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Objective: Accurate preoperative evaluation of rectal cancer lung metastases

(RCLM) is critical for implementing precise medicine. While artificial intelligence

(AI) methods have been successful in detecting liver and lymph node metastases

using magnetic resonance (MR) images, research on lung metastases is still

limited. Utilizing MR images to classify RCLM could potentially reduce ionizing

radiation exposure and the costs associated with chest CT in patients without

metastases. This study aims to develop and validate a transformer-based deep

learning (DL) model based on pelvic MR images, integrated with clinical features,

to predict RCLM.

Methods: A total of 819 patients with histologically confirmed rectal cancer who

underwent preoperative pelvis MRI and carcinoembryonic antigen (CEA) tests

were enrolled. Six state-of-the-art DL methods (Resnet18, EfficientNetb0,

MobileNet, ShuffleNet, DenseNet, and our transformer-based model) were

trained and tested on T2WI and DWI to predict RCLM. The predictive

performance was assessed using the receiver operating characteristic

(ROC) curve.

Results: Our transformer-based DL model achieved impressive results in the

independent test set, with an AUC of 83.74% (95% CI, 72.60%-92.83%), a

sensitivity of 80.00%, a specificity of 78.79%, and an accuracy of 79.01%.

Specifically, for stage T4 and N2 rectal cancer cases, the model achieved AUCs

of 96.67% (95% CI, 87.14%-100%, 93.33% sensitivity, 89.04% specificity, 94.74%

accuracy), and 96.83% (95% CI, 88.67%-100%, 100% sensitivity, 83.33%

specificity, 88.00% accuracy) respectively, in predicting RCLM. Our DL model

showed a better predictive performance than other state-of-the-art

DL methods.
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Conclusion: The superior performance demonstrates the potential of our work

for predicting RCLM, suggesting its potential assistance in personalized

treatment and follow-up plans.
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Introduction

Colorectal cancer ranks third globally in terms of incidence

among the most prevalent cancers, with rectal cancer (RC)

accounting for approximates 30% of all cases within the colorectal

cancer category (1, 2). Due to the unique venous drainage through

the iliac vessels in the rectum, RC patients have a significantly

higher incidence of lung metastasis than those with colon cancers

(3–5). Surgical resection of lung metastasis is an optimal treatment

method for RC patients to survive long-term (6), which increases

the 5-year survival rate to approximately 50% (7, 8). Nevertheless,

the prognosis of RC with metastasis remains poor without timely

treatment (9). Thus, timely assessment of lung metastasis in

patients with RC (RCLM) is important, which further influences

the clinical personalized treatment and follow-up plans.

However, the evaluation of RCLM through long-term follow-up

with chest computed tomography (CT) scans may present

challenges. Radiologists may encounter difficulties in detecting

early metastatic lesions due to their small size and the presence of

various benign lesions, which will bring additional ionizing

radiation exposure and the costs associated with chest CT in

patients without lung metastases and may delay the treatment

period (10–12). Therefore, a new diagnostic method is needed for

reducing radiation exposure and mitigating treatment delays in

patients without lung metastases.

Pelvis magnetic resonance imaging (MRI), which has no

radiation exposure, is a standard procedure for the detection and

staging of RC (13, 14). Previous studies have highlighted the

promising role of T2-weighted image (T2WI) in detecting distant

metastasis (DM) in RC patients (15, 16). Besides, diffusion-

weighted image (DWI), using differences in water molecules to

generate image contrast, has shown improved accuracy in detecting

RC patients with DM (17, 18). Artificial intelligence (AI) has shown

great success in the detection of liver or lymph node metastasis (19–

22). However, few have attempted to evaluate of AI models for

predicting RCLM based on pelvis MR images of primary tumor.
urve; AUC, Area under

; SEN, Sensitivity; SPE,
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Although these MRI-based AI methods can potentially predict lung

metastasis risk, the inherent locality and the consecutive down-

sampling operations in the convolutional neural networks limit the

extraction of global spatial dependencies. Moreover, the

performance of predicting RCLM based solely on pelvis MRI

scans is modest.

In this study, we introduce a pelvis MR transformer-based deep

learning (DL) model for predicting RCLM based on T2WI and

DWI. Our DL model leverages pre-trained UniMiSS (23), which

built upon the ViT framework and trained on medical images, as

our primary feature extraction network. Numerous studies have

shown that carcinoembryonic antigen (CEA) is a critical biomarker

for monitoring recurrence and metastasis in RC patients (14, 32).

Therefore, we incorporate clinical information such as CEA, age,

and gender due to their stronger association with RCLM, in our DL

model to improve the performance of predicting RCLM.
Materials and methods

Ethics statement

This single-center retrospective study received approval from

our institutional review board and complied with ethical

regulations. The requirement for informed consent was waived

for this retrospective study of anonymized data.
Patients

With the approval of institution ethics committee, we collected

two independent patient cohorts. The detailed inclusion and

exclusion criteria are shown in Figure 1. The lung metastasis

cohort of 157 RC patients with lung metastasis risk diagnosed

between Jan 2018 and Jun 2023. Inclusion criteria were as follows:

(a) pathological confirmation of rectal adenocarcinoma; (b)

availability of pre-treatment pelvis MRI scans before the initiation

of therapy; and (c) utilization of high-resolution contrast enhanced

chest CT scans for lung metastasis diagnosis. The exclusion criteria

included: (a) concurrent others primary malignant neoplasms or

previous anticancer treatment; (b) missing MRI data or insufficient

image quality; (c) missing or incomplete electronic medical records;

and (d) simultaneous occurrence of other DM.
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Besides, we collected a non-overlapping cohort of 662 patients

diagnosed with RC at the same institution between Jan 2018 and

Jun 2023, forming a distinct non-metastasis cohort. Inclusion

criteria (a) and (b) mirrored those of the lung metastasis cohort,

while criteria (c) were omitted in the non-metastasis cohort due to

the absence of metastasis in these patients. The exclusion criteria

remained consistent with those appl ied to the lung

metastasis cohort.

Clinical information, including age, gender, pre-treatment

histologic grade (24), and CEA levels, was extracted from medical

records. It is important to note that CEA levels were determined

through routine blood tests conducted within one week

before treatment.
MR imaging protocol

MRI was conducted using a 1.5-T MR system (Optimal 360, GE

Healthcare, Waukesha, Wis) or a 3.0-T MR system (MR 750w, GE

Medical System) with a phased-array body coil (eight-channel and

sixteen-channel phased-array body coil). The standard procedure

included axial oblique T2WI sequences and transverse DWI

sequences. For the T2WI sequences, the in-plane pixel spacings

ranged from 0.366 mm to 0.703 mm, with an average of 0.490 mm,

and slice thicknesses ranged from 3.500 mm to 7.000 mm, with an

average of 4.692 mm. For the DWI sequences, the in-plane pixel

spacings ranged from 0.976 mm to 1.953 mm, with an average of

1.526 mm, and slice thicknesses ranged from 3.500 mm to

7.000 mm, with an average of 4.694 mm. Among the 819 patients

in the lung metastasis cohort and non-metastasis cohort, images
Frontiers in Oncology 03
obtained from different scanners were randomly distributed in the

training, validation, and independent test sets.
Image pre-processing and segmentation

Radiologists with over 10 years of experience in MRI manually

delineated the entire RC tumor using ITK-SNAP 3.9 on pre-

treatment T2WI and pre-treatment DWI at b=1000 s/mm2. The

resulting tumor masks were cropped into image patches as the

inputs of 3D networks. To mitigate the impact of variability in

acquisition and sequence parameters, image pre-processing was

implemented before analysis. All MR images were used the Simple-

ITK toolkit to correct the bias field artifacts (25). Gray-level

normalization was applied to harmonize the gray values of MR

images, compensating for intensity variations across different

MRI scanners.
Network details

The architecture of our proposed transformer-based DL model

for predicting RCLM is illustrated in Figure 2. We used two pre-

trained UniMiSS models, which were built upon the ViT

framework, as our primary feature extraction network. T2WI and

DWI scans underwent individual processing through each branch

network, and the resulting features were fused through

concatenation using a post-fusion approach. This fusion strategy

engendered a comprehensive representation, combining

complementary information from both T2WI and DWI. To distill
FIGURE 1

The flowcharts of patient selection.
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spatial information, an adaptive max pooling operation was

employed to reduce the feature length to 1000. These features

were then concatenated with clinical information, including CEA

level, age, and gender. The combined features were subsequently fed

into a fully connected layers to effectively learn the imaging and

clinical information for accurate predicting RCLM. This

architecture enables the model to leverage both imaging and

clinical data synergistically to enhance prediction performance.
Data partitioning and
network implementation

The performance of the models was evaluated on an

independent test set, which was not included in the model

training. The remaining data were randomly divided into training

and validation sets for parameter tuning. Once optimal model

parameters were determined using the training and validation

sets, the models were evaluated on the independent test set. The

models were implemented using PyTorch v1.7. Our models process

3D volumes, with a data batch size of 32 and input image

dimensions of 128 (height) × 128 (width) × 16 (depth). In our

preprocessing pipeline, we use manually annotated RC tumor

masks to crop image patches from the 3D volume data to a

specified size, while ensuring that the tumor region is fully

retained. During the cropping process, the cropping area is

dynamically adjusted based on the mask to ensure that the entire

tumor is included within the cropped region. All MR images were

linearly transformed to the range of [-1, 1] via gray-level

normalization. Data augmentation techniques, including random

rotation in the range of [-30, 30] and random scaling in the scale of

[0.95, 1.05], were applied for model training to enhance

generalization. For optimization, the Adam optimizer with an
Frontiers in Oncology 04
initial learning rate of 0.0002 was employed, and the models were

trained for 100 epochs. Cross-entropy loss was used as the loss

function for model training. To ensure a fair comparison, all

compared models were trained using the same image size,

learning rate, and number of iterations.

Among these, the model using only clinical characteristics

employed the Logistic Regression model. The remaining five

models of seven combinations of MRI sequences and clinical

features used the pre-trained UniMiSS model (built on the ViT

framework) to extract image features. Specifically, the “Images-

only” model concatenated the DWI and T2WI images along the

channel dimension before feeding them into the feature extraction

network. When clinical features are included, a post-fusion method

was applied to combine the image and clinical features. In addition,

the two demographic characteristics (age and gender) and one CEA

used in the comparison experiment were pre-treatment. Gender was

labeled with 0 and 1, age was standardized with z-score, and CEAwas

scaled using minimum-maximum normalization. The latter two

characteristics of information were subsequently transformed into

one-dimensional representations via Word Embedding.

For a thorough evaluation, our method is compared with state-

of-the-art deep learning models, including ResNet18, EfficientNetb0,

MobileNet, ShuffleNet, and DenseNet. ResNet18 employs residual

blocks with skip connections, enabling the network to learn residual

functions. EfficientNetb0 uses a compound scaling method to balance

depth, width, and resolution, optimizing performance and

computational efficiency. MobileNet leverages depthwise separable

convolutions to reduce complexity. ShuffleNet introduces a channel

shuffle operation to enhance the efficiency of group convolutions

while minimizing computational costs. DenseNet incorporates dense

connections among all layers, fostering feature reuse and improving

gradient flow, resulting in reduced parameters and enhanced

training efficiency.
FIGURE 2

Overview of the proposed transformer-based deep learning model for rectal cancer with lung metastases.
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Statistical analysis

All well-trained models were evaluated on both validation and

independent test sets. The performance of the prediction model was

assessed using various metrics, including the area under the receiver

operating characteristic curve (AUC), accuracy (ACC), sensitivity

(SEN), specificity (SPE) and the wilcoxon rank-sum test for

statistical comparison. The optimal threshold for the AUC value

was determined by maximizing the sum of the sensitivity and

specificity values. The 95% CIs were obtained using bootstrapping

to assess variability, and p < 0.05 considered indicative of

statistically significant difference.
Results

Patient characteristics

Applying specific inclusion and exclusion criteria, our study

enrolled a total of 819 patients, comprising 524 males and 295

females, with an average age of 57.25 ± 12.14 years (ranging from 17

to 86 years). The average CEA level among the patients was 12.58

ng/mL (ranging from 0.50 to 99.62 ng/mL). Among these patients,

657 were randomly assigned to the training set, 81 to the validation

set, and 81 to the independent test set. Of the total patients, 157

patients (19.17%) were RC with lung metastasis, while 662 patients

(80.83%) were RC without metastasis. In terms of tumor staging,

there were 19 patients at the T1 stage (with 1 lung metastasis), 122

patients at the T2 stage (with 9 lung metastasis), 485 patients at T3

stage (with 82 lung metastasis), and 193 patients at T4 stage (with

65 lung metastasis). Regarding the N stage, there were 271 patients

at the N0 stage (with 31 lung metastasis), 282 patients at the N1

stage (with 54 lung metastasis), and 266 patients at N2 stage (with

72 lung metastasis). The details of the demographic and clinical

characteristics of patients were presented in Table 1.
Model performance on the validation and
independent test sets

We developed a transformer-based model for the prediction of

RCLM. As shown in Table 2, the transformer-based model achieved

an Area Under Curve (AUC) of 84.24% (95% CI, 73.87%-92.68%)

on the validation set and 83.74% (95% CI, 72.60%-92.83%) on the

independent test set. Our model outperformed the performance of

ResNet18, EfficientNetb0, MobileNet, ShuffleNet, and DenseNet.

Figures 3A, B illustrates the Receiver Operating Characteristic

(ROC) curves for six deep learning models. These models yielded

AUC values of 70.30% (95% CI, 56.18%-82.92%, p = 0.0196),

72.02% (95% CI, 58.73%-83.08%, p = 0.0186), 72.32% (95% CI,

56.36%-86.31%, p = 0.0158), 75.96% (95% CI, 61.84%-88.36%, p =

0.0495), 77.17% (95% CI, 64.26%-87.92%, p = 0.0412), and 83.74%

(95% CI, 72.60%-92.83%) for ResNet18, EfficientNetb0, MobileNet,

ShuffleNet, DenseNet and our method on independent test

set, respectively.
Frontiers in Oncology 05
Table 3 presented the performance of our transformer-based

model trained with seven combinations of MRI sequences and

clinical features. These combinations include single image models

(DWI-only or T2WI-only), models using a single image and clinical

features (DWI-Clinical features or T2WI-Clinical features), a model

using only clinical features (Clinical features-only), an image-only

model with DWI and T2WI (Images-only), and a model using both

DWI, T2WI, and clinical features (Images-Clinical features (Ours)).

Incorporating two demographic characteristics (age and gender)

and one clinicopathologic factors (CEA) into our model achieved

the best performance. As outlined in Table 3, with increases of

2.86% in AUC, 23.07% in accuracy, and 30.00% in specificity

compared to the original Image-only model on the independent

test set, the combination of T2WI, DWI, and clinical features

achieved the AUC of 83.74% (95% CI, 72.60%-92.83%) on the

independent test set. Figures 3C, D illustrate the ROC curves for

seven different combinations of image and clinical features. These

combinations yielded AUC values of 56.57% (95% CI, 41.69%-
TABLE 1 The details of the demographic and clinical characteristics
of patients.

Training
Set

Validation
Set

Independent
test set

Variable (n =657) (n =81) (n =81)

Sex

F 227 (34.55%) 24 (32.88%) 36 (44.44%)

M 430 (65.45%) 49 (67.12%) 45 (55.56%)

Age

Range 17-86 21-79 22-75

Average 57.33 ± 12.09 57.15 ± 11.99 56.68 ± 12.64

Pretreatment
CEA level
(ng/mL)

12.80 (0.50-99.62) 9.81 (0.95-83.79) 11.77 (0.50-64.12)

T stage

T1 17 (2.59%) 2 (2.47%) 0 (0%)

T2 94 (14.31%) 14 (17.28%) 14 (17.28%)

T3 387 (58.90%) 50 (62.73%) 48 (59.26%)

T4 159 (24.20%) 15 (18.52%) 19 (23.46%)

N stage

N0 222 (33.79%) 25 (30.86%) 24 (29.63%)

N1 220 (33.49%) 30 (37.04%) 32 (39.51%)

N2 215 (32.72%) 26 (32.10%) 25 (30.86%)

Metastasis situation

Non-metastasis 530 (80.67%) 66 (81.48%) 66 (81.48%)

Lung metastasis 127 (19.33%) 15 (18.52%)) 15 (18.52%)
Unless stated otherwise, data are numbers of patients, with percentages in parentheses. T stage
= baseline clinical tumor stage; N stage = baseline clinical lymph node stage; CEA =
carcinoembryonic antigen.
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71.22%, p = 0.0233), 61.62% (95% CI, 43.67%-78.57%, p = 0.0046),

72.73% (95% CI, 60.40%-83.75%, p = 0.0124), 69.70% (95% CI,

52.96%-84.55%, p < 0.001), 51.52% (95% CI, 37.73%-64.58%,

p < 0.001), 81.41% (95% CI, 69.93%-90.72%, p = 0.0143), and

83.74% (95% CI, 72.60%-92.83%) for DWI-only, T2WI-only, DWI-

clinical characteristics, DWI-clinical characteristics, clinical

characterist ics-only, images-only, and images-cl inical

characteristic on independent test set, respectively.

Table 4 and Figure 4 presented comprehensive results on both

the validation set and the independent test set, focusing on different

T and N stages. In Table 4, we provided a directly overview of

various models’ performance at N stages. Furthermore, Figure 4

visually illustrated the AUC, accuracy (ACC), sensitivity (SEN), and

specificity (SPE) for stages T3 and T4 in different models. Our

method outperformed the aforementioned state-of-the-art DL

methods in terms of AUC in general. Specifically, we achieved

an AUC of 76.32% (95% CI, 59.80%-89.55%) in the T3 stage,

an AUC of 96.67% (95% CI, 87.14%-100%) in the T4 stage, an AUC

of 85.00% (95% CI, 66.67%-100%) in the N0 stage, an AUC of

54.46% (95% CI, 29.89%-82.76%) in the N1 stage, and an AUC of

96.83% (95% CI, 88.67%-100%) in the N2 stage on the independent

test set.
Performance of our model vs. experts

Three experts (Li X, Li B, Wan Y, with 32 years, 10 years and 4

years of experience, respectively) dedicated to imaging diagnosis

based on MRI data in the independent test set. They consecutively

and independently evaluated the MRI data from the independent
Frontiers in Oncology 06
test set. The diagnostic performance of subjective evaluation by

three radiologists was presented in Table 5. The results of our model

had been binarized for fair comparison. Table 5 showed

performance with AUCs of 56.52% (95% CI, 45.30%-69.65%, p <

0.001), 56.82% (95% CI,44.16%-70.89%, p < 0.001), 62.27% (95%

CI, 47.88%-76.32%, p < 0.001) and 83.74% (95% CI,72.60%-92.83%)

for three experts and our model. The diagnostic time for each case

was 22.32s, 38.62s, 11.22s, and 0.67s for three experts and our

model, respectively. As shown in Table 5, the experts’ results

showed largely individual differences. In contrast, our model

achieved the best performance in predicting RCLM.
Discussion

This research aimed to investigate the potential of utilizing DL

for RCLM detection based on pelvis MRI, with the goal of

improving clinical decision-making, reducing radiation exposure,

and mitigating treatment delays in patients without lung

metastases. Our developed transformer-based model showed

improved performance compared to five state-of-the-art DL

models. Furthermore, the combination of T2WI and DWI MRI

sequences with clinical features model achieved the best

performance in both validation and testing sets.

Endorectal ultrasound has been used for the preoperative

staging of early RC. However, its accuracy is highly dependent on

operator experience and tumor size, which limits its clinical

applicability (33). Positron emission tomography (PET)/CT

provides valuable metabolic information but has relatively low

spatial resolution and poor soft tissue contrast, which limits its

sensitivity for detecting small lesions or early metastases (34). While

PET/MRI can generate high-resolution anatomical and functional

data with promising results for RC staging, it requires longer

acquisition times and is more expensive (35). In our study, the

combination of T2WI and DWI was chosen based on their

complementary strengths: T2WI provides detailed structural

information critical for local staging, while DWI enhances the

detection of DM by offering functional insights. This combination

was selected to maximize sensitivity and accuracy in detecting RC

and its metastases, as demonstrated by the variations in sensitivity

observed in Table 3.

As shown in Table 1, our dataset only contained only one RC

patients with lung metastasis at T1 stage and 9 positive cases at T2

stage. Specifically, 9 patients with lung metastasis were randomly

divided in the training set, resulting 2 cases in validation set and one

case in testing set. Consequently, traditional metrics such as AUC,

SEN, and SPE become inadequate for evaluating model

performance when there are very few positive samples. Thus, we

chose to focus on presenting results for RC patients at T3-T4 stages

in Figure 4. Although our model demonstrated strong performance

at T3-T4 stages, the limited sample size of T1-T2 stages posed

challenges, resulting in modest information capture and average

performance (26). Moreover, the locally advanced RC (T3-T4) is an

important risk factor supporting lung metastasis diagnosis (3). Our

transformer-based model yielded superior performance with an
TABLE 2 RCLM prediction performance obtained by the different DL
models on both the validation and independent test set.

Validation set

Model AUC (95% CI) ACC SEN SPE P_Value

ResNet18 72.12(54.65-86.67) 62.96 73.33 60.61 1.43E-02

EfficientNetb0 70.30(54.81-84.95) 59.26 66.67 57.58 1.96E-02

MobileNet 76.87(64.59-87.35) 65.43 73.33 63.64 3.30E-02

ShuffleNet 75.05(61.58-86.71) 62.96 73.33 60.61 1.05E-02

DenseNet 76.26(63.12-87.56) 65.43 73.33 63.64 4.12E-02

Ours 84.24(73.87-92.68) 80.25 80.00 80.30 –

Independent test set

ResNet18 70.30(56.18-82.92) 60.49 73.33 57.58 1.96E-02

EfficientNetb0 72.02(58.73-83.08) 61.73 73.33 59.09 1.86E-02

MobileNet 72.32(56.36-86.31) 58.02 66.67 56.06 1.58E-02

ShuffleNet 75.96(61.84-88.36) 65.43 73.33 63.64 4.95E-02

DenseNet 77.17(64.26-87.92) 64.20 73.33 62.12 4.12E-02

Ours 83.74(72.60-92.83) 79.01 80.00 78.79 –
P values were derived from the wilcoxon rank-sum test of comparing each metrics between
different deep learning -based models and the proposed model.
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AUC of 76.32% (95% CI, 59.80%-89.55%) in the T3 stage and an

AUC of 96.67% (95% CI, 87.14%-100%) in the T4 stage.

Existing state-of-the-art classification models for RCLM

prediction suffer from field-of-view limitations due to the local

receptive fields inherent in convolutions. Relying solely on local

feature learning is insufficient for capturing the complex

characteristics needed to predict lung metastases from pelvic MRI

scans. In contrast, our Transformer-based models can capture

global dependencies across image regions and integrate clinical

features, resulting in more robust RCLM predictions. Our

Transformer-based model offers several advantages over CNN-

based methods. Firstly, our model consistently outperformed

other state-of-the-art models, demonstrating its potential for

higher diagnostic accuracy. Secondly, by integrating clinical

features such as CEA levels, age, and gender, our model benefits

from a holistic approach to prediction, which may help in capturing

patient-specific factors that are important for accurate diagnosis.

Timely detection and intervention of lung metastasis play an

important role in guiding clinicians in determining clinical
Frontiers in Oncology 07
decision-making, ultimately leading to enhanced R0 resection

rates, reduced postoperative recurrence risks, and improved

overall survival rates (27, 28). The method developed in this

study provides the ability to predict RCLM based on pelvis MR

images primary tumor. With its reliable information on lung

metastasis detection, the model has the potential to alleviate

the burden on clinicians and improve the efficiency of decision-

making. Moreover, the model’s capability to perform these

tasks based solely on MR images streamlines workflow and

reduces dependence on other procedures, making it applicable

in various clinical settings where MRI is routinely performed

(29). The study’s findings demonstrated that the predictive

performance of our model, leveraging image and clinical features

of the primary tumor, surpassed the subjective evaluation by

radiologists (Table 5).

Improving the accuracy of predicting distant metastasis in rectal

cancer is crucial for informed clinical decision-making (10, 11).

Previous research has predominantly focused on developing DL

methods for predicting liver metastasis (21, 22, 30, 31) or lymph
FIGURE 3

ROC curves of six distinct deep learning-based detection models, including ResNet18, EfficientNetb0, MobileNet, ShuffleNet, DenseNet and the
proposed method, for rectal cancer with lung metastases (RCLM) detection on the validation set (A) and independent test set (B); ROC curves of
seven kinds of medical images and clinical features combination modes to detect RCLM on the validation set (C) and independent test set (D).
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FIGURE 4

Radar plots that summarize the detection performance of the various models on the validation and independent test set. Characteristics of Patients
Stratified by T3 and T4 stage. To test the efficacy of each algorithm, we calculated ACC = Accuracy, SEN = Sensitivity, SPE = Specificity, AUC= Area
Under ROC Curve.
TABLE 3 Detection performance of seven combination models on the validation and independent test set.

Validation set

Model AUC (95% CI) ACC SEN SPE P_Value

DWI-only 66.57(52.57-79.80) 58.02 60.00 57.58 2.33E-02

T2WI-only 72.42(55.56-87.12) 61.73 73.33 59.09 4.56E-03

DWI- Clinical features 67.07(52.17-80.07) 59.26 66.67 57.58 1.24E-02

T2WI-Clinical features 75.15(58.74-89.80) 56.79 73.33 53.03 2.08E-04

Clinical features-only 57.88(44.40-70.37) 48.15 73.33 42.42 2.13E-04

Images-only 81.01(68.78-91.34) 65.43 80.00 62.12 1.43E-02

Images-Clinical features (Ours) 84.24(73.87-92.68) 80.25 80.00 80.30 –

Independent test set

DWI-only 56.57(41.69-71.22) 55.56 66.67 53.03 9.02E-03

T2WI-only 61.62(43.67-78.57) 46.91 73.33 40.91 2.97E-04

DWI- Clinical features 72.73(60.40-83.75) 62.96 73.33 60.61 4.11E-02

T2WI-Clinical features 69.70(52.96-84.55) 54.32 66.67 51.52 4.68E-03

Clinical features-only 51.52(37.73-64.58) 41.98 66.67 36.36 2.47E-05

Images-only 81.41(69.93-90.72) 64.20 80.00 60.61 1.43E-02

Images-Clinical features (Ours) 83.74(72.60-92.83) 79.01 80.00 78.79 –
F
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node metastasis (12, 15, 18) of RC. Specifically, there studies indicate

that the imaging features of preoperative CT orMRI scans of RC have

predictive values for the risk of distant metastasis. For instance, Lee

et al. (22) proposed a CNN-based model incorporating clinical

information and CT scans to predict liver metastasis in colorectal

cancer that obtained an AUC of 74.70% (95% CI: 71.10%-78.30%).

Numerous studies have shown that CEA is an essential indicator of

recurrence and metastasis in patients with RC (14, 32). However, few
Frontiers in Oncology 09
studies have simultaneously combined MRI sequence of DWI and

T2WI with CEA for predicting RCLM. In this study, we compared

the performance of DL models using different combinations of

medical images and clinical features in both the validation and

independent test sets. Our findings suggest that utilizing the

combination of images and clinical features achieves superior

performance compared to those relying on a single feature in

detecting lung metastasis in patients with RC.
TABLE 4 Detection performance of the various models on the validation and independent test set.

Validation set Independent test set

Model AUC (95% CI) ACC SEN SPE P_Value AUC (95% CI) ACC SEN SPE P_Value

N stage

N0

Resnet18 72.73 (25.00-100) 36.00 100 27.27 1.26E-02 81.25 (42.86-100) 54.17 75.00 50.00 1.96E-02

EfficientNetb0 80.30 (45.00-100) 44.00 100 36.36 8.15E-03 73.75 (52.50-92.59) 58.33 100 50.00 1.14E-02

MobileNet 71.21 (50.00-89.39) 40.00 100 31.82 2.09E-02 93.75 (80.95-100) 70.83 100 65.00 2.53E-02

ShuffleNet 87.88 (72.62-100) 40.00 100 31.82 2.09E-02 87.50 (69.57-100) 66.67 100 60.00 3.39E-02

DenseNet 72.73 (33.33-100) 40.00 100 31.82 1.14E-02 90.00 (75.00-100) 70.83 100 65.00 2.53E-02

Ours 89.39 (62.50-100) 72.00 100 68.18 – 85.00 (66.67-100) 83.33 75.00 85.00 –

N1

Resnet18 71.25 (45.16-93.09) 47.37 75.00 40.00 1.26E-02 74.11 (53.33-92.86) 65.62 50.00 67.86 3.48E-02

EfficientNetb0 71.67 (50.00-91.07) 47.37 75.00 40.00 2.01E-02 64.29 (36.61-87.10) 71.88 25.00 78.57 4.51E-03

MobileNet 70.42 (51.67-87.50) 55.26 87.50 46.67 1.14E-02 68.75 (36.67-96.77) 71.88 50.00 75.00 1.26E-02

ShuffleNet 74.17 (52.08-92.08) 52.63 75.00 46.67 3.48E-02 56.25 (25.00-87.10) 62.50 25.00 67.86 2.09E-02

DenseNet 79.58 (60.61-94.79) 57.89 87.50 50.00 3.48E-02 72.32 (48.28-96.55) 68.75 50.00 71.43 2.09E-02

Ours 82.50 (68.33-95.00) 76.32 87.50 73.33 – 54.46 (29.89-82.76) 50.00 75.00 46.43 –

N2

Resnet18 75.00 (42.22-100) 44.44 100 28.57 1.96E-02 61.11 (35.00-86.00) 52.00 85.71 38.89 1.96E-02

EfficientNetb0 46.43 (0.00-86.67) 72.22 25.00 85.71 4.55E-02 65.08 (39.47-89.61) 52.00 85.71 38.89 3.48E-02

MobileNet 91.07 (71.88-100) 50.00 100 35.71 3.39E-02 57.14 (25.74-87.00) 40.00 71.43 27.78 2.09E-02

ShuffleNet 67.86 (35.29-100) 77.78 25.00 92.86 2.53E-02 80.95 (59.09-98.41) 64.00 100 50.00 1.43E-02

DenseNet 69.64 (35.29-100) 38.89 100 21.43 4.68E-03 75.40 (48.00-96.10) 56.00 85.71 44.44 3.39E-02

Ours 76.79 (39.29-100) 72.22 75.00 71.43 – 96.83 (88.67-100) 88.00 100 83.33 –
fr
P values were derived from the wilcoxon rank-sum test of comparing each metrics between different deep learning -based models and the proposed model.
Characteristics of Patients Stratified by N stage.
TABLE 5 Detection performance by radiologists on the independent test set.

AUC (95% CI) ACC SEN SPE P_Value Time(s)

Reader 1 56.52 (45.30-69.65) 75.31 26.67 86.36 3.11E-04 22.32

Reader 2 56.82 (44.16-70.89) 71.60 33.33 80.30 1.62E-04 38.62

Reader 3 62.27 (47.88-76.32) 67.90 53.33 71.21 3.93E-04 11.22

Ours 83.74 (72.60-92.83) 79.01 80.00 78.79 – 0.67
P values were derived from the wilcoxon rank-sum test of comparing each metrics between radiologists and the proposed model.
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Our study has several limitations. Firstly, the dataset was

derived from a single center, which may affect the model’s

generalizability. Future studies should prioritize incorporating

multi-center data and additional prognosis-related data to

strengthen external validation and ensure robust performance

across diverse clinical settings. Secondly, the issue of sample

imbalance, particularly for early-stage cases (T1 and T2), may

have impacted the model’s predictive performance in these stages.

Addressing this imbalance through targeted data collection or

augmentation, such as synthetic data generation, will be crucial

for future work. Thirdly, despite the superior performance on

validation and independent test sets, the predictive scope is

currently limited to lung metastasis. In our future studies, we will

develop a DL model to predict various other types of metastasis.

Fourthly, most cases in our dataset are locally advanced RC, and

further research is needed to accurately identify distant metastasis

in patients with early-stage RC. Additionally, we focused on

integrating specific clinical features, such as CEA levels, age, and

sex, due to their stronger association with predicting RCLM.

However, we acknowledge that histologic grade may also provide

valuable predictive information. We plan to investigate its potential

inclusion in future studies to further enhance predictive accuracy.

Lastly, RC lesion annotation by radiologists is time-consuming, and

future studies should explore efficient automated segmentation

networks for RC segmentation.
Conclusions

In conclusion, we have developed a transformer-based DL

model for predicting RCLM, relying on preoperative pelvis MRI

scans and clinical features. Our model demonstrates superior

performance compared to state-of-the-art DL models on both

validation and independent test sets. It is anticipated that our

model holds potential as a practical tool to reduce radiation

exposure and mitigate treatment delays in patients without lung

metastases, thereby supporting personalized treatment and follow-

up plans.
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Farinella GM, Hassner T, editors. Computer Vision–ECCV 2022. ECCV 2022. Lecture
Notes in Computer Science, vol. 13681. Cham: Springer Nature Switzerland (2022).
doi: 10.1007/978-3-031-19803-8_33

24. Fokas E, Liersch T, Fietkau R, Hohenberger W, Beissbarth T, Hess C, et al.
Tumor regression grading after preoperative chemoradiotherapy for locally advanced
rectal carcinoma revisited: updated results of the CAO/ARO/AIO-94 trial. J Clin Oncol.
(2014) 32:1554–62. doi: 10.1200/JCO.2013.54.3769

25. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al.
N4ITK: improved N3 bias correction. IEEE Trans On Med Imaging. (2010) 29:1310–20.
doi: 10.1109/TMI.2010.2046908

26. Julious SA. Sample sizes for clinical trials with normal data. Stat Med. (2004)
23:1921–86. doi: 10.1002/sim.1783

27. Ho D, Tan IBH, Motani M. Predictive models for colorectal cancer recurrence
using multi-modal healthcare data. In Proceedings of the Conference on Health,
Inference, and Learning (CHIL '21). New York, NY, USA: Association for
Computing Machinery (2021) p. 204–13. doi: 10.1145/3450439.3451868

28. Li J, Yuan Y, Yang F, Wang Y, Zhu X, Wang Z, et al. Expert consensus on
multidisciplinary therapy of colorectal cancer with lung metastases. J Hematol \&
Oncol. (2019) 12:1–11. doi: 10.1186/s13045-019-0702-0

29. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI.
Nmr Biomedicine. (2013) 26:1004–27. doi: 10.1002/nbm.2940

30. Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, Troisi RI. Artificial
intelligence in the diagnosis and management of colorectal cancer liver metastases.
World J Gastroenterology. (2022) 28:108. doi: 10.3748/wjg.v28.i1.108
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