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Background: Electronic Health Records (EHRs) contain a wealth of information
about patients that could be useful toward improving treatment outcomes for
breast cancer patients, but remain mostly unexploited. Recent methodological
developments in deep learning, however, open the way to developing new
methods to leverage this information to improve patient care.

Methods: We propose M-BEHRT, a Multimodal BERT for EHR data based on
BEHRT, itself an architecture based on the popular natural language architecture
BERT (Bidirectional Encoder Representations from Transformers). M-BEHRT
models multimodal patient trajectories as a sequence of medical visits,
comprising a variety of information such as clinical features, results from
biological lab tests, medical department and procedure, and the content of
free-text medical reports. M-BEHRT uses a pretraining task analog to a masked
language model to learn a representation of patient trajectories from data that
includes patients that are unlabeled due to censoring, and is then fine-tuned to
the classification task at hand. A gradient-based attribution method highlights
which parts of the input patient trajectory were most relevant for the prediction.
Results: We applied M-BEHRT to a retrospective cohort of about 15-000 breast
cancer patients treated with adjuvant chemotherapy, using patient trajectories
for up to one year after surgery to predict disease-free survival 3 years after
surgery. M-BEHRT achieves an AUC-ROC of 0.77 [0.70-0.84] on a held-out data
set, compared to 0.67 [0.58-0.75] for the Nottingham Prognostic Index (NPI) and
random forests (p j 0.05). In addition, we identified subsets of patients for which
M-BEHRT performs particularly well such as older patients with at least one
lymph node affected.
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Conclusion: Our work highlights both the potential of EHR data for improving
our understanding of breast cancer and the ability of transformer-based
architectures to learn from EHR data containing much fewer than the millions
of records typically used in currently published studies. The representation of
patient trajectories used by M-BEHRT captures their sequential aspect, and
opens new research avenues for understanding complex diseases and
improving patient care.

electronic health records, breast cancer, relapse prediction, transformers, multimodal learning

1 Introduction

Breast cancer is by far the most commonly diagnosed cancer
among women (almost 2.3 million cases 31 worldwide in 2022) and
the leading cause of cancer death worldwide (1).

Among the various treatment options, adjuvant chemotherapy is
proposed to patients after first-line surgery to lower the chance that the
cancer will return. It is a widely used treatment option, and is offered in
many cases, unless the tumor was small, did not show sign of
aggressiveness, and no lymph nodes were affected. However,
recurrence or death are still possible. Accurately identifying the
patients most likely to relapse is therefore important to inform both
treatment selection and future research to propose better
therapeutic options.

One of the most commonly used prognostic tools for breast
cancer is the Nottingham Prognosis Index (NPI), which uses a
combination of three clinical features (tumor size, tumor grade, and
number of lymph nodes) and was proposed in 1982 (2). Since then,
many authors have used statistical and machine learning algorithms
to build breast cancer relapse predictors from clinical features;
however NPI still seems to be the most robust criterion (3),
despite its limitations.

In the quest for improving the future outcome of patients, there
has been a growing interest over the years for including information
besides clinical features into prognostic tools. These modalities
include biological measurements (4), magnetic resonance imaging
(5), ultrasound images (6), histopathological images or gene
expression data (7). The papers cited show that combining
different modalities improves prediction performance.

However, these modalities are not always available for all patients
treated. For this reason, other authors have taken advantage of the
considerable information present in medical reports that constitute
the EHR of patients, using named entity recognition techniques to
extract relevant terms from clinical notes (8, 9).

None of these methods account for the dynamic nature of EHR
data, in which information is recorded at several points in time.
Some early attempts at modeling sequences of medical events have
consisted in adapting recurrent neural network architectures and in
particular Long-Short Term Memory (LSTM) (10, 11) networks.
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Since then, transformer-based models inspired by BERT
(Bidirectional Encoder Representations from Transformer) (12), have
been established as state-of-the-art for patient trajectories (13-17) as well
as clinical text (18-20). Transformers have significantly outperformed
previous methods on a large variety of Natural Language Processing
tasks and continue to drive advancements in the field. Their superiority
is explained by the use of self-supervised pretraining tasks, such as
masked language modeling and next sentence prediction, which allows
them to learn better representations of the data. These architectures have
been successfully transposed to patient trajectories by seeing them as
sequences of medical events rather than of words. To the best of our
knowledge, however, none of these have considered data combining
sequences of medical visits described not only by codes describing
diagnoses, procedures or treatments, but also biological measurements,
clinical features and free-text medical notes. We have also not found any
work of that nature to date addressing cancer-related clinical outcomes,
possibly because existing transformer architectures are typically trained
on very large cohorts of millions of patients.

In this paper, we present several new transformer architectures
for predicting clinical outcomes from multimodal EHR data, which
consider patient trajectories as sequences of medical visits
represented by both tabular data (clinical features, biological
measurements, therapies, nature of the visit) and free-text medical
reports. We evaluate our proposed method on the prediction of
disease-free survival in breast cancer, on a cohort of several
thousands of patients, and show how integrated gradients (21)
can be used to interpret the learned model and identify text
sequences that yield significantly different Kaplan-Meier curves.
We pretrain the models on the equivalent of a masked language
model, which can also be trained on records excluded from the
classification training set because they were censored.

2 Materials and methods

2.1 Data

In this work, we used data extracted from the EHR system from
Institut Curie in Paris (France). All data collected were
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pseudonymized. Additionally, individuals under 18 years of age,
with a history of previous cancer, under guardianship, or unable to
provide consent were excluded from this study. Every patient
included in the study has completed and signed a research
informed consent form. The study was approved by the Breast
Cancer Study Group of Institut Curie and was conducted according
to institutional and ethical rules concerning research on tissue
specimens and patients.

We built a data base of 15-150 unique patients, treated with
adjuvant chemotherapy for breast cancer between 2005 and 2012.
The data base contains general descriptors of patients (such as age,
sex, or weight) as well as information about each visit in their
medical record: clinical information such as tumor size or cancer
subtype, biological markers (tumor markers, counts of leukocytes
and their subtypes) if they were measured, treatment information,
and free-text notes. Finally, the patients are annotated with survival
and recurrence information.

Free-text notes are unstructured narrative descriptions or notes
entered by healthcare professionals. Unlike the structured data,
which is organized into predefined fields, free text allows healthcare
providers to input progress reports and relevant patient
information recorded during patient journey, in a more natural
manner. Free text reports from cytopathology or radiology also
capture key information from medical images, as captured by
experts. Those medical reports comprise free-text clinical notes
for consultations, as well as free-text reports of cytopathology,
radiology, surgery, and blood tests. All reports are written
in French.

2.2 Preprocessing

2.2.1 Tabular data preprocessing
We first describe how we processed the structured or tabular,
ak.a structured, data describing each medical event for each patient.

2.2.1.1 Biological measurements

From biological measurements, we only kept features that have
less than 30% of missing values: MONO, LEUK, LYMP, PN and CA
15-3. All numerical values have to be discretized to enable
tokenization. We binarized biological measurements into two
values: 1 if the value is outside the normal range for the biological
measurement, and 2 otherwise. Supplementary Figure S1 in the
Supplementary Material shows the distribution of biological
measurements; the medical normal range of these biological
features can be found in Supplementary Table S1 in the
Supplementary Material.

In addition, we also computed the differences A, = v, — v, 4
between the current visit’s biological value v, and the previous visit’s
value v;_;. We then discretized the A values by dividing them by ten
and rounding. This captures more subtle variations in biological
measurements evolution than the mere abnormal/normal values.
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2.2.1.2 Clinical information

From the clinical information, we included both longitudinal
and non-longitudinal features: age, undergone therapies, and tumor
size on the one hand, tumor grade and number of nodes involved at
diagnostic as well as breast cancer molecular subtypes (Luminal,
TNBC, HER2+/RH-, HER2+/RH+) on the other. Age is computed
at each visit and discretized by rounding to the nearest integer.
Descriptive statistics of the age, breast cancer subtype, grades,
number of lymph nodes involved, tumor size and biological
measurements are given in Supplementary Table S1 in the
Supplementary Material.

We combined tumor size, tumor grade and the number of
lymph nodes involved into the NPI (2), a commonly used, clinically
relevant and robust prognostic tool (3). The NPI is computed as
NPI = 0.2 x tumor size (cm) + tumor grade + lymph nodes stage,
where the lymph nodes stage is computed as 1 (0 nodes), 2 (1 to 3
nodes) or 3 (> 3 nodes). The lower the score, the higher the chance
of survival 5 years after surgery. The tumor size is measured at
various points in the cancer journey. We kept for this study the
clinical tumor size assessed at diagnosis when the tumor is palpable,
and the pathological tumor size which is the histological size of the
tumor extracted at the surgery. The NPI is recalculated with each
new tumor size measurement, hence termed as the dynamic NPI
(dNPI). For patients with at least one available feature among the
three required for calculating the dNPI, we imputed missing tumor
sizes using the mode value among samples of the same clinical or
pathological tumor stage (TNM) status. The number of involved
lymph nodes is the sum of the number of affected sentinel nodes
and axillary nodes. We imputed missing number of nodes to zero
and missing tumor grade to G2 (grade 2), based on the most
frequent values in our data. The higher the dNPI, the lower the
chance of survival.

Following Blamey et al. (22), we categorized dNPI into six
prognostic groups (PG): Excellent (EPG) (NPI < 2.4), Good (GPG)
(24 <NPI < 3.4); ModerateI (MPGI) (3.4 < NPI < 4.4), Moderate
II (MPG II) (44 < NPI < 5.4), Poor (PPG) (54 < NPI < 64) and
Very Poor (VPPG) (NPI > 6.4).

As tumor grade and number of nodes are combined with the
dynamic tumor sizes into the dNPI, the only static feature we
consider is breast cancer subtype. Nevertheless, the algorithm we
propose can handle any number of static features.

Because M-BEHRT can handle missing values (see Section
2.3.1), we did not impute missing values for longitudinal features.
However, for the baselines, we opted to impute the tumor size,
number of nodes, grades and cancer subtype by an aberrant value of
999. Using an aberrant value allows the model to explicitly identify
and differentiate imputed values from the actual data, by analogy
with not locating a token within a sentence when using M-BEHRT.

2.2.1.3 Therapies, department and procedure
Therapies are inferred by considering the occurrence date for
the surgery, the start and end dates for hormone-therapy,
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chemotherapy and anti-HER?2 treatment, and the number of doses
administered for the radiotherapy. This inference incorporates the
therapeutic protocol of Institut Curie (see Supplementary Figure S2
in the Supplementary Material). Subtherapies, also inferred from
this protocol, provide additional information about the specific
molecules given in the case of chemotherapy or anti-HER2 therapy,
radiation types in the case of radiotherapy, and specific surgical
procedures including both breast and axillary surgeries. A list of all
possible values for the therapies and subtherapies fields is given in
Supplementary Table S3 in the Supplementary Material.

Finally, medical visit department and procedure names are
available within the headers of free-text reports. We normalized
department and procedure names by removing accents,
punctuation and special characters. We merged synonyms into a
single word: for example, anapath, anatomopathologie and
anatomo-cyto-pathologie are merged into anatomo-cyto-pathologie
(anatomical cytology in English). To do so, we sifted through the
corpus vocabulary, identifying and unifying synonyms and/or
differently written terms to enhance coherence of the medical
history. We also removed words that appear fewer than 100 times
in the whole corpus.

10.3389/fonc.2025.1496215

2.2.1.4 Disease-free survival at 3 years

Finally, we defined a binary classification task by labeling each
patient with whether they had survived disease-free 3 years after
the surgery.

We retained patient history up to one year after first surgery and
starting from 6 months before the breast cancer diagnosis. Out of
15-150 patients, we removed 206 patients who relapsed before the
index date, as learning would be biased by the presence of
information directly pertaining to a known relapse. In order to
formulate the learning task as a classification problem, we also
removed 6-855 patients for which the date of latest news occurred
earlier than 3 years after the first surgery. This is depicted in the
flowchart in Figure 1.

All patients had at least 3 visits in their medical history. This
results in 8-089 patients, with 6.2% having a negative disease-free
survival (DFS) status. This makes for a heavily imbalanced data set,
which will require using appropriate techniques to avoid biasing
models in favor of the overrepresented class.

For the evaluation of our models, we held out a test set
containing 520 patients, with a proportion of negative samples
(6.1%) similar to that of the whole data set. For pre-training tasks

b4
2
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(n=12084)
% AC treated patients
= (2005 - 2012)
Z n = 15150
<
g — Validation
(I} (n=3021)
o
(=%,
Remove patients
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(2005 - 2012)
n = 14944
n
<
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[
S
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(%]
7] AC treated patients
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(n=6055) (n=1514) (n=520)

FIGURE 1
Flowchart of study inclusion and exclusion.
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requiring no labels (see Section 2.3.2), we used all patients and their
full history.

2.2.2 Free-text reports preprocessing

Free-text reports represent unstructured textual descriptions of
medical information recorded by medical experts. They can be
clinical notes, that is to say, information recorded during patient
encounters with clinicians, or reports made by specialists
(laboratory biologists, radiologists, histopathologists) to interpret
the results of medical exams. The average number of visits, reports,
and words per report in our data are given in Supplementary Table
S1 in the Supplementary Material.

Unlike tabular data, that is recorded in a standardized way at
least within a hospital, medical reports are highly variable, as they
allow each healthcare provider to be distinctive in format, style, or
terminology. Moreover, the semantic related to the medical field is
complex, using abbreviations, acronyms, and medical jargon (23).
Therefore, in addition to common NLP preprocessing steps
(normalization, removal of noisy entities, adverbs, stopwords and
text delimiters), our text preprocessing pipeline includes steps that
are specific to medical reports. The full text preprocessing pipeline
is described on Supplementary Figure S3 in the Supplementary
Material, and we describe in Text S1 in the Supplementary Material
the steps that are specific to clinical text.

2.3 Multimodal BEHRT

Information retrieved from EHR are generally time stamped
events. In this study, this information is organized as structured or
tabular data (for numerical values) collected over time, along with a
series of free-text medical reports throughout the patient’s journey.
As in Natural Language Processing, EHR can be transformed into
sequences of tokens, where each token represents a unit of
information from the EHR rather than a linguistic unit. These
sequences can then be fed into language models such as
transformers (24). This was first proposed by Li et al. (13), who
introduced BEHRT (BERT for EHR), an architecture based on that
of BERT (Bidirectional Encoder Representations from
Transformers) (12) to predict future conditions from a sequence
of diagnoses.

Here we propose Multimodal-BEHRT (M-BEHRT), which
combines two transformer-based deep learning models of
architecture inspired by BEHRT’s: Tabular BEHRT and Text
BEHRT. Tabular BEHRT considers that each medical visit is
described using structured data: the department in which it took
place, the corresponding procedure, as well as clinical and biological
measurements available at this time. Like BERT and BEHRT,
Tabular BEHRT combines a pre-training task (Masked Language
Model) with a downstream task (the classification task), but applies
it to a multimodal EHR tabular dataset. Text-BEHRT considers that
each medical visit is represented by a free-text medical report. Text
BERT uses adapted pretrained embeddings to build a sequence that
serve as input for the classification task. M-BEHRT is a meta-model
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that combines Tabular BEHRT and Text BEHRT through a cross-
attention module (25).

In what follows, we first describe how we construct patient
trajectories (Section 2.3.1 from multimodal tabular data (Section
2.3.1.1) as well as free-text reports (Section 2.3.1.2). We then
describe in Section 2.3.2 the self-supervised approach used for
learning embeddings of multimodal patient trajectories, and in
Section 2.3.3 the architecture we propose for the binary
classification of patient trajectories. Finally, we describe the
baselines used to evaluate our models in Section 2.4.

2.3.1 Multimodal sequence construction
2.3.1.1 Patient trajectory representation from structured
data

By analogy with Natural Language Processing data, a patient’s
history can be seen as a document, where visits serve as sentences,
and the events within the visits act as tokens. In our final data, the
medical sequence consists of a sequence of visits that are
chronogically ordered.

We used dates from the medical reports to construct medical
chronological sequences. Each visit is described by the specific
department and procedure from which the report originates,
which contextualizes additional features, which are incorporated
as available.

As illustrated on Figure 2A, each visit is therefore described by
at most 17 features: biological measurements that include binary
values and deltas of measurements of the 5 biological markers, the
medical department where the visit took place, the type of
procedure the visit corresponded to, the therapy and sub-therapy
administered, the patient’s age, the dNPI and the breast cancer
subtype (which is static but repeated at each visit).

A separate modality layer indicates what kind of feature each
measurement corresponds to. Generally speaking, this could be set
to simply indicating the modality (biological, clinical, visit), but here
we chose to be specific and encode the feature name. This allows us
in particular to deal with missing values, which can simply be
skipped as the modality layers provides the information of what
feature is at each position. The modality layer allows the algorithm
to treat each modality differently.

As in BERT and BEHRT, a sequence of visits starts with the
special token CLS, and visits are separated with the special
token SEP.

Whereas BEHRT captures temporal information by including
the age of the patient in a separate layer, we kept age as other clinical
descriptors in the main input layer, but added another special
embedding layer that represents the delay between the next visit and
the previous. We discretized delays, as in Pang et al. (14), into W0-3
(under 1, 2, 3, or 4 weeks) for delays shorter than 4 weeks, M1-12
(under 1 month up to under 12 months) for delays shorter than a
year and LT (long term) for delays longer than a year.

One of the notable constraints in BERT-like models is token
capacity: they process tokens in fixed-size sequences of at most 512
tokens. While this size is arbitrary and varies depending on the
exact BERT architecture and implementation, it cannot take much
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FIGURE 2

M-BEHRT architecture. (A) representation of patient trajectory using tabular data. (B) representation of patient trajectory using free-text reports.
(C) architecture of Tabular BEHRT (learning from patient trajectories represented from tabular data as in Panel A). (D) architecture of Text BEHRT
(learning from patient trajectories represented from free-text reports as in Panel B). Panel architecture of M-BEHRT, learning from both
representations by combining Tabular BEHRT and Text BEHRT with cross attention.

larger values, as it is linked to the memory usage of the self-attention
mechanism of BERT, which grows quadratically with the number of
tokens (each token being attentive to every other token). There is
therefore a tradeoff between the number of features/tokens used to
describe each visit, and the number of visits that can be considered.
This is alleviated by the exclusion of both missing values and
biological delta values equal to zero (corresponding to an absence
of change in measurement), which is possible as the modality layer
informs the architecture as to the kind of feature each token
corresponds to. In practice, if the patient trajectory still exceeds
512 tokens, we only consider the first 512 tokens, which represent
the initial interactions of the patient with the healthcare system, and
inform about initial diagnostic visits and treatment decisions.
Indeed, although the last 512 might contain more relevant
information, a predictive model that makes use of early
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information and can detect factors predictive of relapse among
these initial events has more clinical value. Supplementary Figure S4
in the Supplementary Materials shows how much information is
excluded from patient trajectories due to restricting data to the 512
first tokens.

Figure 2A illustrates this representation of patient trajectories
based on tabular data.

2.3.1.2 Patient trajectory representation from free text

In addition, we assume that important information is contained
within the text itself of the free-text reports. We therefore build a
sequence of free-text reports, ordered chronologically from the date
of the diagnosis until the index date (one year after the first surgery).
As shown in Supplementary Table S2 in the Supplementary
Material, the number of reports per patient and the length of
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each report are such that these create very long documents (on
average 34 reports, averaging 159 words each, for a total of more
than 5-000 words per patient history). However, while BERT has
proven to be highly effective in capturing contextual relationships
and semantic nuances in text, it can only process sequences of at
most 512 tokens, due to the memory footprint of the self-
attention mechanism.

This constraint again poses challenges when dealing with
lengthy documents such as a sequence of medical reports (26).
Using transformers to classify long documents is still a topic of open
research (27). The most straightforward approach consists in
truncating inputs to fit within the allowed number of tokens,
typically by using the first, last or middle tokens. However,
limiting patient history to 512 tokens may result in major
information loss and hence produce incomplete representation of
medical reports. Other approaches such as Big Bird (28) or
Nystromformer™ (29) use sparse or low-rank approximations of
the self-attention matrices. However, existing pretrained models
typically do not handle more than 4-096 tokens, which is still too
short for some of the patients in our data set. In addition, they have
only been trained on English corpora whereas our medical notes are
in French. Nevertheless, our corpus is much too small to train a
transformer model from scratch. Finally, many approaches consist
in dividing long text into chunks smaller than 512 tokens and
combining their embeddings, whether through an additional layer
of self-attention in a hierarchical model (30) or by pooling (31). In
the absence of a clear consensus on which of these strategies is likely
to perform best (27, 31), we chose here to use a simple aggregation
strategy. More specifically, we construct the embedding of every
report by summing the embeddings of all tokens it contains, and
construct sequences not of token embeddings, but of
reports embeddings.

We obtain token embeddings from DrBERT (32), a state-of-
the-art transformer model, based on the ROBERTa architecture (33)
and trained on a French biomedical corpus which contains 7GB of
clinical data from multiple sources. We can then train a BERT
model on the sequences of reports embeddings. To account for
temporality, we add an embedding layer of delays between reports.
Finally, we use BERT special tokens: CLS for the start of a medical
history and SEP to separate reports from different visits. This
representation is illustrated on Figure 2B.

2.3.2 Pretraining task

To improve the embeddings of patient trajectories built from
structured data, we follow the example of BEHRT and pre-train a
Masked Language Model (MLM) on the representations described
in Section 2.3.1.1.

As in Natural Language Processing, the MLM is designed to
predict missing or masked tokens within a patient’s history, using
the bidirectionaly context provided by the surrounding tokens. Its
goal is to learn contextual representation of the medical events in
the patient’s history. For this purpose, in this pre-training phase
Tabular-BEHRT uses the whole cohort of 15-150 patients and the
entire sequence of events for each patient, from the date of diagnosis
to the date of death or censorship, with a length average of 506(+
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466) tokens. We randomly replaced 15% of the tokens with a special
MASK token. We swapped another 2% with another token at
random; this adds a limited amount of noise, encouraging the
model to learn a more robust and generalizable representation of
patient trajectories. As shown on Figure 2C, the MLM part of M-
BEHRT is a transformer-based architecture that generates
probabilities for each token in the vocabulary, computed using
softmax over the model’s output logits, as a multilabel learning task.

We first split the dataset into a training (90%) and a validation
set (10%) in order to prevent overfitting. Then, all the embeddings
from the training set are randomly initialized and fed to the MLM.
We use Bayesian optimization to find the best set of
hyperparameters, with precision (proportion of masked tokens
correctly predicted) as a criterion. For robustness, we run the
model five times with five different random seeds for the
sequence masking, and use as final token embeddings for the
downstream classification tasks the mean values of standardized
embeddings from these five runs.

The pretraining task solely concerns tabular data, to establish
effective representations of tabular events within the patient
trajectory. For text data, running an MLM on the whole medical
corpus would require more computational resources than available.

2.3.3 Binary classification

We now describe the architecture of M-BEHRT, a deep neural
network to learn binary classifiers from patient trajectories. M-
BEHRT is the combination of two architectures: Tabular BEHRT,
which learns from patient trajectories built from structured data;
Text BEHRT, which learns from patient trajectories built from
free text.

Tabular BEHRT consists in using labeled data to fine-tune for
classification the network obtained by pre-training on patient
trajectories built from structured data. As shown on Figure 2C,
only the last layer is different between pre-training and fine-tuning:
here the patient history embeddings are fed to a single feed-forward
layer with sigmoid activation.

The architecture of Text BEHRT is illustrated on Figure 2D. It is
again a transformer-based model, which uses report embeddings
obtained through the aggregation of DrBERT embeddings as
described in Section 2.3.1.2. The same sampling strategy as the
one depicted in the previous section is used for this task.

Finally M-BEHRT combines information from tabular data and
free-text reports by integrating Tabular BEHRT and Text BEHRT
using a cross-attention module (25). The cross-attention module
extends the capabilities of traditional transformer architectures to
handle multiple data modalities in a unified framework. Hence M-
BEHRT is expected to harness the complementarity of the
information encoded in different modalities to improve
predictive power.

As shown on Figure 2E, logits from structured data trajectories
and the text trajectories are computed using their respective models.
The cross-attention layer calculates attentions with the logits as key,
value and query. Logits from Text BERHT used as query interact
with logits from Tabular BERHT that represent key and value. Note
that we could swap the roles of Text BEHRT and Tabular BEHRT
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here, using logits from Tabular BEHRT as query and logits from
Text BEHRT as key and value, but this led to worse performance in
practice. The loss is backpropagated to the cross-attention module.
To do so, logits must have same size. Therefore, logits from Text
BEHRT are first fed through a single feed-forward layer to obtain an
embedding of the same size as logits from Tabular BEHRT.

To alleviate computational burden and following the
observation made in other contexts that this does not significantly
harm performance ()?, we freeze the Tabular BEHRT and Text
BEHRT modules, and only tune the cross-attention module.

Because our training data is heavily imbalanced (6.2% negative
examples only), we implemented a class-aware sampling strategy, in
which each batch is made to contain the same number of positive
and negative samples by sampling with replacement for the
minority class. This sampling strategy allows us to train on
balanced batches.

2.4 Comparison baselines

To evaluate our models, we developed several comparison
baselines. The first is the NPI measured at the date of diagnosis, a
tool that is currently used in the clinic to predict prognosis. In
addition, we developed baselines using classical machine learning
methods: random forests classifiers (RF), logistic regression (LR),
and support vector machines (SVM). These machine learning
models (RF, LR and SVM) use the same input data as M-BEHRT,
but cannot directly use sequential information. For dynamic tabular
data (procedure name, department name, binarized biological
measurements), sequences of events are transformed into number
of occurrences of events. Clinical features (age, therapies, tumor
size, tumor grade, breast cancer molecular subtype and number of
nodes) are kept static, using their values at the time of diagnosis.
Regarding free-text reports, we created a table where each feature of
the report embeddings (of 768 dimensions) becomes a column. We
imputed missing values with zero (0) for both of the inputs. For M-
BEHRT, outputs from tabular data baselines and from text data
baselines (specifically their logits) constitute inputs to a secondary
model (meta-model) which makes the final prediction.

To address class imbalance, which might bias the model toward
the majority class, we used a cost-sensitive learning strategy, in
which training samples are assigned a weight inversely proportional
to the frequency of their class in the loss function (logistic loss for
LR, Gini impurity for RF, and hinge loss for SVM).

2.5 Model selection

For model selection, we split the training data (8-289 patients,
excluding the held-out data set of 520 patients) into a training and a
validation sets (respectively 90% and 10% of the data). For each
method, we use Bayesian optimization (34) to find the optimal set of
hyperparameters, using the Average Precision Score (APS) on the

validation set as a performance criterion.
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2.6 Computational resources

We used Python to code models and analyses pipelines for this
study, in particular scikit-learn (35) for the classical machine
learning models, hyperopt (34) for Bayesian optimization, spaCy
(36) for natural language processing tasks, and PyTorch (37) for the
implementations of Tabular BEHRT, Text BEHRT and M-BEHRT,
which are built on that of BEHRT (13). The masked language model
and DFS classification model were computed on NVIDIA A40-
46GB Graphical Processing Units (GPU).

Finally, our code is available at https://github.com/maguettemb/
Multimodal-BEHRT.

3 Results
3.1 Patient trajectory embeddings

3.1.1 Tabular patient trajectory embeddings

We first focus on the Masked Language Model (see Section
2.3.2) and evaluate the quality of the patient trajectory embeddings
learned during the pre-training phase of Tabular BEHRT.

The optimal hyperparameters we identified for the MLM are 5
hidden layers with 12 attention heads, a hidden size of 144, an
intermediate layer size of 133, a training duration of 120 epochs,
using Adam optimizer with a learning rate set to le-3 and a batch
size of 64.

To assess the ability of the MLM to provide meaningful
embeddings, we ran the model five times with five different
random seeds for the sequence masking. We also computed a
baseline by running the MLM on a data set in which tokens have
been randomly reordered within each sequence. This approach
disrupts the inherent sequential structure of the data, and creates a
scenario where the model should not be able to rely on contextual
relationships between tokens. Hence, comparing the MLM
embeddings on shuffled sequences against those on original
sequences offers a benchmark for assessing the impact of
contextual information on the model’s predictive capabilities.

One way to evaluate embedding quality is to measure the
MLM’s precision (proportion of correctly predicted masked
tokens), which we report for both models on the held-out
validation set on Supplementary Figure S5 in the Supplementary
Material. The MLM is able to predict masked tokens with a
precision of 72% on the validation set, a performance that is not
significantly different from the one on the training set, highlighting
the absence of overfitting. In addition, this precision is significantly
higher than the precision of 55% obtained when shuffling the
sequences, which shows that the MLM does indeed capture
contextual information. We also note that the precision of the
MLM of BEHRT reported by Li et al. (13) on sequences of diagnoses
is of 66%. While it is difficult to compare this performance to ours
due to the different nature of the tasks, it indicates that the MLM
provides embeddings of sufficient quality to perform supervised
learning in a second stage.
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We further evaluate embeddings generated by the MLM by
visualizing token embeddings through two-dimensional plotting
along the first two components of a t-distributed Stochastic
Neighbor Embedding (t-SNE) as shown on Figure 3. This figure
shows how the MLM capture semantic relationships between
tokens and contextual information. Tokens belong to the same
modality (therapies, variation in biological features, breast cancer
subtypes) tend to cluster together, with the exception of procedures
and departments, which tend to be mixed together. This is however
unsurprising, as some procedures and departments are tightly
linked; for example, panel F shows that the embedding of the

10.3389/fonc.2025.1496215

“nuclear medicine” service is quite close to the embeddings of
“radiology”, “scanner” and “MRI” procedures, while panel D shows
that the embedding of the “radiotherapy” service is quite close to the
embeddings of several procedures all relating to the proposal,
prescription, initiation, unfolding and ending of treatment
by radiotherapy.

3.1.2 Medical reports embeddings

We first evaluate the quality of the medical reports embeddings
obtained by pooling tokens embeddings extracted from DrBERT by
visualizing them after their projection into a 2D space using t-SNE.
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FIGURE 3

SNE component 2

TSNE component 2

t-SNE of Tabular BEHRT tokens embeddings as learned by the Masked Language Model. (A—F) zoom in on specific section of the plot. (A)
corresponds to a cluster of deltas in biological measurements. (B) shows that age tokens cluster together. (C) shows that therapy token, on the one
hand, and breast cancer subtypes, on the other, cluster together. (D, F) show two different clusters of procedures and departments. (E) show that

dNPI tokens cluster together, as well as BERT special tokens.

Frontiers in Oncology

09

frontiersin.org


https://doi.org/10.3389/fonc.2025.1496215
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Mbaye et al.

The proximity of reports within this space corresponds to their
semantic similarity. As shown in Figure 4, this visualization
provides a comprehensive overview of the clustering patterns,
demonstrating the potential of DrBERT embeddings in
representing French medical text data.

This figure shows clusters of reports written in the same
departments. Additionally, it display proximity between clusters
that arise from similar departments. The Panel A groups all reports
“MRI”,
The same pattern is observed in

associated with radiology, including “mammography”,
“ultrasound”, or “scintigraphy”.
Panel D, which contains the “generic” reports as those related to

» o«

“discharge”, “external care” or “information”, and in Panel B, with

10.3389/fonc.2025.1496215

clusters relating to cytology (“anatomocytopathology”, “cytology”).

Lastly, Panel C displays reports from various departments
positioned closely together.

3.2 DFS prediction

3.2.1 Comparison of M-BEHRT with baselines

We report on Figure 5 the ROC curves on the test set of M-BEHRT
trained with optimal hyperparameters (see Section 2.5; learning rate of
107, batch size of 64, Adam optimizer, 6 epochs of training), as well as
of the comparison baselines described in Section 2.4.
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FIGURE 5

ROC curves M-BEHRT with the baselines for the prediction of disease-free survival 3 years after surgery, on the test set.

Figure 5 shows that all methods perform significantly better
than a random classifier (AUC-ROC of 0.5). Moreover, M-BEHRT
outperforms all comparison machine learning models (Table 1).

3.2.2 Ablation study

To better understand the contribution of each modality to the
performance of M-BEHRT, we first compared it to the individual
performance of its components Tabular BEHRT and Text BEHRT.
Figure 6 reports ROC curves for all three approaches, on the test set.
The optimal hyperparameters for Tabular BEHRT were a learning
rate of 107%, a batch size of 16, Adam optimizer, and 5 epochs of

TABLE 1 AUC scores comparison for M-BEHRT and the baselines for the
prediction of disease-free survival 3 years after surgery, on the test set.

Models AUC scores

0.77
M-BEHRT
[0.70 — 0.84]
NPI 067
[0.58 - 0.76]
Random Forests 067
[0.58 - 0.75]
Logistic R i 061
ogistic Regression
& & [0.52 - 0.71]
0.61
SVM
[0.55 — 0.72]

M-BEHRT significantly outperforms the other methods (DeLong test in Supplementary
Figure S6 in the Supplementary Material).

Frontiers in Oncology

training; for Text BEHRT they were a learning rate of 5.10~%, a batch
size of 32, Adam optimizer, and 99 epochs of training.

Although they use different information, Tabular BEHRT and
Text BEHRT achieve similar performance on both tasks,
highlighting that Text BEHRT can capture relevant information
in unstructured medical reports. The combination of both models
through cross-attention slightly improves their respective
performance, demonstrating the synergistic effect of integrating
the strengths of both Tabular and Text BEHRT into a single
unified model.

We also performed an ablation study to better understand the
contribution of each tabular modality to the performance of
Tabular BEHRT. First, Supplementary Figure S7 in the
Supplementary Material shows the ROC curves of Tabular
BEHRT with and without pre-training, showing that pre-training
does improve the performance of the model. Figure 7 shows the
areas under the ROC curves obtained on the test set when removing
some of the modalities from Tabular BEHRT. This figures shows
that dNPI contributes the most to the performance. However, the
addition of the other features, in particular the remaining clinical
features (including age and more notably therapies), increases
performance substantially. Biological features contribute the least
to performance, although they still contain information, as they
allow for better-than-random prediction. However, it seems that
this information is redundant with that captured by the other
features. Performance also drops substantially if information
about the nature of the medical visit (department and procedure)
is omitted. These observations are consistent across both tasks.
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FIGURE 6

ROC curves comparing Tabular BEHRT and Text BEHRT against their combined model MBEHRT for the prediction of disease-free survival 3 years

after surgery, on the test set.

We also provide in the Supplementary Material a comparison of
Tabular BEHRT with baselines that only make use of tabular
information (Supplementary Figure S8 in the Supplementary
Material) and a comparison of Text BEHRT with baselines that
only make use of text information (Supplementary Figure S9 in the
Supplementary Material). In both cases, the transformer-based
approaches outperformed all comparison partners.

3.2.3 Performance of M-BEHRT per cancer
subtype

Figure 8 presents the AUC-ROC of M-BEHRT on the test set,
stratified by patient age, tumor grade, molecular subtype, or node
status. M-BEHRT is better at predicting DFS at three years on older
patients, with at least one affected lymph node. Stratification of
results by NPI range is available on Supplementary Figure S10 in the
Supplementary Material.

3.2.4 Model interpretation

To better understand the predictions of M-BEHRT, we used the
CAPTUM (38) implementation of the integrated gradients (IG)
method (21) to attribute the predictions of either Tabular BEHRT
or Text BEHRT to their input features. This allows us to highlight,
for a given input sequence of visits, the elements that contributed to
the label.

Overall, Tabular BEHRT mainly uses NPI tokens to correctly
identify relapse or death for samples from the poor prognosis
groups (VPPG and PPG), or to correctly identify DFS for patients
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from the good prognosis groups. What is more interesting,
however, is to look at the tokens that Tabular BEHRT uses to
accurately predict relapse or death for samples from the good and
moderate prognosis groups, as they might provide critical insights
into the aggressiveness and progression of the disease. They point
toward having a high number of multidisciplinary consultation
meetings (“RCP” in French), a high number of consultations
overall, a second surgical procedure (within one year of the first
one), or abnormal values for the CA15-3 and the LYMP biological
markers. Moreover, Tabular BEHRT uses well-documented factors
in the literature to predict a positive DFS status such as age.

The interpretation of Text BEHRT’s predictions shows that the
model mostly relied on the entire sequence of the reports from the
diagnosis to the index date to make its prediction, which is
represented by the CLS token. We found this pattern in many
true positive (correctly identifying death or relapse) samples.
Moreover, Text BEHRT relies on reports that show information
regarding the characterization of a suspicious tumor, but this is not
in and of itself indicative of a future relapse.

Finally, in order to gain a more global understanding of the
model, we investigated the most predictive reports for a positive
DEFS status and for a negative DFS status. We set a threshold
regarding the given attribution for each medical report. We collect
all the reports with an attribution above this threshold. This yielded
921 reports that are predictive for negative DFS status in the entire
corpus, and 1-720 reports that are predictive for positive DFS
status. For each reports collection, we determined the 30 most
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Ablation study: 3 years after surgery classification
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FIGURE 7
Ablation studies AUC-ROC on the test set for Tabular BEHRT. We present results for the full model (Tabular BEHRT), then using only one of the 4
modalities (dNPI, clinical features, biological features, medical visits), two modalities (dNPI+clinical or biological+visits), then removing one of the 4
modalities. Here "medical records” stands for features extracted extracted from the medical record headers, that is to say, visit department and
procedure. Performance scores are presented on the test set.

Variable N AUC score (95% Conf. Int.)
Age :
<50 (162:16) 178 ©0.72(0.59 to 0.85) : —
>=50 (314:28) 342 0.78(0.69 to 0.87) : ——
Molecular s/types :
Luminal (260:22) 282 0.74(0.62 to 0.85) : —
Her2+ (81:5) 86 0.85(0.74 to 0.96) : —
Tnbc (47:6) 53 0.85(0.73 to 0.97) : —
Nodes :
NO (343:21) 364 0.73(0.64 to 0.83) : —
N+ (133:23) 156 0.76(0.65 to 0.87) : —
Grade :
Grade 1 (82:2) 84 0.59(0.19 to 0.99) : <
Grade ii (204:15) 219 0.79(0.68 to 0.90) : —
Grade iii (190:27) 217 0.74(0.64 to 0.85) | —

|
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AUC scores

FIGURE 8
AUC-ROC of M-BEHRT on the test set stratified by patient age, cancer grade, molecular subtype and node status.
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frequent sequences (of 3 to 9 words) for both groups. We then listed
the most frequent sequences for the DFS negative group that are not
found in the DFS positive group. The resulting sequences of words
can be found in Table 2.

Some of these sequences were obtained by combining overlapping
sequences. We then plotted Kaplan-Meier survival curves to compare
patients that have reports containing one of these sentences and
patients that do not. DES is the event and the log-rank test is used to
compare the populations. We show here two such curves,
corresponding to sentences showing the most significant sequences:
Figure 9 is for a sequence that translates to “breast in partial involution
with less than 50% glandular tissue and Figure 10 is for a sequence that
translates to “axillary lymphadenectomy”.

For the first example (Figure 9), the survival curves suggest that
patients with this feature are most likely to relapse than others. This
feature defines a specific state of breast tissue where the glandular
tissue is replaced by adipose tissue. This process naturally occurs
with aging and after menopause. Therefore, this feature could have
an impact on DFS simply because it is related to the patient’s age,
which is already a prognostic factor. However, when compared with
2 age groups (see Supplementary Figure S11 in the Supplementary
Materials), it added more information on the survival than just > 50
years old and< 50 years old. Young patients with this feature
represent the worst prognostic groups.

Although mammary involution is not a commonly used
prognostic factor, several studies have showed a link between
involution and breast cancer risk (39, 40); the underlying biological
process could maybe also explain a heightened risk of relapse in young
patients presenting abnormal mammary involution.

The second plot (Figure 10) compared a population with the
feature “axillary lymphadenectomy” and a population without. This
feature is a mention of removing lymph nodes from the armpits.
This information is associated with the potential affection of axillary
nodes, which is found to be predictive for BC relapse.

10.3389/fonc.2025.1496215

4 Discussion

In this paper, we proposed several novel deep learning
architectures inspired by BEHRT to model patient trajectories
using multimodal data extracted from EHRs. As the original
BEHRT model, Tabular BEHRT considers structured data to
describe each medical event. In addition, it considers multiple
modalities (biological lab results, clinical information, department
and procedure names) simultaneously. By contrast, in Text BEHRT
each visit is described via the content of free text medical reports.
Finally, M-BEHRT combines both models through cross-attention.
Our work is motivated by applications to oncology, and applied to
the prediction of disease-free survival for breast cancer patients.

4.1 M-BEHRT achieves state-of-the-art or
better prediction of DFS

Using very different information, Tabular BEHRT and Text
BEHRT achieve AUCs on a held-out data set of 0.75 [0.66-0.83] and
0.75 [0.68-0.81], respectively, for the prediction of DFS 3 years after
surgery. Combining them in M-BEHRT slightly increases predictive
power, reaching an AUC of 0.77 [0.70-0.84]. All three architectures
outperform classical machine learning methods. M-BEHRT is therefore
able to capture the sequential aspect of patient data throughout their
medical journey, resulting in improved performance.

To date, most of the multimodal prognosis models for breast
cancer use various types of medical images, as well as sometimes
genetics data, combined or not with tabular information (biological
measurements, clinical features). Moreover, endpoints vary between
studies: DFS, but also overall survival or recurrence (sometimes
separated between local, regional and distant); which can be
measured 3 years after surgery as in the present work, but also at
different time points. Finally, different studies use different criteria

TABLE 2 Most frequent sequences found in reports with high attribution for DFS- (relapse/death) instances but not for DFS+ instances, in Tabular

BEHRT.

Sequence meaning in English Description

Breast in partial involution with less than
50% glandular tissue

Previous treatment with human growth
hormone, without risk factors for CJD
transmission

Adipose involution is a natural process where glandular tissue is gradually replaced by fat tissue, often as a result of aging or
hormonal changes. Here, the glandular tissue makes up less than half of the total breast composition. While age is a risk
factor for breast cancer, lobular involution is associated with a reduced risk of breast cancer (39, 40).

Treatment with human growth hormone can lead to the transmission of Creutzfeldt-Jakob disease (CJD). This information
is a medical administrative criterion checked before surgery.

With axillary lymphadenectomy

Palpable mass

Until recently, axillary lymph node dissection was standard procedure in the case of involvement of lymph node in breast
cancer, one of the main known risk factors for relapse or death (41).

Palpable breast lumps are the most common presentation of breast disease.

Solu-Medrol, 80mg based chemotherapy (42).

Lovenox 0.4 mL

Solu-Medrol is one brand name for methylprednisolone, a corticosteroid used in BC to manage the side effects of taxane-

Lovenox is one brand name for enoxaparin sodium, a low molecular weight heparin used as anticoagulant medication. It is

used to prevent and treat venous thromboembolisms, for which cancer patients are at higher risk (43).
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FIGURE 9

Kaplan-Meier survival plots for the sequence: “sein en involution adipeuse partielle avec contingent glandulaire inferieur a 50", (breast in partial
involution with less than 50% glandular tissue), Present or Absent in patients reports.

inclusions. All in all, this makes comparing our performance to
other studies challenging. However, we note that M-BEHRT
achieves better performance for the prediction of DFS after three
years than the recent work of Han et al. (6), which uses ultrasound
and mammography images combined with clinical, pathological
and radiographic characteristics and reports an AUC of 0.739 on a
held-out test set. In addition, the performance of M-BEHRT is in
the same ballpark as that of Rabinovici-Cohen et al. (5), which
predict recurrence at five years in patients who receive neo-adjuvent
chemotherapy (AUC of 0.75 on a held out data set) using clinical
features, immunohistochemical markers, and multiparametric
magnetic resonance imaging, or Gonzalez-Castro’ et al. (9),
which achieve an AUC of 0.81 also for predicting recurrence at
five years, but considering all cancer patients and using clinical
features, immunohistochemical markers, and descriptors of clinical
history such as the number and type of therapies.

In order to further evaluate the ability of M-BEHRT to predict
DES, we also performed the same study, but for the prediction of
DEFS 5 years after surgery rather than 3. This results in a smaller data
set of 5-192 patients. The test set is the same as for DFS 3 years after
surgery, but now contains 17.1% of negative samples. All results are
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available in the Supplementary Materials (Supplementary Table S4
and Supplementary Figure S12 for a description of the data, and
Supplementary Figures S13-S19 for the results). Our observations
are similar to those made on the prediction of DFS 3 years after
surgery, although predicting DFS 3 years after surgery seems much
easier than 5 years after surgery (AUC of 0.77 vs 0.69). This is in line
with previous observations that earlier events are easier to predict
than long-term ones (44).

We stratified the data based on features that are expected to
define patients with similar prognoses (age, grade, number of lymph
nodes involved, molecular subtype). We found that the prediction
ability of M-BEHRT varies depending on subgroups and that the
model works better on older patients with more aggressive disease
(at least one lymph node involved). In addition, M-BEHRT is better
at predicting relapse after 5 years than after 3 years for luminal
tumors, suggesting that it correctly identifies predictive factors with
long term influence for these tumors that tend to recur later than
others (45).

There are however some limitations to the scope of our study. In
particular, our findings are restricted to a very specific cohort of
patients who received adjuvant chemotherapy. We also have not
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Kaplan-Meier survival plots for the sequence: “lymphadenectomie axillaire”, (axillary lymphadenectomy), Present or Absent in patients reports.

been able to validate our findings on an external validation group,
due to privacy concerns limiting the access to EHR of other centers;
it is possible that our models have captured idiosyncrasies of Institut
Curie that do not apply to patients from other hospitals. We
acknowledge that replicability on different cohorts, although
notoriously difficult to ensure, although indispensable for clinical
use. There is evidence that training models jointly on multiple
cohorts is needed to smooth out hospital-specific patterns (46),
another reason why gaining access to additional data from other
clinical centers would be very beneficial indeed.

However, our work shows that it is possible to learn from
multimodal patient trajectories built from dynamic tabular data and
the content of free-text reports written by practicioners at each
medical visit, and paves the way for future research in
understanding breast cancer prognostic factors.

4.2 M-BEHRT learns on small data sets

An important aspect of our study is that, unlike most work
published to date using transformers for EHR data, which use
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millions of patients for pretraining and tens to hundreds of
thousands of patients for fine-tuning (13-15), the datasets we use
here are of much smaller sizes: about 15-000 patients for pretraining,
and 5-000 to 8-000 patients for fine-tuning. That it is possible to
apply such methods to much smaller data sets is very encouraging for
future research, as many studies, especially on very specific diseases
and endpoints, only have access to a limited number of patients.
However, despite the small sample size, our study has an
advantage over those with larger datasets’ studies because our
learning data includes only adjuvant-treated breast cancer
patients. This specificity has enabled the model to learn more
precise embeddings and improve the accuracy of relapse prediction.
Keeping the same pretrained model, we experimented with
further reducing the number of patients used for training the
classifier. To this end, we created smaller training sets by
randomly selecting subsets of the training data, starting from 10
samples, and compared on the test set the performance of Tabular
BEHRT and classical machine learning algorithms trained on these
small training sets. Our results, shown on Supplementary Figure
S20 in the Supplementary Material, show that Tabular BEHRT
clearly outperforms the classical machine learning algorithms,
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especially random forests, in the few-shot learning setting (when
training set sizes are very small), achieving better-than-random
performance with as little as 10 training samples and outperforming
NPI with a few hundred training samples. We attribute this
performance to the ability of the pretraining phase to learn
meaningful representations of patient trajectories.

4.3 M-BEHRT leverages the
complementary nature of different
modalities

In order to better understand the contribution of the different
modalities to the performance of Tabular BEHRT, we conducted an
ablation study. The results show that, with the exception of the
biological features, excluding one modality or more substantially
reduces model performance. This indicates that Tabular BEHRT
has the ability to leverage the complementary nature of the different
modalities. In addition, clinical features (dNPI, age, molecular
subtype and therapy) contribute the most to performance. This
observation is consistent with previous studies on breast cancer
relapse prediction (47, 48).

Although others have found the results of routine laboratory
tests to be very informative for predicting breast cancer endpoints (4,
47), our study did not see strong added value of including biological
markers on DFS prediction. This is particularly surprising regarding
cancer antigen CA 15-3, which has been found in several studies to
correlate to poor prognosis (49, 50) and recurrence (47, 51). In
addition, Kim et al. (47) found that an increase in leukocyte count
(LEUK) has a protective effect against breast cancer recurrence and
that an elevated neutrophil count (PN) is associated with recurrence,
although another study (4) did not find a significant association
between DFS and variables describing leukocyte counts and
counts or percentages of leukocyte subtypes. However, these
features not entirely uninformative, as restricting Tabular
BEHRT to the biological features modality still yields better-than-
random performance (AUC of 0.56 for T1 and 0.61 for T2). One
possible explanation is that the information contained in the
biological features is also captured by the other modalities, as their
evolution might be consistent with cancer severity or subtype, or the
choice of therapy. Our study is also limited in the number of
available laboratory variables, as markers that were found
informative in previous studies, such as hemoglobin, total protein,
serum glucose, alkaline phosphatase, or international normalized
ratio (4, 47) were not available (or not for enough patients) in
our data.

Perhaps surprisingly, we do not see the same drastic increase in
performance between Tabular BEHRT and M-BEHRT as others
have observed in multimodal prediction of breast cancer prognosis
when augmenting clinical data with imaging data (5, 6), although
Text BEHRT leverages medical reports from radiologists or
cytopathologists, which are based on medical images. Although
this could be due to the aforementioned limitations of Text BEHRT,
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this could also be because Tabular BEHRT already achieves much
better performance than models based solely on static clinical data.

4.4 M-BEHRT model interpretation points
to possible prognostic factors

The interpretation of M-BEHRT models through the integrated
gradients method highlighted that Tabular BEHRT relies on well-
documented prognostic features such as the age or the NPI (2, 52) to
predict DES status. Additionally, the model uses features that indicate
a more aggressive breast cancer (number of multidisciplinary
meetings, number of consultations, or a second surgical procedure),
which cannot be necessarily be considered as causes of cancer relapse
but suggest a more difficult-to-treat cancer.

Regarding Text BEHRT, the model seems to rely mainly on
reports that contain symptoms-related information or reports from
imagery. When they occur before the first surgery, these
information are to be expected, as we are studying a cohort of
patients treated for breast cancer. However, if they occur after the
first surgery, these features can indicate further investigations that
are warranted by the difficulty to treat the primary tumor.

Let us note however that while deep learning model
interpretation is still somewhat limited, it has the potential to
offer a much more comprehensive interpretation of the roles
played by different elements in the data, given how rich the data
is. Moreover, the features that are highlighted as strongly
contributing toward one label or the other are only doing so in
conjunction with other features, which might be different from
patient to patient. Moreover, the embedding pooling method that
we have used to derive reports embeddings from their contents does
not help with interpretability, as it does not allow to pinpoint
specific parts of a medical report. Nevertheless, several potentially
interesting text features (such as high mammary involution or
axillary dissection) have been highlighted for their contribution to
M-BEHRT predictions. Even though it is not yet clear how these
features can be used as prognostic factors and incorporated in a
model usable in the clinic, survival curves show that they are indeed
informative of DFS even taken on their own.

4.5 Challenges of learning from long
sequences of rich events

In our approach, there is a tradeoff between the number of visits
that can be considered and the amount of information that can be
used to describe each visit, because the underlying BERT
architecture is limited to processing 512 tokens. This number is
arbitrary, but constrained by the memory usage of the self-attention
mechanism. We have found this number to be sufficient for the DFS
prediction tasks at hand and the available features and modalities.
However, this might be too small for other applications, in which
case one might want to use approaches that approximate the self-
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attention matrices so as to reduce their memory footprint, such as
Big Bird (28) or Nystromformer (29). Another avenue worth
exploring in the future would be to use novel architectures such
as deep state-space models (53) or recursive neural networks with
linear recurrent units (54), which overcome this limitation of
transformers and account for long contexts. Note however that
this would not allow to use embeddings learned on French clinical
text, as we are not aware of any long-context model that has been
pre-trained on such data. In the present study, M-BEHRT
outperforms both NPI and classical ML baselines, suggesting its
ability to capture the structure of EHR data.

To the best of our knowledge, ours is the first study to use entire
free text medical reports (in a language other than English) for
breast cancer prognosis. There are several limitations to our
approach. First, we used token embeddings learned on French
clinical text that are not specific to breast cancer; it is possible
that pretraining on breast cancer clinical text could improve the
performance of our model. However, this requires considerable
resources, both in terms of amount of clinical records available and
computing power. Second, we build medical records embedding by
simply pooling all token embeddings of a record, which is likely not
be optimal for capturing the information contained in a report.
Several authors have proposed using convolutional neural networks
(CNN) or bidirectional long-short term memory architectures (Bi-
LSTM) on top of token embeddings (26, 55, 56), which typically
helps capturing the structure of text documents and could be an
interesting future direction to explore for this research. Despite
these shortcomings, our results demonstrate the ability of Text
BEHRT to capture relevant information, as it performs on par with
Tabular BEHRT.

Finally, M-BEHRT uses a cross-attention module to perform
the multimodal fusion between Tabular BEHRT and Text BEHRT.
This approach allows the contextual integration of information
from both transformers, i.e., that each model can attend
information from the other model, and thus enable a better
exploitation of the complementarity between inputs. However,
this requires that both tabular data and text data embeddings
have the same size, and forced us to reduce the dimensionality of
the embedding of sequences of reports from 768 (as provided by
DrBERT) to 144 through a linear layer. This may result in an
additional reduction of available information. However, this still
results in a slight improvement of overall performance.

4.6 Conclusion

Overall, our study highlights the potential to predict DFS using
solely longitudinal sequence of medical visits and evolution of
clinical information and biological measurements. To the best of
our knowledge, this is the first study predicting breast cancer
endpoints from sequences of EHR data, whether considering
solely multimodal dynamic tabular data, solely the contents of
free-text reports, or combining both. Our results underscore the
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usefulness of such data for future research on prognosis modeling,
and outline the importance of integrating medical information
collected over time to gain previously unknown insights into the
understanding of breast cancer evolution.
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