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Aurélien Corroyer-Dulmont

a.corroyer-dulmont@baclesse.unicancer.fr

RECEIVED 16 September 2024
ACCEPTED 07 January 2025

PUBLISHED 30 January 2025

CITATION

Moreau NN, Valable S, Jaudet C, Dessoude L,
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Early characterization and
prediction of glioblastoma and
brain metastasis treatment
efficacy using medical imaging-
based radiomics and artificial
intelligence algorithms
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Loïse Dessoude3, Leleu Thomas3, Romain Hérault4,
Romain Modzelewski5,6, Dinu Stefan3, Juliette Thariat3,7,
Alexis Lechervy4 and Aurélien Corroyer-Dulmont1,2*
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Among brain tumors, glioblastoma (GBM) is the most common and the most

aggressive type, and brain metastases (BMs) occur in 20%–40% of cancer

patients. Even with intensive treatment involving radiotherapy and surgery,

which frequently leads to cognitive decline due to doses on healthy brain

tissue, the median survival is 15 months for GBM and about 6 to 9 months for

BM. Despite these treatments, GBM patients respond heterogeneously as do

patients with BM. Following standard of care, some patients will respond and

have an overall survival of more than 30 months and others will not respond and

will die within a few months. Differentiating non-responders from responders as

early as possible in order to tailor treatment in a personalized medicine fashion to

optimize tumor control and preserve healthy brain tissue is the most pressing

unmet therapeutic challenge. Innovative computer solutions recently emerged

and could provide help to this challenge. This review will focus on 52 published

research studies between 2013 and 2024 on (1) the early characterization of

treatment efficacy with biomarker imaging and radiomic-based solutions, (2)

predictive solutions with radiomic and artificial intelligence-based solutions, (3)

interest in other biomarkers, and (4) the importance of the prediction of new

treatment modalities’ efficacy.
KEYWORDS

Glioblastoma (GBM), machine learning (ML), brain tumors, artificial intelligence,
treatment efficacy, medical imaging, radiotherapy
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Introduction

Brain tumors are highly heterogeneous neoplasms not only

from a histological point of view but also from an intratumor

temporal and spatial perspective.

Despite treatments including surgery, chemotherapy and

radiotherapy patients with brain tumors respond heterogeneously.

The same treatment will result in different treatment outcomes.

Treatment efficacy is currently evaluated using anatomical MRI

several months after treatment initiation. Differentiating non-

responders from responders as early as possible in order to tailor

treatment in a personalized medicine fashion to optimize tumor

control is the most pressing unmet therapeutic challenge.

In this review, we will provide an overview of current research on

treatment response assessment for a very aggressive and brain tumor

called glioblastoma (GBM) and for a frequent brain tumor: brain

metastasis (BM). To provide a clear structure and taxonomy of the

reviewed literature, we have categorized the studies into the

following sections:

Introduction:
Abbr

brain

gliob

UNE

Fron
• Overview of brain cancer and the therapeutic challenge of

early characterization and prediction of treatment response.
Early characterization of brain cancer treatment efficacy:
• Review of studies using functional imaging biomarkers with

MRI, PET, and CT with intensity thresholding for early

detection in the days after treatment initiation.
Prediction of treatment response:
• Brief introduction to radiomics and its potential in medical

imaging and treatment response assessment.

• Studies utilizing radiomics for extracting quantitative

features from clinical routine MRI as input for predicting

treatment response in brain cancer patients before

its initiation.

• Brief introduction to AI and its potential in medical

imaging and treatment response assessment.

• Research on various machine learning (ML) algorithms

[e.g., support vector machines (SVMs), random forests,

and neural networks] and studies using deep learning

(DL) techniques, such as convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and

transformers to predict treatment outcome before

its initiation.
Challenges and future directions for assessment of new

treatment efficacy.
eviations: AI, artificial intelligence; AUC, area under the ROC curve; BM,

metastasis; CNN, convolutional neural network; DL, deep learning; GBM,

lastoma; ML, machine learning; SVM, support vector machine; UNETR,

t Transformer.
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Following the structure of the research and the taxonomy above, in

this review, we will firstly focus on early characterization, which

involves evaluation shortly after treatment initiation and mainly

relies on imaging biomarkers/readouts. We will then focus on the

ability to predict treatment efficacy before its initiation using radiomics

and new innovative approaches using artificial intelligence (AI)

(Figure 1). AI aims to mimic human intelligence through algorithms

executed in a computer environment. AI algorithms are increasingly

being studied in the field of medical imaging, whether for image

processing, diagnosis, or the prediction of patient prognosis (1). One of

the benefits of AI is its ability to handle large datasets and extract

relevant information that is difficult to obtain through human

intelligence. For those reasons, more important focus was made on

AI solutions.
Article selection methodology

Databases: We conducted a comprehensive search using

multiple databases, including PubMed, Web of Science, and

Google Scholar. The search terms used were “Artificial

Intelligence,” “radiomics,” “brain cancer,” “treatment response,”

“glioblastoma,” “brain metastases,” “prediction,” “machine

learning,” “deep learning,” and related synonyms.

Time frame: We considered articles published from January

2012 to the present to ensure the inclusion of the most

recent advancements.

Selection process: Articles were selected based on their novelty,

number of patients, unique or multicenter approaches, and

relevance to the therapeutic challenge.

Study design: We included original research articles and review

papers; no case studies were included.

Quality: Only peer-reviewed articles from reputable journals

and conferences were considered to ensure the reliability and

validity of the findings.

Data extraction: Relevant data, including study design, novelty

of the AI techniques used, outcomes, and limitations, were extracted

from each selected article.
Current management of brain tumors

GBM is the most common and most aggressive primary brain

tumor. Despite treatments including surgical resection,

radiotherapy, and chemotherapy, the overall survival remains low

(survival median of 15 months) with a high rate of tumor

recurrence (2). While GBM has an incidence of 3.22 per 100,000

(3), BMs affect 20% to 40% of cancer patients (4) and represent the

most common primary tumor with an incidence 3 to 10 times

higher than primary brain tumors (5). BMs occur more frequently

in patients with melanoma, lung cancer, or breast cancer (70%, 40%,

and 20%, respectively (6)). As for GBM, despite aggressive

treatment with radiotherapy and surgery that often led to

cognitive decline due to healthy brain tissue dose toxicity, the
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survival median for patients with BM is very short and is about 6 to

9 months from the diagnosis of BM (7).
Therapeutic challenges

Patients with GBM (as well as patients with BM) present

heterogeneous treatment responses (8). For the standard treatment

(corresponding to surgery plus Stupp regimen), some GBM patients

(a minority) are responders and present overall survival higher than

30 months and others are non-responders and die in few months (9).

The pressing unmet therapeutic need is to be able to discriminate as

soon as possible the non-responder patients from the responders to

adapt treatment in a personalized medicine manner to optimize

tumor control as well as healthy brain tissue preservation.

The process of evaluating therapeutic response is similar for

GBM and BM. The assessment is mainly based on response

evaluation criteria in solid tumors (RECIST) (10) and response

assessment in neuro-oncology (RANO-BM) (11) criteria, which

evaluate the evolution of lesion size on anatomical MRI, at different

times after the treatment.

However, the issue is that assessment of the efficacy or non-

efficacy of therapies, using conventional anatomical MRI, is only

possible approximately 2 months after the beginning of treatment

(12). Indeed, there is too much pseudoprogession or inflammatory

response before and anatomical MRI is only able to reach the

morphological aspect of the tumor. Focusing on other imaging

biomarkers that are more specific to tumor biology could help

shorten this wasted time, allowing for earlier assessment of

treatment efficacy (13).
Frontiers in Oncology 03
Subsections relevant for the subject

Early characterization of treatment efficacy

Biomarker imaging-based solutions
As shown in Table 1A, several publications have explored which

imaging biomarkers might be more effective than anatomical MRI in

predicting early therapeutic response (chemotherapy combined with

anti-angiogenic therapy) and overall survival in patients with GBM and

recurrent GBM at the clinical and preclinical level. Li and colleagues

(14) have shown, on patients, that [18F]-AlF-NOTA-PRGD2 PET/CT

([18F]-RGD PET/CT) and dynamic contrast-enhanced MRI (DCE-

MRI) can assess response to treatment, demonstrating that a greater

decrease in SUV mean predicts better progression-free survival.

Magnetic resonance spectroscopy (MRS) can predict early treatment

efficacy. Talati et al. (15) performed a longitudinal MRI/MRS to study

whether changes in N-acetylaspartate (NAA)/Choline (Cho) and

Lactate (Lac)/NAA from different times after treatment can predict

early therapy failures. Changes noted in metabolic levels of NAA/Cho

and Lac/NAA were able to predict treatment failure as early as 1 day

after anti-angiogenic treatment. This is in accordance with the review

made by Qi and colleagues (16), who showed the different modalities

and biomarkers that enable early characterization of therapeutic

efficacy. At the preclinical level, Corroyer-Dulmont et al. have shown

that [18F]-fluoro-thymidine ([18F]-FLT PET) (marker of cell

proliferation), compared with other PET {[18F]-fluorodeoxyglucose

([18F]-FDG PET)} or MRI biomarkers, can characterize treatment

efficacy from 3 days after treatment initiation, at a time when

anatomical MRI shows no differences (17). Predicting treatment

efficacy in recurrent GBM is also an important therapeutic challenge.
FIGURE 1

The challenge of early characterization in predicting therapeutic efficacy in glioblastoma and brain metastases.
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One clinical study and one preclinical study have shown the

importance of using [18F]-FLT PET to predict progression-free

survival and overall survival in recurrent GBM (18, 19).

However, early characterization has a limitation. Even if it is

effective, the patient has already undergone treatments (radiotherapy

and chemotherapy) and may be exposed to their side effects (20).

The recent development of innovative computer techniques

such as radiomics or more recently AI could lead to predict

treatment effectiveness before its initiation. This will lead to a

more personalized medicine where non-responder patients will

gain precious months without undergoing an unnecessary costly

treatment that could potentially lead to adverse effects (21).
Predictive solutions

Radiomic-based solutions
The term “radiomics” first appeared in literature in 2012 through

an article published by Lambin et al. (22). This approach, focused on

medical imaging data, aims to extract a large set of features from an

image for a better characterization of tumor. Radiomic protocols

require the following six steps: image acquisition, image

reconstruction and pre-processing, segmentation, resampling,

features extraction, and features selection and model-based feature

construction (23). Because of these various steps, the use of radiomics

aims to be potentially predictive compared to imaging biomarker

analyses based on basic features such as mean or peak intensity.

Image characteristics are subjected to a more in-depth analysis,

making the features more relevant for prediction, and

consequently, the results are more effective. Radiomics models are

capable of predicting therapeutic response or overall survival (23).

In that context, the use of radiomics to develop models capable

of predicting treatment response prior to brain tumor treatment

initiation has been explored in several studies.

One of these studies (24) investigated the extraction of radiomic

features from post-treatment MRI in patients with BM to predict local

tumor control with an estimation of the tumor volume percentage

compared to pre-treatment and overall survival with 256 and 237

patients, respectively. Three models were constructed through the

training of SVMs using a Gaussian kernel and Bayesian optimization

for hyperparameter tuning: (i) clinical features (age, gender overall

survival, numbers of tumors, local tumor control, and median dose),

(ii) radiomic features, and (iii) combined clinical and radiomic features.

For both prediction objectives, the model combining clinical and

radiomic features achieved very interesting performances with an

area under the receiver operating characteristic curve (AUC) of 0.95

for local tumor control and 0.82 for overall survival.

Furthermore, a clinical study (25) was conducted to predict

survival stratification of 125 patients with GBM. Radiomic features

were extracted from MRI images. Among the three tested ML

models, the SVM model demonstrated the best performance, with

an AUC of 0.92.

Table 1B (24–28) summarizes several studies on the prediction of

treatment response based on radiomics obtained from pre-treatment

imaging. In all studies, the AUC is between 0.62 and 0.95. All these

studies highlighting combining radiomic features with clinical
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features enhance prediction performance. However, radiomics has

some limitations for routine clinical application. Most published

studies have a relatively small patient cohort especially for GBM.

However, to develop effective models, a sufficiently large training and

test set is mandatory (29). Because of its complexity, radiomics

presents the challenge of low interpretability of the features and

models used, raising caution among physicians regarding the use of

radiomics models in clinical settings (30). Beyond these points, the

main limitation of radiomics remains the low stability and inter-

hospital portability of the models (29). To resolve to this challenge,

initiatives like the “Imaging Biomarker Standardization Initiative

(IBSI)” (31) have been developed to complement radiomic features

extraction; however, the robustness of these predictive models

remains an issue before their adoption as a standard of care as

shown by Peerlings and colleagues (32) for diffusion MRI or CT (33)

or even for Test–Retest in PET imaging (34).

Therefore, it is timely to explore more innovative current

developments in AI that may enable predictive characterization of

treatment efficacy. DL is known to be able to extract more complex

and a larger number of features in medical imaging than radiomics,

which could lead to better performance (35).

Artificial intelligence-based solutions
Several studies have evaluated the use of AI algorithms to assess the

therapeutic efficacy of GBM and BM. A clinical study (36) involving

124 patients with BM developed a CNN-based architecture to extract

features from each MRI slice to predict the outcome of local control/

failure in BM treated with stereotactic radiation therapy. A CNN is a

type of DL neural network specifically designed to process structured

data arrays, such as images. They integrated an InceptionResentV2

CNN architecture and a transformer (to consider spatial dependences

between MRI slices during modeling). Depending on the mechanism

of integration of information from each MRI slice, the AUC ranged

from 0.72 to 0.86. The best performance was obtained with the

combination of DL features obtained from anatomical MRI with

clinical variables (tumor size, age, gender, tumor location, histology,

total dose, previous WBRT, and number of BM).

In a study including 30 patients (15 with low-grade glioma and 15

with GBM), Vollmuth et al. (37) demonstrated that AI using artificial

neural network (ANN) for brain and then tumor segmentations has

the potential to provide a more reproducible and standardized

assessment of treatment response on MRI compared to manual

two-dimensional measurements of tumor burden using RANO

criteria. Time to progression (TTP) was initially evaluated

according to RANO criteria based on MRI and then revaluated by

incorporating additional information from AI-enhanced MRI

sequences that describe longitudinal changes in tumor volume. The

inter-observer concordance correlation coefficient (CCC) for TTP

measurements was 0.77 using the RANO criteria alone. With the

addition of AI, the CCC increased to 0.91. This improvement was

most observed in patients with low-grade gliomas (0.70 without AI

vs. 0.90 with AI). Because of the less aggressive nature of these

tumors, reliable assessment of TTP can be more difficult.

In a previous study, Luckett et al. (38) show a good performance

with an accuracy of 90.6% in classifying survival (<1 year, 1–2 years,

and >2 years), employing a deep feedforward CNN comprising three
frontiersin.org
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TABLE 1 Biomarker imaging-based solutions for the early characterization of treatment efficacy (A), radiomic-based solutions for treatment efficacy
prediction (B), and AI-based solutions for treatment efficacy prediction (C).

Table 1A Biomarker imaging-based solutions for the early characterization of treatment efficacy.

Studies Cohorts (n) Tumor type Treatment Imaging
modality

Imaging
schedule

Outcome
prediction

Results Reference

Clinical 20 patients GBM Anti-angiogenic
(Bevacizumab)
plus conventional
radiotherapy and
chemotherapy
(Temozolomide)
(CRT)
Adjuvant
chemotherapy
(Temozolomide)
plus anti-
angiogenic
(Bevacizumab)

18F-RGD PET/
CT
DCE-MRI

Before CRT
Before anti-
angiogenic
Seven weeks after
anti-angiogenic

Treatment
efficacy

Prediction of
response to
treatment after
3 weeks

(14)

Clinical 33 patients Recurrent GBM Anti-angiogenic
(Bevacizumab)
monotherapy or
combination
therapy

MRI/MRS
(NAA/Cho and
Lac/NAA)

1 day and 2, 4, 8,
and 16 weeks
after treatment

Treatment
efficacy

Prediction of
treatment failure
to therapy 1 day
after treatment

(15)

Preclinical 25 rats and
29 rats

GBM
(U87 and U251:
human cell line)

Chemotherapy
(Temozolomide),
anti-angiogenic
(Bevacizumab),
or both

Anatomical MRI
Diffusion MRI
CBV MRI
[18F]-[FLT] PET
[18F]-FDG PET

5, 10, or 12 days
after treatment

Treatment
efficacy

[18F]-FLT was
more predictive:
3 days after
initiation
treatment

(17)

Preclinical 49 rats Recurrent GBM
(Human U251
cell line)

Chemotherapy
(Temozolomide),
anti-angiogenic
(Bevacizumab),
or both

Anatomical MRI
Diffusion MRI
CBV MRI
[18F]-[FLT] PET
[18F]-FDG PET

3, 10, and 17
days
after treatment

Treatment
efficacy

[18F]-FLT was
more predictive:
3 days after the
end of treatment

(18)

Clinical 30 patients Recurrent
malignant glioma

Chemotherapy
(Temozolomide)
and anti-
angiogenic
(Bevacizumab)

Anatomical MRI
[18F]-FLT PET

MRI: 6 weeks
after treatments
PET: 1 to 5 days
and at 2 and 6
weeks
after treatments

Treatment
efficacy

[18F]-FLT can be
used to
determine the
treatment
efficacy 2 weeks
after treatments

(19)
F
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CBV, cerebral blood volume; Cho, choline; CRT, radiotherapy and temozolomide; CT, computed tomography; DCE, dynamic contrast-enhanced; [18F]-FDG, [18F]-fluorodeoxyglucose; [18F]-
FLT, [18F]-fluoro-thymidine; GBM, glioblastoma; Lac, lactate; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate; PET, positron emission
tomography; [18F]-RGD, [18F]-AlF-NOTA-PRGD2.
TABLE 1B Radiomic-based solutions for treatment efficacy prediction.

Studies Cohorts (n) Tumor
type

Treatment(s) Imaging
modality

Features
numbers

Models Outcome
prediction

Results Reference

Clinical 237 patients BM Gamma knife
radiosurgery
(GKRS)

MRI Clinical: 5
Radiomic: 4

SVM Overall survival Radiomics and clinical
features combination
(AUC = 0.82,
Acc = 0.80,
Sens = 0.77, Spe = 0.81)

(24)

Clinical 256 patients BM GKRS MRI Clinical: 5
Radiomics: 5

SVM Local tumor control Radiomics and clinical
features combination
(AUC = 0.95, Acc =
0.89, Sens = 0.87,
Spe = 0.91)

(24)

Clinical 125 patients GBM Radiotherapy and
concomitant
chemotherapy
(Temozolomide)

MRI Clinical: 6
Radiomics:
21

RF,
SVM, LR

Survival
stratification

Radiomics and clinical
features combination
(AUC = 0.92)

(25)

Clinical 76 patients GBM Chemoradiotherapy MRI Clinical: 2
Radiomics: 6

Naïve
Bayes

Distinction in early
true progression

Radiomics and clinical
features combination

(26)

(Continued)
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hidden layers with eight neurons in each layer to predict patient

survival in a cohort of 133 individuals. Ortega-Martorell and colleagues

also showed a good performance of one-dimension CNN in a

preclinical study to track therapy response in GBM (39). The 1D-

CNN performed better than different ML models, showing the

superiority of DL methods.

Our review of the literature reveals that the CNN exhibits

superior performance. Although the architecture is not novel, it is

particularly suited to medical imaging and currently offers the most

effective means of predicting treatment efficacy (40).

Table 1C (36–39) summarizes several studies on the prediction

of treatment response based on AI algorithms from pre-treatment

MRI. As in the radiomics-based studies, the best performance is

achieved by combining imaging data with clinical information.
Frontiers in Oncology 06
Many studies applying AI in this field are based on relatively

small data cohorts (less than 100 for GBM). However, a large data

cohort is essential for optimal training of AI models (41).

Centralizing a large amount of data in a single center can be

challenging, and the performances of models are not always

transferable between centers. Federated learning (42) addresses

this issue by enabling learning from distributed data without

transferring it between sites. Federated learning is a DL

paradigm in which a model is trained across multiple

decentralized devices or servers located in various medical

centers, each holding local data samples, without the need to

exchange the raw data. The only parameters shared among the

different hospitals are the model parameters, not the raw

medical data.
TABLE 1B Continued

Studies Cohorts (n) Tumor
type

Treatment(s) Imaging
modality

Features
numbers

Models Outcome
prediction

Results Reference

between
pseudoprogression

(AUC = 0.80,
Acc = 0.737,
Sens = 0.78, Spe = 0.67)

Clinical 337 patients BM SRS MRI Clinical: 4
Radiomics:
223

GNB,
kNN, RF,
AB,
SVM,
MLP

Treatment response Best classifier: SVM
Radiomics and clinical
features combination
(AUC = 0.95)

(27)

Clinical 87 patients BM Stereotactic
radiosurgery (SRS)

MRI Clinical: 3
Radiomics: 9

RF Local tumor control Radiomics and clinical
features combination
(AUC = 0.79)

(28)
fr
AB, adaptive boosting; Acc, accuracy; AUC, area under the ROC curve; BM, brain metastasis; GBM, glioblastoma; GKRS, gamma knife radiosurgery; GNB, Gaussian naïve Bayesian; kNN, k-
nearest neighbors; LR, logistic regression; MLP, multilayer perceptron; MRI, magnetic resonance imaging; RF, random forest; Sens, sensitivity; Spe, specificity; SRS, stereotactic radiosurgery;
SVM, support vector machine.
TABLE 1C AI-based solutions for treatment efficacy prediction.

Studies Cohorts (n) Tumor
localization

Treatment Imaging
modality

Models Outcome
prediction

Results Reference

Clinical 124 patients BM Stereotactic
radiation
therapy (SRT)

MRI MLP/Clinical
features
CNN + Seq2Seq/
Transformers/LSTM
CNN + Seq2Seq/
Transformers/LSTM
+ clinical features

Local tumor control CNN + LSTM +
clinical features
(AUC = 0.86, Acc =
0.83, Sens = 0.77,
Spe = 0.87)

(36)

Clinical 30 patients Gliomas
(15 GBM)

/ MRI HD-GLIO-XNAT
(https://github.com/
NeuroAI-HD/HD-
GLIO-XNAT)

Evaluate whether AI-
assisted decision
support provides a
more reproducible
and standardized
assessment of
response to treatment
compared to manual
measurements using
RANO criteria

Lower-grade gliomas
(CCP = 0.77 for
RANO and 0.91
with AI)

(37)

Clinical 133 patients GBM / MRI ANN with
clinical features

Survival classification Cross validation:
Acc = 0.91

(38)

Preclinical 28 mice GL261 Chemotherapy
(Temozolomide)

MRI/MRS 1D-CNN, LR, SVM,
RF, XGBoost

Therapy
response assessment

1D-CNN (Acc =
0.9975, Sens = 0.99,
Spe = 0.99)

(39)
Acc, accuracy; AI, artificial intelligence; AUC, area under the ROC curve; BM, brain metastasis; CCP, concordance correlation coefficients; CNN, convolutional neural network; GBM,
glioblastoma; LR, logistic regression; LSTM, long short-term memory; MLP, multilayer perceptron; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; RANO, response
assessment in neuro-oncology; RF, random forest; Sens, sensitivity; Spe, specificity; SRS, stereotactic radiosurgery; SVM, support vector machine; XGBoost, extreme gradient boosting.
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In addition, AI methodology is constantly evolving and new

architectures appear every year. The models we have presented in

this review give an overview of what is being done today, but new

architectures such as diffusion models or full transformers should

be more present in the years to come. One example is the UNEt

TRansformer (UNETR) (43), which adapts the CNN encoder/

decoder models proposed by UNET to transformer architectures

in order to process sequential representations of the input volume

more efficiently. Transformers are a type of AI model designed to

efficiently process sequential data, such as text. Functional imaging

such as proliferation index or other indicators is more relevant for

assessing therapeutic efficacy (17). To our knowledge, no study

involving AI models uses functional imaging biomarkers for

predicting GBM efficacy as all the articles reported in this review

used clinical routine anatomical MRI. However, in other cancers

with radiomic models, Knuth and colleagues as well as Zhang and

colleagues support the add value of function biomarkers in

comparison to anatomical MRI in rectal (44) and breast cancers,

respectively (45).

Opting for more functional imaging biomarkers instead of

anatomical MRI could potentially improve AI performance in

predicting treatment efficacy.

It is important to note that current studies were based on 2016

WHO classification rather than the 2021 one. To the best of our

knowledge, no study has yet evaluated the potential of AI models to

predict treatment outcomes of GBM according to the WHO 2021

classification. These models may not fully reflect current standards and

advancements in the field, potentially leading to biases in predictions.

However, current performances of the AI models to predict treatment

outcome are still valid if they do not take into account the grade of the

tumor, for example, if the input data only take the pre-treatment MRI.

If the model is capable of predicting the treatment outcome of a brain

lesion on an MRI, it should still be able to do so regardless of whether

the brain lesion is designated as a GBM or a grade 4 astrocytoma

Therefore, it is essential to incorporate recent classifications to ensure

that AI models are aligned with best clinical practices and provide

reliable and relevant recommendations.
AI models to distinguish pseudo-
progression to recurrence

For patients with GBM treated in accordance with the established

standard protocol, the prevalence of pseudoprogression is estimated to

range between 20% and 30%. This phenomenon typically manifests

within 1 to 12 weeks following the conclusion of treatment and is

distinguished by an increase in tumor volume and the emergence of

new lesions discernible on magnetic resonance imaging (MRI) (46).

This represents a significant challenge in clinical routine, as it

complicates the assessment of treatment response and may impact

therapeutic decis ion-making. Dist inguishing between

pseudoprogression and tumor recurrence is essential for optimal

patient management, but this differentiation requires a significant

amount of imaging. The acquisition of earlier information on

potential pseudoprogression could enable treatment to be adapted
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more rapidly. Several studies have shown that radiomics and AI

could be pertinent tools to predict pseudoprogression. Sun et al.

(47) evaluated the diagnostic performance of ML models using a

radiomic model based on contrast-enhanced T1-weighted MRI to

differentiate pseudoprogression from true progression after

standard treatment for 77 patients. The classifier demonstrated

limited results with a sensitivity of 78.36% and a specificity of

61.33%. Another study (48), based on 78 patients with GBM,

developed a CNN combined with an LSTM to differentiate

anatomical MRI pseudoprogression from progression. The AUC

results of the three trained models ranged from 0.52 to 0.83. The

model that demonstrated the highest performance was the one that

combined both MRI data and clinical features including age at the

time of surgery, gender, methylation status of the 06-

methylguanine-DNA-methyltransferase (MGMT) promoter,

mutational status of the isocitrate dehydrogenase (IDH) gene, the

total dose and number of fractions of radiotherapy, and other

factors. Moassefi and colleagues (49) developed a DL model to

distinguish pseudoprogression from true progression for 124

patients, using only clinical routine MRI. The model achieved a

mean accuracy of 76.4%, a mean AUC of 0.76, a mean sensitivity of

88.72%, and a mean specificity of 62.05%.

An article using nuclear medicine imaging shows that radiomics

based on FET-PET was able to differentiate tumor progression from

pseudoprogression (50).Kebir et al. usedFET-PET images in 14patients

and applied an unsupervised clustering algorithm for the diagnosis of

pseudoprogression, achieving a diagnostic accuracy of 75%.

These studies demonstrate that it is possible to predict

pseudoprogression at a relatively early stage, which could

potentially optimize patient management. However, it is

important to note that (1) performances of the models are limited

with a specificity and a sensitivity of approximately 0.7 to 0.8 and

(2) none of these studies have explored the prediction of

pseudoprogression using pre-treatment imaging, highlighting a

significant area for future research.
Interest in other biomarkers

This review focuses on the relevance of imaging biomarkers and

the use of radiomics and AI based onMRI before and after treatment.

However, molecular biomarkers can also be used to characterize

therapeutic efficacy and overall survival. One such molecular

biomarker is the methylation status of MGMT (51). The 1p/19q

codeletion and loss of chromosome 10 are also predictive of

therapeutic response (52). Although these biomarkers are used in

routine clinical practice, the cost of testing, limited resources, and

analysis time may be limiting factors for some patients (53). In

contrast, MRI and RT DOSE are performed for each patient.

In addition, a biopsy is only performed on a part of the tumor.

Since GBMs are recognized as highly heterogeneous tumors,

molecular or protein expression will not be representative of the

entire tumor, introducing a variability in the evaluation of

therapeutic response (54). Therefore, imaging biomarkers appear

to be the most suitable for routine clinical application.
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New treatment modalities

Predicting the efficacy of treatments is of great interest for

responder patients. However, for non-responder patients, the use of

new treatment modalities, such as proton therapy and carbon ion

therapy, is essential. It is important to conduct studies in these areas to

assess the appropriateness of using one treatment over another, based

on expected therapeutic efficacy. These studies are of crucial

importance for the integration of these new treatments, which still

need to be validated, especially through clinical trials (55). In this

context, an AI tool that predicts treatment efficacy before initiation

would be of significant interest.
Conclusion

The practical applications of AI and radiomics in the

management of brain cancer are significant. These technologies

enable earlier diagnosis, facilitating rapid and personalized

treatment plans. For patients, this translates into better clinical

outcomes and improved quality of life, particularly through the

rapid identification of cases of non-response to treatment, paving

the way to more appropriate therapeutic alternatives. As far as

healthcare systems are concerned, AI and radiomics offer the

possibility of optimizing the use of resources and reducing the

financial impact of costly and ineffective treatments.

However, a number of challenges remain. These include the

time and effort required to train healthcare professionals in the use

of these technologies, as well as the management of administrative

and regulatory obstacles.

The review highlights the pressing need for early and accurate

characterization of treatment efficacy in GBM and BMs, given their

aggressive nature and the heterogeneous responses to standard

treatments. Current methods, relying on anatomical MRI, often

fail to provide timely assessments due to pseudoprogression,

leading to delayed treatment adjustments and potential cognitive

decline from radiotherapy.
Early characterization of treatment efficacy

Imaging biomarkers, such as PET/CT, DCE-MRI, and MRS,

have shown promise in predicting treatment response and overall

survival earlier than conventional MRI. However, these methods

still require patients to undergo initial treatments, exposing them to

potential side effects.
Predictive solutions

Radiomics and AI offer innovative approaches to predict

treatment efficacy before initiation. Studies combining radiomic

features with clinical data have achieved high AUC values,

indicating strong predictive performance. However, radiomics
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faces challenges such as low interpretability and limited inter-

hospital portability, which initiatives like the IBSI aim to address.

Our review shows that AI, particularly DL techniques like CNNs,

has demonstrated superior performance in predicting treatment

outcomes. Combining AI-extracted features from MRI with clinical

variables has yielded impressive results, with AUC values ranging

from 0.72 to 0.99. Federated learning presents a solution to the

challenge of data centralization, allowing models to be trained across

multiple decentralized sites without exchanging raw data.
Challenges and future directions

Despite the promising results, several challenges remain. Most

studies are based on small patient cohorts, which limits the

generalizability of the findings. Additionally, the use of functional

imaging biomarkers, which may provide more relevant information

than anatomical MRI, has not been extensively explored in AI models

for brain efficacy prediction. The integration of radiomics and DL in

neuro-oncology has led to significant advancements in the

management of gliomas, particularly by exploiting complex imaging

features to predict molecular and clinical profiles. However, significant

challenges remain, including the harmonization of multimodal data.

Future research should focus on developing federated learning

frameworks and enhancing model interpretability (56).
Pseudoprogression and new
treatment modalities

Distinguishing pseudoprogression from true progression is

crucial for optimal patient management. Radiomics and AI have

shown potential in this area; however, the performance of these

models is limited, and predicting pseudoprogression using pre-

treatment imaging remains an inadequately explored area.

AI and the radiomics model have some limitations that have to

be pointed out:
(a) Bias in training data or learning algorithms: Biases in

training data represent a major challenge for training AI

models. If the dataset used is not representative of the

overall population, model performance is likely to degrade,

particularly for more diverse patient groups. To limit these

biases and better explain model behaviors, a data quality

process is essential. This helps to identify and address

potential gaps in the distribution of the data used.

(b) AI reliability in a clinical situation, especially with patient

populations that are part of more heterogeneous groups:

The reliability of AI systems in the clinical setting is a

fundamental issue, especially when it comes to treating

heterogeneous patient populations. For example, brain

tumors such as GBM and BM present great heterogeneity

both between tumors and within the same tumor. This

diversity can limit the ability of AI models to generalize

effectively. To address this, it is essential to rigorously
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validate these models and continuously adapt them using

updated data. In addition, the study of model explainability

is essential to understand the decisions made by models.
Moreover, patients included in clinical trials are not

representative of the general population of patients in clinical

practice because the selection criteria are strict. Consequently, the

results of most clinical trials do not allow the same conclusions to be

drawn in a different population or context (57).

(c) The challenge of integrating new technology into day-to-day

clinical practice: Integrating AI technologies into everyday clinical

practice involves a number of challenges. Firstly, sufficiently powerful

IT infrastructures are needed to run these models. Secondly, medical

staff need to be trained in their use, which can come up against a

certain resistance to change. In these cases, the explicability of the

models plays a key role in instilling confidence and facilitating their

adoption. In addition, it is crucial to develop user-friendly interfaces,

integrating these models into practical tools for medical staff. Finally,

regulatory and ethical aspects, such as data confidentiality and patient

safety, must be considered to ensure the safe and responsible

deployment of technologies in the clinical environment.

Articles cited in this review evaluate the performance of the AI

models with specificity/sensitivity approaches and not with concrete

data from clinical routine experiments or case studies on brain tumor

treatment efficacy. A study has developed an AI model for diagnosing

breast cancer and determined whether it could be useful to

radiologists (58). The study showed that AI had better results than

radiologists (91% vs. 59%). The integration of AI into clinical practice

is raising new challenges while offering considerable opportunities. It

is helping to improve the accuracy of diagnoses, optimize

administrative tasks, and personalize treatment plans. Moreover, AI

allows healthcare staff to spend more time with patients, enhancing

the quality of care and the human relationship (59). For example, the

authors showed that a BM segmentation system based on DL can be

optimally applied to improve the efficiency of BM delineation in

clinical practice (60). Another study has developed DLmodels for the

purpose of proposing an alternative solution for patient-specific

quality assurance that would make treatment machines more

available to patients and thus enable more patients to be treated (61).

In summary, while significant progress has been made in early

characterization and prediction of treatment efficacy in GBM and

BM using imaging biomarkers, radiomics, and AI, further research

is needed to address current limitations and explore new avenues.

Integrating functional imaging biomarkers, updating AI models to

reflect recent architecture, and investigating new treatment

modalities are key areas for future development.
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