution above this threshold. This yielded

921 reports that are predictive for negative DFS status in the entire

corpus, and 1–720 reports that are predictive for positive DFS

status. For each reports collection, we determined the 30 most
FIGURE 6

ROC curves comparing Tabular BEHRT and Text BEHRT against their combined model MBEHRT for the prediction of disease-free survival 3 years
after surgery, on the test set.
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FIGURE 7

Ablation studies AUC-ROC on the test set for Tabular BEHRT. We present results for the full model (Tabular BEHRT), then using only one of the 4
modalities (dNPI, clinical features, biological features, medical visits), two modalities (dNPI+clinical or biological+visits), then removing one of the 4
modalities. Here “medical records” stands for features extracted extracted from the medical record headers, that is to say, visit department and
procedure. Performance scores are presented on the test set.
FIGURE 8

AUC-ROC of M-BEHRT on the test set stratified by patient age, cancer grade, molecular subtype and node status.
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frequent sequences (of 3 to 9 words) for both groups. We then listed

the most frequent sequences for the DFS negative group that are not

found in the DFS positive group. The resulting sequences of words

can be found in Table 2.

Some of these sequences were obtained by combining overlapping

sequences. We then plotted Kaplan-Meier survival curves to compare

patients that have reports containing one of these sentences and

patients that do not. DFS is the event and the log-rank test is used to

compare the populations. We show here two such curves,

corresponding to sentences showing the most significant sequences:

Figure 9 is for a sequence that translates to “breast in partial involution

with less than 50% glandular tissue and Figure 10 is for a sequence that

translates to “axillary lymphadenectomy”.

For the first example (Figure 9), the survival curves suggest that

patients with this feature are most likely to relapse than others. This

feature defines a specific state of breast tissue where the glandular

tissue is replaced by adipose tissue. This process naturally occurs

with aging and after menopause. Therefore, this feature could have

an impact on DFS simply because it is related to the patient’s age,

which is already a prognostic factor. However, when compared with

2 age groups (see Supplementary Figure S11 in the Supplementary

Materials), it added more information on the survival than just > 50

years old and< 50 years old. Young patients with this feature

represent the worst prognostic groups.

Although mammary involution is not a commonly used

prognostic factor, several studies have showed a link between

involution and breast cancer risk (39, 40); the underlying biological

process could maybe also explain a heightened risk of relapse in young

patients presenting abnormal mammary involution.

The second plot (Figure 10) compared a population with the

feature “axillary lymphadenectomy” and a population without. This

feature is a mention of removing lymph nodes from the armpits.

This information is associated with the potential affection of axillary

nodes, which is found to be predictive for BC relapse.
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4 Discussion

In this paper, we proposed several novel deep learning

architectures inspired by BEHRT to model patient trajectories

using multimodal data extracted from EHRs. As the original

BEHRT model, Tabular BEHRT considers structured data to

describe each medical event. In addition, it considers multiple

modalities (biological lab results, clinical information, department

and procedure names) simultaneously. By contrast, in Text BEHRT

each visit is described via the content of free text medical reports.

Finally, M-BEHRT combines both models through cross-attention.

Our work is motivated by applications to oncology, and applied to

the prediction of disease-free survival for breast cancer patients.
4.1 M-BEHRT achieves state-of-the-art or
better prediction of DFS

Using very different information, Tabular BEHRT and Text

BEHRT achieve AUCs on a held-out data set of 0.75 [0.66-0.83] and

0.75 [0.68-0.81], respectively, for the prediction of DFS 3 years after

surgery. Combining them in M-BEHRT slightly increases predictive

power, reaching an AUC of 0.77 [0.70-0.84]. All three architectures

outperform classical machine learning methods. M-BEHRT is therefore

able to capture the sequential aspect of patient data throughout their

medical journey, resulting in improved performance.

To date, most of the multimodal prognosis models for breast

cancer use various types of medical images, as well as sometimes

genetics data, combined or not with tabular information (biological

measurements, clinical features). Moreover, endpoints vary between

studies: DFS, but also overall survival or recurrence (sometimes

separated between local, regional and distant); which can be

measured 3 years after surgery as in the present work, but also at

different time points. Finally, different studies use different criteria
TABLE 2 Most frequent sequences found in reports with high attribution for DFS- (relapse/death) instances but not for DFS+ instances, in Tabular
BEHRT.

Sequence meaning in English Description

Breast in partial involution with less than
50% glandular tissue

Adipose involution is a natural process where glandular tissue is gradually replaced by fat tissue, often as a result of aging or
hormonal changes. Here, the glandular tissue makes up less than half of the total breast composition. While age is a risk
factor for breast cancer, lobular involution is associated with a reduced risk of breast cancer (39, 40).

Previous treatment with human growth
hormone, without risk factors for CJD
transmission

Treatment with human growth hormone can lead to the transmission of Creutzfeldt-Jakob disease (CJD). This information
is a medical administrative criterion checked before surgery.

With axillary lymphadenectomy
Until recently, axillary lymph node dissection was standard procedure in the case of involvement of lymph node in breast
cancer, one of the main known risk factors for relapse or death (41).

Palpable mass Palpable breast lumps are the most common presentation of breast disease.

Solu-Medrol, 80mg
Solu-Medrol is one brand name for methylprednisolone, a corticosteroid used in BC to manage the side effects of taxane-
based chemotherapy (42).

Lovenox 0.4 mL
Lovenox is one brand name for enoxaparin sodium, a low molecular weight heparin used as anticoagulant medication. It is
used to prevent and treat venous thromboembolisms, for which cancer patients are at higher risk (43).
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inclusions. All in all, this makes comparing our performance to

other studies challenging. However, we note that M-BEHRT

achieves better performance for the prediction of DFS after three

years than the recent work of Han et al. (6), which uses ultrasound

and mammography images combined with clinical, pathological

and radiographic characteristics and reports an AUC of 0.739 on a

held-out test set. In addition, the performance of M-BEHRT is in

the same ballpark as that of Rabinovici-Cohen et al. (5), which

predict recurrence at five years in patients who receive neo-adjuvent

chemotherapy (AUC of 0.75 on a held out data set) using clinical

features, immunohistochemical markers, and multiparametric

magnetic resonance imaging, or Gonzalez-Castro´ et al. (9),

which achieve an AUC of 0.81 also for predicting recurrence at

five years, but considering all cancer patients and using clinical

features, immunohistochemical markers, and descriptors of clinical

history such as the number and type of therapies.

In order to further evaluate the ability of M-BEHRT to predict

DFS, we also performed the same study, but for the prediction of

DFS 5 years after surgery rather than 3. This results in a smaller data

set of 5–192 patients. The test set is the same as for DFS 3 years after

surgery, but now contains 17.1% of negative samples. All results are
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available in the Supplementary Materials (Supplementary Table S4

and Supplementary Figure S12 for a description of the data, and

Supplementary Figures S13–S19 for the results). Our observations

are similar to those made on the prediction of DFS 3 years after

surgery, although predicting DFS 3 years after surgery seems much

easier than 5 years after surgery (AUC of 0.77 vs 0.69). This is in line

with previous observations that earlier events are easier to predict

than long-term ones (44).

We stratified the data based on features that are expected to

define patients with similar prognoses (age, grade, number of lymph

nodes involved, molecular subtype). We found that the prediction

ability of M-BEHRT varies depending on subgroups and that the

model works better on older patients with more aggressive disease

(at least one lymph node involved). In addition, M-BEHRT is better

at predicting relapse after 5 years than after 3 years for luminal

tumors, suggesting that it correctly identifies predictive factors with

long term influence for these tumors that tend to recur later than

others (45).

There are however some limitations to the scope of our study. In

particular, our findings are restricted to a very specific cohort of

patients who received adjuvant chemotherapy. We also have not
FIGURE 9

Kaplan-Meier survival plots for the sequence: “sein en involution adipeuse partielle avec contingent glandulaire inferieur a 50”, (breast in partial
involution with less than 50% glandular tissue), Present or Absent in patients reports.
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been able to validate our findings on an external validation group,

due to privacy concerns limiting the access to EHR of other centers;

it is possible that our models have captured idiosyncrasies of Institut

Curie that do not apply to patients from other hospitals. We

acknowledge that replicability on different cohorts, although

notoriously difficult to ensure, although indispensable for clinical

use. There is evidence that training models jointly on multiple

cohorts is needed to smooth out hospital-specific patterns (46),

another reason why gaining access to additional data from other

clinical centers would be very beneficial indeed.

However, our work shows that it is possible to learn from

multimodal patient trajectories built from dynamic tabular data and

the content of free-text reports written by practicioners at each

medical visit, and paves the way for future research in

understanding breast cancer prognostic factors.
4.2 M-BEHRT learns on small data sets

An important aspect of our study is that, unlike most work

published to date using transformers for EHR data, which use
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millions of patients for pretraining and tens to hundreds of

thousands of patients for fine-tuning (13–15), the datasets we use

here are of much smaller sizes: about 15–000 patients for pretraining,

and 5–000 to 8–000 patients for fine-tuning. That it is possible to

apply such methods to much smaller data sets is very encouraging for

future research, as many studies, especially on very specific diseases

and endpoints, only have access to a limited number of patients.

However, despite the small sample size, our study has an

advantage over those with larger datasets’ studies because our

learning data includes only adjuvant-treated breast cancer

patients. This specificity has enabled the model to learn more

precise embeddings and improve the accuracy of relapse prediction.

Keeping the same pretrained model, we experimented with

further reducing the number of patients used for training the

classifier. To this end, we created smaller training sets by

randomly selecting subsets of the training data, starting from 10

samples, and compared on the test set the performance of Tabular

BEHRT and classical machine learning algorithms trained on these

small training sets. Our results, shown on Supplementary Figure

S20 in the Supplementary Material, show that Tabular BEHRT

clearly outperforms the classical machine learning algorithms,
FIGURE 10

Kaplan-Meier survival plots for the sequence: “lymphadenectomie axillaire”, (axillary lymphadenectomy), Present or Absent in patients reports.
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especially random forests, in the few-shot learning setting (when

training set sizes are very small), achieving better-than-random

performance with as little as 10 training samples and outperforming

NPI with a few hundred training samples. We attribute this

performance to the ability of the pretraining phase to learn

meaningful representations of patient trajectories.
4.3 M-BEHRT leverages the
complementary nature of different
modalities

In order to better understand the contribution of the different

modalities to the performance of Tabular BEHRT, we conducted an

ablation study. The results show that, with the exception of the

biological features, excluding one modality or more substantially

reduces model performance. This indicates that Tabular BEHRT

has the ability to leverage the complementary nature of the different

modalities. In addition, clinical features (dNPI, age, molecular

subtype and therapy) contribute the most to performance. This

observation is consistent with previous studies on breast cancer

relapse prediction (47, 48).

Although others have found the results of routine laboratory

tests to be very informative for predicting breast cancer endpoints (4,

47), our study did not see strong added value of including biological

markers on DFS prediction. This is particularly surprising regarding

cancer antigen CA 15-3, which has been found in several studies to

correlate to poor prognosis (49, 50) and recurrence (47, 51). In

addition, Kim et al. (47) found that an increase in leukocyte count

(LEUK) has a protective effect against breast cancer recurrence and

that an elevated neutrophil count (PN) is associated with recurrence,

although another study (4) did not find a significant association

between DFS and variables describing leukocyte counts and

counts or percentages of leukocyte subtypes. However, these

features not entirely uninformative, as restricting Tabular

BEHRT to the biological features modality still yields better-than-

random performance (AUC of 0.56 for T1 and 0.61 for T2). One

possible explanation is that the information contained in the

biological features is also captured by the other modalities, as their

evolution might be consistent with cancer severity or subtype, or the

choice of therapy. Our study is also limited in the number of

available laboratory variables, as markers that were found

informative in previous studies, such as hemoglobin, total protein,

serum glucose, alkaline phosphatase, or international normalized

ratio (4, 47) were not available (or not for enough patients) in

our data.

Perhaps surprisingly, we do not see the same drastic increase in

performance between Tabular BEHRT and M-BEHRT as others

have observed in multimodal prediction of breast cancer prognosis

when augmenting clinical data with imaging data (5, 6), although

Text BEHRT leverages medical reports from radiologists or

cytopathologists, which are based on medical images. Although

this could be due to the aforementioned limitations of Text BEHRT,
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this could also be because Tabular BEHRT already achieves much

better performance than models based solely on static clinical data.
4.4 M-BEHRT model interpretation points
to possible prognostic factors

The interpretation of M-BEHRT models through the integrated

gradients method highlighted that Tabular BEHRT relies on well-

documented prognostic features such as the age or the NPI (2, 52) to

predict DFS status. Additionally, the model uses features that indicate

a more aggressive breast cancer (number of multidisciplinary

meetings, number of consultations, or a second surgical procedure),

which cannot be necessarily be considered as causes of cancer relapse

but suggest a more difficult-to-treat cancer.

Regarding Text BEHRT, the model seems to rely mainly on

reports that contain symptoms-related information or reports from

imagery. When they occur before the first surgery, these

information are to be expected, as we are studying a cohort of

patients treated for breast cancer. However, if they occur after the

first surgery, these features can indicate further investigations that

are warranted by the difficulty to treat the primary tumor.

Let us note however that while deep learning model

interpretation is still somewhat limited, it has the potential to

offer a much more comprehensive interpretation of the roles

played by different elements in the data, given how rich the data

is. Moreover, the features that are highlighted as strongly

contributing toward one label or the other are only doing so in

conjunction with other features, which might be different from

patient to patient. Moreover, the embedding pooling method that

we have used to derive reports embeddings from their contents does

not help with interpretability, as it does not allow to pinpoint

specific parts of a medical report. Nevertheless, several potentially

interesting text features (such as high mammary involution or

axillary dissection) have been highlighted for their contribution to

M-BEHRT predictions. Even though it is not yet clear how these

features can be used as prognostic factors and incorporated in a

model usable in the clinic, survival curves show that they are indeed

informative of DFS even taken on their own.
4.5 Challenges of learning from long
sequences of rich events

In our approach, there is a tradeoff between the number of visits

that can be considered and the amount of information that can be

used to describe each visit, because the underlying BERT

architecture is limited to processing 512 tokens. This number is

arbitrary, but constrained by the memory usage of the self-attention

mechanism. We have found this number to be sufficient for the DFS

prediction tasks at hand and the available features and modalities.

However, this might be too small for other applications, in which

case one might want to use approaches that approximate the self-
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attention matrices so as to reduce their memory footprint, such as

Big Bird (28) or Nyströmformer (29). Another avenue worth

exploring in the future would be to use novel architectures such

as deep state-space models (53) or recursive neural networks with

linear recurrent units (54), which overcome this limitation of

transformers and account for long contexts. Note however that

this would not allow to use embeddings learned on French clinical

text, as we are not aware of any long-context model that has been

pre-trained on such data. In the present study, M-BEHRT

outperforms both NPI and classical ML baselines, suggesting its

ability to capture the structure of EHR data.

To the best of our knowledge, ours is the first study to use entire

free text medical reports (in a language other than English) for

breast cancer prognosis. There are several limitations to our

approach. First, we used token embeddings learned on French

clinical text that are not specific to breast cancer; it is possible

that pretraining on breast cancer clinical text could improve the

performance of our model. However, this requires considerable

resources, both in terms of amount of clinical records available and

computing power. Second, we build medical records embedding by

simply pooling all token embeddings of a record, which is likely not

be optimal for capturing the information contained in a report.

Several authors have proposed using convolutional neural networks

(CNN) or bidirectional long-short term memory architectures (Bi-

LSTM) on top of token embeddings (26, 55, 56), which typically

helps capturing the structure of text documents and could be an

interesting future direction to explore for this research. Despite

these shortcomings, our results demonstrate the ability of Text

BEHRT to capture relevant information, as it performs on par with

Tabular BEHRT.

Finally, M-BEHRT uses a cross-attention module to perform

the multimodal fusion between Tabular BEHRT and Text BEHRT.

This approach allows the contextual integration of information

from both transformers, i.e., that each model can attend

information from the other model, and thus enable a better

exploitation of the complementarity between inputs. However,

this requires that both tabular data and text data embeddings

have the same size, and forced us to reduce the dimensionality of

the embedding of sequences of reports from 768 (as provided by

DrBERT) to 144 through a linear layer. This may result in an

additional reduction of available information. However, this still

results in a slight improvement of overall performance.
4.6 Conclusion

Overall, our study highlights the potential to predict DFS using

solely longitudinal sequence of medical visits and evolution of

clinical information and biological measurements. To the best of

our knowledge, this is the first study predicting breast cancer

endpoints from sequences of EHR data, whether considering

solely multimodal dynamic tabular data, solely the contents of

free-text reports, or combining both. Our results underscore the
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usefulness of such data for future research on prognosis modeling,

and outline the importance of integrating medical information

collected over time to gain previously unknown insights into the

understanding of breast cancer evolution.
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